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Abstract

The set of bounded elements of a unital l.m.c. algebra is characterised as the union of certain
naturally defined normed subalgebras, and an analogous characterisation is given for algebras of
quotient-bounded operators on a locally convex space. Pseudocomplete l.m.c. algebras are
characterised in terms of the completeness of these subalgebras, and analogously for operator
algebras. Normcomplete locally convex spaces are characterised similarly, and the equivalence of
this condition with the pseudocompleteness of the quotient-bounded operator algebras estab-
lished. The scalar multiples of the identity in a unital l.m.c. algebra are characterised in terms of
certain boundedness conditions.

0. Introduction

The central concept of this paper is that of a bounded element of a locally
convex algebra, introduced by Allan (1965) in setting up a spectral theory for
that class of algebras. An element is said to be bounded if some scalar
multiple of it generates a bounded semigroup. It turns out (Theorem 2.4) that
for a unital l.m.c. algebra A, the notion of boundedness of an element a can
be approached via a boundedness condition of the form

sup p(a) < x,
pep

where P is a calibration for A satisfying certain conditions. This approach is
the thrust of §2. For appropriate calibrations P the above formula defines a
unital subalgebra AP and the left-hand side an algebra norm on AP. The
algebras AP make their appearance many times in this paper.

In §3 we consider the special case of l.m.c. operator algebras on a locally
convex space. With each calibration P for a locally convex space we associate
a unital l.m.c. algebra SLP of quotient-bounded operators (such operators
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[2] Locally convex spaces and algebras 51

appear in Moore (1968) as ultracontinuous operators). Theorem 3.6 is
analogous to Theorem 2.4, and characterises the bounded elements of 2.P in
terms of the normed subalgebras %P of universally bounded operators, which
correspond to the algebras AP above.

Allan (1965) has given the notion of pseudocompleteness of a locally
convex algebra. For a unital l.m.c. algebra A, this condition has a simple
interpretation in terms of the completeness of the normed subalgebras AP

(Theorem 4.7). Moore (1969) has given the similar notion of normcomplete-
ness of a locally convex space, which permits a characterisation similar to that
of pseudocompleteness (Theorem 4.5). In fact Moore has shown that
normcompleteness is equivalent to completeness of all the algebras S8P of
universally bounded operators, and using this result we can relate normcom-
pleteness to pseudocompleteness of the algebras % of quotient-bounded
operators (Theorem 4.9).

§5 is a collection of results whose theme is the characterisation of the
scalar multiples of the identity in a unital l.m.c. algebra. It is shown that
elements which are not scalar multiples of the identity are 'unbounded' in
various senses. Some of the results apply to normed spaces. For example,
Corollary 5.8 asserts that a bounded linear operator on a normed space, which
is not a scalar multiple of the identity, has arbitrarily large operator norms
corresponding to equivalent norms on the underlying space.

The material of this paper forms part of the author's doctoral thesis
(Joseph (1975)) submitted at the University of Newcastle, N.S.W. The author
gratefully acknowledges the award of a research scholarship from that univer-
sity. He also expresses his sincere thanks to Professor J. R. Giles under whose
supervision the research was carried out.

1. Preliminaries

All locally convex spaces will be assumed Hausdorflf and over the
complex field C. A calibration for a locally convex space E is any family P of
seminorms generating its topology, in the sense that the topology of E is the
coarsest with respect to which all the seminorms in P are continuous. A
calibration P is characterised by the property that the sets

{x GE:p(x)Se}, ( e > 0 , p G P )

constitute a neighborhood sub-base at 0. Because of the Hausdorff assump-
tion, every calibration P is separating: if p(x) = 0 for every p G P, then x = 0.
The set of calibrations for E is denoted SP(E). The family of all continuous
seminorms on E is denoted A(E) and is the largest member of £P(E). The
identity operator is denoted /, and the dual of E is denoted E*.
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52 Gerard A. Joseph [3]

A locally convex algebra is an algebra with a locally convex topology in
which multiplication is separately continuous. Such an algebra is locally
m -convex (l.m.c.) if it has a neighborhood base ^ at 0 such that each U G °U
is convex, balanced (At/ C U for | A | Si 1), and satisfies the semigroup
property U2 C U. Any algebra with identity will be called unital. A unital
l.m.c. algebra A is characterised by the existence of a calibration P such that
each p G P is submultiplicative (p(xy)§ p(x)p(y)) and satisfies p(l) = 1. The
set of such calibrations is denoted SP*{A). The family of all continuous
submultiplicative seminorms p on A satisfying p(l) = 1 is denoted A*(A),
and is the largest member of SP*(A). The term unital normed algebra implies
that the norm is submultiplicative and satisfies | | l | |= 1.

Any family of seminorms on a linear space X is partially ordered by the
relation S , where p S q means p(x) S q(x) for all x G X. Any such family is
preordered by the relation s , where p s q means there exists r > 0 such that
p(x) = rq(x) for all x G X. If p •& q and q := p, we write p — q, and this defines
an equivalence relation on any family of seminorms on X. We use this relation
to define an equivalence relation between families of seminorms.

DEFINITION 1.1. Families P,, P2 of seminorms on a linear space are
called Q-equivalent (denoted P, = P2) provided

(i) for each p, G P, there exists p2G P2 such that px — p2; and
(ii) for each p2 G P, there exists p, G P, such that p, — p2-

O-equivalent, separating families on a linear space generate the same locally
convex topology. We will also require the following stronger equivalence
relation.

DEFINITION 1.2. Families P,, P2 of seminorms on a linear space are
called B -equivalent (denoted P, ~ P2) provided each seminorm in each is a
positive multiple of a seminorm in the other.

A calibration PG 2P{E) will be called basic provided the sets

{x G£ :p (x )ge} , (p £ P, e >0)

constitute a neighborhood base at 0. We can relate the property of being basic
to the preorder s defined above.

PROPOSITION 1.3. A calibration P is basic if and only if it is upwards

directed by s ; (that is, for each p , , p 2 G P there exists p G P such that

p , s p , p2<p).

A calibration O-equivalent to a basic calibration is basic.
Finally we note that if p is a seminorm on a linear space X and T a linear

operator on X, then the composition pT, where pT(x) = p(Tx), is a seminorm
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on X; if / is a linear functional on X, then | / | is a seminorm on X, where
\f\(x)=\f(x)\.

2. The bounded elements of a unital l.m.c. algebra

We give the definition of a bounded element, and show that in a unital
l.m.c. algebra, boundedness of an element is equivalent to another kind of
boundedness condition. Recall that a set B in a linear topological space is
bounded if it is absorbed by every neighborhood of 0, which in a locally
convex space E amounts to the condition

sup{p(x):x G B} < °c for all p belonging to some calibration P G 2P(E).

DEFINITION 2.1. An element a of a locally convex algebra A is bounded
if for some r > 0, the set {(r~'a)" :n = 1,2, • • •} is bounded. Thus a is bounded
if for some r > 0 , r 'a generates a bounded semigroup.

The set of bounded elements of A is denoted Ao.

DEFINITION 2.2. The radius of boundedness of an elelment a G Ao is the
number

P(a) = inf {/• > Q:r'a generates a bounded semigroup}.

For the remainder of this section, A denotes a unital l.m.c. algebra. We
adopt the abbreviations 9* and A* for 2P*(A) and A*(A) respectively. Given
PG SP*, we define a subset AP of A by the condition

supp(a)<=c; (1)
PEP

it is clear that AP is a unital subalgebra of A. For a G AP we define

|| a ||P = supp (a ) ;
PEP

then (Ap, ||-||P) is a unital normed algebra, whose || • ||P-topology is finer than
that inherited from A. Our characterisation of A0(Theorem 2.4) depends on
the following recalibration lemma, a direct generalisation of the classical
renorming theorem for normed algebras (see for example Bonsall and
Duncan (1971), p. 21).

LEMMA 2.3. Let S be a bounded semigroup in A, and 3K any Q-
equivalence class of calibrations in 3P*. Then there exists P G S^ such that S lies
within the unit ball of (AP, \\ • ||P).

PROOF. Choose any PELW and suppose without loss of generality that
1 G S. For each p G P define p' on A by

https://doi.org/10.1017/S144678870002005X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002005X


54 Gerard A. Joseph [5]

p'(a)= sup{p(sa):sGS}.

Then p' is a continuous submultiplicative seminorm on A, p' — p, and
p'(sa) S p ' ( a ) for each s & S and a G. A. Now define p" on A by

Then p' is a continuous submultiplicative seminorm on A, p' — p, and
p'(sa) ts p'{a) for each s £ S and a £ A. Now define p" on A by

p"(b)= sup{p'(bx):p'(x)Sl}.

Then p"£A* and p" = p, so P" = {p":p6P} = P, hence P " £ ^ ; further,
p"(s) S 1 for all 5 E S and pGP .

THEOREM 2.4. Lef $f fee any Q'-equivalence class in 9'*. An element of
A is bounded if and only if it belongs to AP for some P £ 2f; thus

Ao= U AP.

PROOF. Let a £ Ao and r>0 such that r 'a generates a bounded
semigroup. By Lemma 2.3 there exists P £ 9if such that { ( r ' a ) " : n = 1,2, • • •}
lies within the unit ball of (AP, \\ • ||P), which implies that p ( a ) S r for all p £ P,
so a £ AP and || a ||P s= r. Conversely, if a £ AP for some P £ Sif, it is clear that
| |a| |p'a generates a bounded semigroup.

From the proof of Theorem 2.4 we deduce immediately a formula for the
radius of boundedness of a bounded element.

COROLLARY 2.5. For each a £ Ao, V

/3(a) = inf{|| a ||P : P £ 2if, a £ AP}.

NOTE. For each P £ 5if, the unit ball of AP is a closed, convex, balanced,
bounded semigroup in A, and by Lemma 2.3 every such semigroup lies in the
unit ball of AP for some P £ "X. Thus Theorem 2.4 follows also from a result
of Allan (1965), p. 401.

EXAMPLE 2.6. Let A = s be the unital l.m.c. algebra of all complex
sequences x = (xu x2, • • •) with the topology of pointwise convergence. Let P
be the calibration {p,,pi, • • •} defined by pn{x) - \ xn |. Then AP is the algebra
€' of bounded sequences and || • ||P is the usual supremum norm.

3. Bounded elements of operator algebras

Here we turn attention to certain l.m.c. algebras of operators on a locally
convex space. Our main result here (Theorem 3.6) is essentially the operator
analog of Theorem 2.4, and describes the bounded elements of the algebras of

https://doi.org/10.1017/S144678870002005X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002005X


[6] Locally convex spaces and algebras 55

quotient-bounded operators in terms of the normed subalgebras of universally
bounded operators. Throughout this section E denotes a locally convex
space; we write 5? for 0'(E).

The first class of operators to be defined appears in Moore (1969) and
Chilana (1970).

DEFINITION 3.1. A linear operator T on E is universally bounded (UB)
with respect to a calibration P G <3> if there exists r > 0 such that pT S rp for
all p G P. The class of such operators is denoted 33P. For T G 53P we define

|| T||P = inf{r >0:pT^ rp forall p G P).

The following properties of UB operators are obvious.

PROPOSITION 3.2. (i) SftP is a unital subalgebra of the algebra of continu-
ous linear operators on E;

(ii) (aop,||-||P) is a unital normed algebra;
(iii) if P'&Sf such that P' ~ P, then 33P = 33P and || • ||P = || • ||P.
In the next section we consider questions relating to completeness of the

algebras 3ftP.
The following class of operators was first defined in Appendix A of

Michael (1952); they appear also in Moore (1968) and Chilana (1972) and
numerical range theory for operators of this class was studied in Giles,
Joseph, Koehler and Sims (1975).

DEFINITION 3.3. A linear operator T on E is quotient-bounded (QB)
with respect to a calibration P G 0> if pT & p for each p £ P . The class of such
operators is denoted 2tP. For each T G 1P and p £ P we define

p(T)= \ni{r>0:pTsrp}.

For each p G P, p is then a submultiplicative seminorm on 3.P satisfying
p(I) = 1, and we denote by P the family {p :p G P}. The following assertions
are clear.

PROPOSITION 3.4. (i) % is a unital subalgebra of the algebra of continu-
ous linear operators on E;

(ii) % is a unital l.m.c. algebra with respect to the topology determined by
P, and P £&>*(%);

(iii) 5#P is a unital subalgebra of %, and in fact SSP = (2.P )P, || • ||P = || • ||P;
(iv) if P' G 9 such that P' = P, then% = StP. and P - P'; thus the P- and

P'-topologies coincide;
(v) the P-topology is finer than the topology of uniform convergence on the

bounded subsets of E.
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For the remainder of this section, P denotes a fixed calibration in 3f.
Again our main result requires a recalibration lemma; the following result is
analogous to Lemma 2.3 and generalises the classical renorming theorem for
operators on normed spaces (see for example Bonsall and Duncan (1971),
p. 90).

LEMMA 3.5. Let if be a bounded semigroup in SLP. Then there exists
P ' £ f such that P' = P and if lies within the unit ball of (38 P., || • ||P).

PROOF. Suppose without loss of generality that IGif. For each p £ P
define p' on E by

p'(x)= sup{p(Tx):TEif}.

Then p' is a continuous seminorm on E and p' — p. Thus P' = {p1: p £ P} £ $?
andP' = P. For each T £ if it is then clear that T £ 38P and that || T||P § 1.
We are now able to characterise the bounded elements of Sip as those
operators in 2LP which are UB with respect to some calibration Q-equivalent
to P.

THEOREM 3.6. An operator T £ StP is a bounded element of StP if and only
if there exists P' £ 3> such that P' = P and T £ 38 P•; thus

PROOF. The proof is similar to that of Theorem 2.4, but invokes Lemma
3.5 instead of Lemma 2.3.

Again the proof yields a formula for the radius of boundedness /3P(-)
in SiP.

COROLLARY 3.7. For each T £ (SiP)0,

j8P(T)= inf{||r||P :P'£3», P'^ P, T(E®P}.

NOTE. By (iv) of Proposition 3.4, Q-equivalent recalibrations change
neither the algebra of QB operators nor its topology. Theorem 3.6 gives an
indication of the extent to which the algebras of UB operators may change
under such recalibrations. A fuller account of their behavior is given in §5.

4. Completeness conditions

In this section we consider two completeness conditions, normcomplete-
ness (Moore (1969)), and its algebra analog, pseudocompleteness (Allan
(1965)). We characterise normcomplete locally convex spaces in terms of the
completeness of certain normed subspaces (Theorem 4.5), and pseudocom-
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plete l.m.c. algebras in terms of the completeness of corresponding normed
subalgebras (Theorem 4.7), which are just the subalgebras AP discussed in §2.
For the particular case of l.m.c. algebras of QB operators, we obtain the
appropriate operator analog of Theorem 4.7 (Theorem 4.8), which then yields
a connection between normcompleteness of a locally convex space and
pseudocompleteness of its algebras of QB operators.

Let E be a locally convex space. Denote by si the class of closed, convex,
balanced, bounded (ccbb) subsets of E. For B G i denote by EB the linear
span of B and define || • ||B on EB to be the Minkowski functional of B:

\\x\\B = i n f{ r>0 : r " 1 x £ B ) .

PROPOSITION 4.1. For each B G si, (EB, | | - | |B) is a normed linear space

with unit ball B, whose \\-\\B-topology is finer than that inherited from E.

DEFINITION 4.2. E is normcomplete provided (EB, || • ||u) is complete for
all B G si.

It is shown in Moore (1967) that normcompleteness is weaker than
sequential completeness, and Moore (1969) has in fact proved the remarkable
result that E is normcomplete if and only if (38P, ||-||P) is complete for all
P G SP. We now define a system of subspaces which occur among the
EB, B G si, whose completeness turns out to guarantee normcompleteness
(Theorem 4.5).

Given a calibration P G 0>, the following condition (identical to (1) in §2)

sup p(x)< =c

pep

defines a linear subspace EP of E, and the formula

||x| |P = supp(x)
pep

defines a norm on EP which induces a topology finer than that inherited from
E. We require two lemmas, the first of which is similar to Lemma 2.3.

LEMMA 4.3. Let B be abounded set in E and "X any B- equivalence class
of calibrations in <3>. Then there exists P &ffl such that B lies within the unit ball
Of {EP, | | - | |P) .

PROOF. Take any P G $"; for each p G P let kp = sup{p (x): x G B},
and define p' = p/(kp + 1); letting P' = {p':p G P}, w e h a v e P ' - P so P 'G %,
and clearly BQEF and || x ||P g 1 for all x £ B .

A subcollection <%(, of a collection °U of sets is said to be cofinal in °U if
every set in °U is contained in a set in %„. The following lemma shows that to
establish normcompleteness it is only necessary to consider a cofinal subcol-
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lection of si. The proof uses the fact that a complete space is normcomplete, a
consequence of the result of Moore (1967) referred to above.

LEMMA 4.4. Let s40 be cofinal in si, and suppose (EB,\\ -Us) is complete

for all B £ sitl. Then E is normcomplete.

PROOF. Take any B e i , and let Bn6 Mo such that B C Bo. Since B is
closed in E, it is also closed in Eg,, in the finer topology induced by its norm
|| • ||a,,. Since Bo is the unit ball of (E^, || • ||B,,), B is bounded in E^,. Thus B is a
ccbb set in E^,, which is complete by hypothesis and hence normcomplete.
But this implies that (EB, | | - | |B ) is complete as required.

Our characterisation of normcompleteness now follows simply.

THEOREM 4.5. Let X be any B-equivalence class in Sf. Then E is
normcomplete if and only if (EP, || • ||P) is complete for all P G ffl.

PROOF. For each P £ "X, (EP,\\ • \\P) is equal to (EB,|| • ||B) where B is the
unit ball of (EP, || • ||P). Thus the 'only if part is clear by definition of
normcompleteness. By Lemma 4.3, the unit balls of the (EP, || • ||P), PE.dK, are
cofinal in si; the converse is then immediate from Lemma 4.4.

Allan's pseudocompleteness is defined similarly to normcompleteness,
but pays regard to the multiplicative structure of a locally convex algebra, and
is accordingly slightly weaker.

DEFINITION 4.6. A locally convex algebra A is pseudocomplete pro-
vided (AB, | H | B ) is complete for every ccbb semigroup B in A.

Our characterisation of pseudocomplete l.m.c. algebras is analogous to
Theorem 4.5. The proof follows -that of Theorem 4.5, using Lemma 2.3 in
place of Lemma 4.3, and is omitted.

THEOREM 4.7. Let A be a unital l.m.c. algebra, and X any Q-
equivalence class in &*. Then A is pseudocomplete if and only if (AP, || • ||P) is
complete for each P £ X.

When A is the algebra 2.P for some calibration P for E, we can give an
operator analog of Theorem 4.7.

THEOREM 4.8. Let P £ Sf; then 2.P is pseudocomplete if and only if Sft P is
complete for all P' £ & such that P' - P.

PROOF. Lemma 3.5 implies that the unit balls of the (38 P, || • | |P), P' = P,
are a cofinal family of ccbb semigroups in SkP. The result then follows as in
Theorems 4.5 and 4.7.

Finally in this section we use a result of Moore, alluded to earlier, to link
the two completeness conditions discussed here.
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THEOREM 4.9. E is normcomplete if and only if SLP is pseudocomplete for
all P G 9».

PROOF. By Theorem 4.8 the latter condition is equivalent to complete-
ness of all the 58P, P G Sf, which by Theorem 3 of Moore (1969) is equivalent
to normcompleteness.

5. Characterisations of the scalar multiples of the identity

In a unital l.m.c. algebra A, a scalar multiple a = Al of the identity is a
bounded element, and also has the properties that p(a) is constant for all
p G A*, that a& AP for all P G SP*, and that || a ||P is constant for all P G f * .
The results of this section show that these properties in fact characterise the
scalar multiples of the identity among all bounded elements. These results
make essential use of the Hahn-Banach Theorem. Our discussion begins with
the case of a unital l.m.c. algebra A, then turns as usual to the case of an
algebra of QB operators on a locally convex space E.

Recall from §1 the definition of a basic calibration. We denote by 2Pb the
set of basic calibrations for E, and by 3P*b the set of basic calibrations for A
which belong to ty*. We denote by (x, y) the linear span of vectors x and y,
and by Cl(or C/ as appropriate) the one-dimensional subalgebra spanned by
the identity.

The following lemma will often be requied in conjunction with the
Hahn-Banach Theorem.

LEMMA 5.1. Let x,y & E be linearly independent and let P G SPb. Then

there exists p G P whose restriction to (x, y) is a norm.

PROOF. Since P is both separating and basic, we can choose p, G P such
that pt(x) ^ 0,Pi(y)/ 0. If the restriction of pt to (x, y) is not already a norm,
its null-space is one-dimensional, spanned by some z G (x, y), and there exists
p ; £ F such that p2(z) / 0. Choosing p G P such that p, s p and p2 £ p, we
have the result.

Our first group of results concerns a unital l.m.c. algebra A.

PROPOSITION 5.2. Let a & A such that a£Cl. Then for any P G 9>%,
the set of numbers

{p'(a):p'G\*,p'~p for some p G P}

is unbounded.

PROOF. Choose pGP whose restriction to (a,\) is a norm, and let

R >() be arbitrary. By the Hahn-Banach Theorem there exists / G A * such
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that f{a)= R, / ( l ) = 0, and | / | s p . Define p, = max(p, | /1 0- Then p, is a
continuous seminorm on A and p, = p. Define p2 on A by

p2(fc) = sup{p,(fa):p,(.x) = 1}.

Then p2 E A*, p2 ~ p. and pj(a) S pi(a) i? R, which yields the result.
When A is normable (admits a calibration {|| • ||}), denote by N* the set of

norms in A* which define the topology of A.

COROLLARY 5.3. Let A be normable, and a E A such that a£Cl. Then

{\\a ||: | | -1 | E N*} is unbounded.

PROOF. Choose any ||-||,,E/V* and set P = {|| • ||,,} in Proposition 5.2.
Recall from Theorem 2.4 that the set A,, of bounded elements is precisely the
union of all the AP, PG^f, where Sf is any Q-equivalence class in 9*. The
next result shows that for bounded elements a which are not scalar multiples
of the identity, the values of || a ||P, for P G f such that a E Ap, are arbitrarily
large.

COROLLARY 5.4. Let a E A» such that a?LC\, and let dX be any in-
equivalence class in 2Pt. Then

{||a||,.:Pe W, a&A,,}

is unbounded.

PROOF. Let R > 0 be arbitrary, and let PEW such that a E AP. By

Proposition 5.2 there exists p ' E A * such that p'— p for some p E P, and

p ' ( a ) = R- Then P'= P U {p'} E W, a GA,,, and || a ||,. g /?.

COROLLARY 5.5. Le/ 5̂  be any Q-equivalence class in '3>*h. Then

D A,, = Cl.

PROOF. Let a 6 /\(, such that a£Cl, and let P E ^ such that a E AP.
By Proposition 5.2 there exist p £ P and pi,pz. • • • E A* such that pn ~ p and
p , , (a )^ n for each n. Then P' = P U{p,,p:, • • •} E '^ and a ^ A P .

COROLLARY 5.6. For eac/i F E 3>% there exists P,,E $>*b such that P,,= P
and APn = Cl.

PROOF. Let Df be the O-equivalence class in ?P*h containing P, and let
P, = U ^. Then P,, = P and

^,,c n AP = c\.
p e *
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Our second group of results concerns the l.m.c. algebras 2LP of QB
operators on a locally convex space E, and follows a pattern analogous to that
of the preceding results for a general unital l.m.c. algebra. If T is a linear
operator on E and p £ A = A(£) such that pT •& p, we write

p(T)=inf { r>0:pTSrp}

= sup{p(Tx):p(x)gl}.

PROPOSITION 5.7. Let P G <3>b and T G % such that T<£ CI. Then the set
of numbers

{p(T):p£A, p -p , for some p,£F}

is unbounded.

PROOF. Let R > 0 be arbitrary. We distinguish two cases.

Case 1. For some x, y ^ O we have Tx = Ax, Ty =/xy where
A, /x G C, A^ /A. By Lemma 5.1 there exists p, G P whose restriction to (x, y )
is a norm, and we may suppose pi(x)2= |, p , ( y ) § j . By the Hahn-Banach
Theorem there exists / £ E* such that / (x) = / (y) = R j A - /J. |~' and | / | < p , .
Defining p = max(pi, | / | ) , we have p — p\,p{x - y ) S l , and p(T(x - y ) )g

Case 2. For some x G E, x and Tx are linearly independent. Choose
p , E P whose restriction to ( x, Tx ) is a norm; then we may suppose pi(x) § 1.
The Hahn-Banach Theorem gives / G E* such that /(x) = 0, /(Tx) = R, and
I/I—Pi- Defining p = max(pi,|/|), we have p(x)S 1, p(Tx)g/?, so

When E is normable, denote by N the set of norms in A which define the
topology of E.

COROLLARY 5.8. Let E be normable, T a bounded linear operator on E
such that T£ CI. Then {|| T\\: || • || G N} is unbounded.

PROOF. Choose any ||-||,,GN and set P = {|| • ||0} in Proposition 5.7.

Recall from Theorem 3.6 that for P £ ? , the bounded elements of 2.P are
precisely those operators in StP which belong to SB P for some P ' £ ! ? such that
P'— P. For operators T G (3.P),, which do not belong to CI, the values of
|| T\\P; for P'— P such that 7"£ S?P, are arbitrarily large.

COROLLARY 5.9. Let P G 9>b and TE(%)0 such that Tg CI. Then

{\\T\\P:P'GSPb, P'^
is unbounded.
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PROOF. Let R > 0 be arbitrary, and let P, G Sfb such that P,~ P and
TE.9SPl. By Proposition 5.7 there exists f>EA such that p — p, for some
p , G P , and p ( T ) g R. Then P'= P, U{p} = P, TGS8P., and | |T| |P § R .

COROLLARY 5.10. Let W be any Q-equivalence class in SPb. Then

C^\ Sft = CI
pe*

PROOF. Let P G ^ and let T G (aP)0 such that T£ CI. By Proposition
5.7 there exist p G P and pu p2, • • • G A such that pn — p and pn(T) g n for
each n. Then P' = P U {p,, p2, • • •} G "X and T ^ S8P..

COROLLARY 5.11. For each P G 3>b there exists P, G <3'b such that Pn = P

(so r/jar SPl, - SLP) but SftPu = C/.

PROOF. Let W be the Q -equivalence class in ?fh containing P, and let
P,,= UX. Then P 0 = P and

The preceding results demonstrate that 'wild' behavior of the algebras of
UB operators under Q-equivalent recalibrations of E, in contrast to the
algebras of QB operators, which remain unchanged under such recalibrations.
It follows from the last two results that the scalar multiples of the identity are
the only operators which are UB with respect to every calibration for E. Our
final result shows that such operators are the only ones which are in fact QB
with respect to every calibration for E.

PROPOSITION 5.12. Let P G & satisfy {|/| : / G E*} C P. Then % = CI.

PROOF. Suppose T£ CI. As in Proposition 5.7 we distinguish two cases.

Case 1. For some x, y / 0 we have Tx = Xx, Ty = (j.y where
A , ^ E C , A ^ ft. Choose / G E * such that f(x) = f(y) = 1 and define p = | / | .
Then p G P, p(x - y) = 0, but p(T(x - y)) = | A - /x | / 0, so clearly Tg. %.

Case 2. For some x G E, x and Tx are linearly independent. Choose
/ G E * such that / (x) = 0, f{Tx)= 1, and define p = | / | . Then p{x) = Q but
p(Tx)= 1 so again Tg %.
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