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§1. Introduction.

It is well known that in many cases the solutions of a linear
differential equation can be expressed as definite integrals, different
solutions of the same equation being represented by integrals which
have the same integrand, but different paths of integration. Thus,
the various solutions of the hypergeometric differential equation

z{z - 1)^1 + {- c + (a + b + l)z}d£ + aby = 0

can be represented by integrals of the type

\ta-c(t- ly-o-m — z)-adt,

the path of integration being (for one particular solution) a closed
circuit encircling the point t = 0 in the positive direction, then the
point t = 1 in the positive direction, then the point t = 0 in the
negative direction, and lastly the point t = 1 in the negative direction;
or (for another particular solution) an arc in the <-plane joining the
points t = 1 and t = <x> .

The object of the present paper is to communicate a general
theorem regarding the solution of both ordinary and partial differen-
tial equations by means of families of definite integrals. The
theorem gives only the integrand of the integral: but when in any
particular case the integrand is known, there is usually not much
•difficulty in determining a double-circuit or other path of integration
which will give any desired solution.

In § 2 the theorem is stated in its general form. The rest of the
paper is devoted to working out particular cases of it, the results
being believed to be in most cases new.

§ 2. The general theorem.

The general theorem may be stated as follows:—
Consider any contact-transformation from a set of variables (qlt q2, .. qn>
JPu P2, • • pn) to a set of variables (Qu Q2, .. Qn, Pu P2, .. P ) . As is
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190 E. T. WHITTAKEB

known,1 we can obtain a contact-transformation by taking any
function W(qu q2, .. qn, Qx, Q2, • • Qn) of the q's and Q's, and writing
down the equations

and solving them with respect to the Q's and P's. Suppose that the
variables (Qx, Q2, .. Qn, Pi, P2, .. Pn), when expressed in terms of
(qu qz, • • qn, Pu Pi, • • Pn), are denoted by Qr (qu q2, .. qn, pu p2 .. pn),
Pr(qi, q2, • • In, Pi, Pi, • • Pn) (T = 1 , 2 , . . 7i). Then the set of partial
differential equations

n (n n r, S B M /
Vr \qu q2, • • <in, 5— J 5— > • • K— ) x = *r x

3 3 3
ii "In ' Olr •

(2)

is a compatible set of differential equations, and possesses a solution
X (°i> <?2. • • qn, h, h, • • tn)- I t should be observed here that the equations

— ) ^is to betaken to mean (—-), etc.:
dq/ v3g-7

and it should also be observed that certain rules are to be observed

in replacing the p's by the ^ - 's in Qr and Pr, in order to settle e.g.

whether a term p\q\ is to become q\ — or —-. q\: but this matter we
3̂ 1 oq\

defer for the present.
Now let it be required to solve a set of n compatible linear partial

differential equations in n independent variables, say

= o , (r=l,2,..n) (3)

where ip (qx, q2, . • qn) is the function to be determined. Suppose that when
the q's and p's are replaced by their values in terms of the Q's and P's
from (1), the function Fr (qu q2, . . qn, pu p2f .. pn) becomes Gr (Qu Q2,.. Qv,
Pi, P2, • .Pn)- Then the solution of the partial differential equations (3) is
furnished by a family of definite integrals of the type

u ?2> • •?«) = j jJ • • Jx (?i, 9.2, • -On, h, h , . .tn)4>(tut2,. ,tn) dhdt2. .dtn (4)

Gf. e.g. Whitfcaker, Analytical Dynamics, § 126.
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SOLUTION OF DIFFERENTIAL EQUATIONS BY DEFINITE INTEGRALS 191

when (f> (<i, <2> • • in) is the solution of the set of n compatible linear partial
differential equations

G, (*,, tit • • <» -=j-, -57-, • • -57-)i> = 0 (r = 1, 2, . . ») .

My own original way of establishing the theorem was defective
as a proof, and has been superseded by a proof devised by
Dr Kermack and Dr M'Crea, which is given in the paper following
this. I will therefore not discuss the proof here, but confine myself
to working out particular cases, chiefly with a view to obtaining
new results.

§ 3. An extension of Laplace's transformation.
As a first example, let us suppose that the contact-transformation

is specified by the equations

*'=*$>• P r = ~ ^ ( r = l , 2 , . . » )

when
W = -qiQi-q*Qz- • • ~qnQn,

so that
Pr= - qr, pr= Qr (r = 1. 2,..n)

The equations (2) for the function % become

. | = ^ ' WrqrX (r = l , 2 . . . n )

of which the solution is

(neglecting now, as always, an arbitrary multiplicative constant).
Thus the theorem asserts that if ip (qi, q2, .. qn) is a solution of n
compatible partial differential equations

then a relation exists of the type

A+»>«»+ -•+«-«• <f>(tu h,..tn)dhdt2..dtn (6)

where <f> (tu t2, .. tn) is a solution of the set of compatible partial differ-
ential equations

= 0. (7)
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192 E. T. WHITTAKER

It will be seen that this is essentially the extension, to partial
differential equations in n variables, of the well-known method,1 due
to Laplace, for solving ordinary linear differential equations by
means of integrals of the form

j" e"1 6 (t) dt.
As a particular case, suppose that the equations (5) are

au qt. — a12 q-, — — aln qn ) i/> = 0
dql

• «2n I

( 7) \

5 a « i qi — a « 2 q-2 — •••• — a™ ? n ) ̂  = 0
oqn '

where the a's are constants, and aik = aki. These partial differential
equations are compatible, the solution being evidently

4>{qx, q-2, .. qn) = e*(a"9'=+a*='>2=+-+an"''"!+2ai='2'«*+••>.
The corresponding equations (7) for cj> are

h +

t2 +

d

d

d
4- a12 — -

d
r «22 5— 4

h 4- am

- . . . - 4- a2n

^ ^
3 \

/ 0

= 0

= 0

+ a>ni^r+ an2— + •+ ann — ) <j> = 0
OTI d i 2 OTn^

If we denote the determinant ||aiA|| by A, and denote (I/A) x the
co-factor of aik in A by Aik, so that the quadratic form S Aik Xi xk is

ik
the reciprocal of the quadratic form S aljt x( xk, then the last set of

ik
equations may be written

(- + A
dt2

/d

11 1̂ 4- -^1212 4~ • •

21*1 + ^ 2 2 < o + ••

/ 4- A f _L_

-.4-iUA

• • 4- A2ntn

.. 4 - A n n tn

) $ = °

1 Cf., e.g., A. R. Forsyth, Treatise on Differential Equations, Chapter VII.,
"Solution by Definite Integrals."
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and they are compatible, their solution being

Thus the theorem asserts that a relation exists of the form

exp (| 2 aikqiqk) = constant x I • • [ exp (q} tx + q2t2 + .. + qntn)

exp (— £ 2 Aikti tk)dti dto .. dtn,

where the paths of integration may consist of loops surrounding the
singularities of the integrand, or paths to infinity. Since the integrand
has no finite singularities, we infer that the paths must terminate at
infinity: and in fact we readily find that the precise equation is

exp (J 2 aik qt qk) = (2^)"*" A"*| .. exp (qy tx + q.,t2 + . .
i, k J -ooJ - W J -oo

~f* q-n tn — 2 ^J Aik t( tk) at\ at2 .. atai

which represents the result of the theorem in this particular case. We
can represent the expression 2 Aik tt tk in terms of the a's in the form

i, k

an
a-22

aUl tt

a2n t2

a-ni ctn2 .. a2n tn

*i h .. tn 0

§ 4. A double-integral connected with the hypergeometic function.
As a second example, suppose that the contact-transformation is

specified by the function
W = - qx log Qi - q2 log Q2,

so tha t

or e"- = - e~*> qu P2 = -
The equations (2) for determining % are now

or

or - I, x b l -

3y
, v = - ^ , or (q2ot2

and the solution of these equations is
X — V t2-
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Thus the theorem asserts that the solution of a pair of compatible
partial differential equations

may be expressed by a definite integral

<A (9-1. £2) = JJ <t> (h, h) q>-* q---ldh dt2, (8)

where <j> is a solution of the equations

d a \ I (9)

Fsi — h^r, - \

As a particular case, take

4> (?i. ?s) = T (2i) r (^) J1 (qu q,, J, 2), (10)
where i*1 (a, 6, c, z) denotes the hypergeometric function. From the
recurrence-formulae for the hypergeometric function we see that if>
satisfies the two difference-equations

^ fai, ?2 + 1) — 0 (?i + 1» ?2) + (?i - q*) 0 to, ff2) = 0
{i - 2jx - to - g-j) z} i/r to, &) + (1 - z) i/i (qj, + 1, q2)

which may be written
, (ea/3«2 _ ea/a3, 4 . qi _ ? 2 ) ^ = 0

I {i - 2?1 - to - 2i) « + (1 - z) e3/&' - ( | - ?i)(?, - 1) e-S/S'.} ^ = 0,

so the corresponding equations (9) for <f> are

t-2

9 . 9 . 9 . / i \ . , /-i . . 3 \ / . 9
• X 1 1 ^ 1 ) ^ ) } * " 0 (12)

The solution to equation (11) is

0 = e~'»"'=/(s), (13)
-where 5 = £i <2> and / denotes an arbitrary function.
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Equation (12) may be written

»+*.?*+<4*--.£+<i-.>'.#+»g+<.j£-».

Substituting in this the value of <f> given by (13), it becomes

of which the solution is

where e denotes a constant. The theorem (8) therefore gives

r (ft) r (q2) F (qu q2, \, z) =

Constant, ff e-<•-<* cosh (2Vtl t2z + e ) ^ - ' 1 t*q'"1 dtY dt2;

it is not difficult t o determine the paths of integration and the

constants, the final result being

r (gO F(q2) - F ^ i , qt, h z) = e - ( ' - '
Jo Jo

§ 5. A new property of the hypergeometric function.

It is well-known1 from the work of Pincherle and Mellin that the
hypergeometric function can be represented by definite integrals in
which the integrand is a product of Gamma-functions, e.g.

F (a B v 1—0)=-— ^ M
J!(a,P,y,L q) 2 W r ( a ) r ((a)r(j8)r(y-)8)r(y-a)

\ r (- t)T (a + t)F {0 + t)T (y - a - 0 — t)q'dt,
J c

where the path of integration C is parallel to the imaginary axis in
the £-plane and passes between the sequences of positive and negative
poles of the integrand. It will now be shown that these Pincherle-
Mellin integrals are particular cases of a much more general formula
which expresses a new property of the hypergeometric function.

1 Of. e.g. Whittaker and Watson, Modern Analysis, § 14.5.
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For this purpose, we consider the contact-transformation defined
by the function

W=-Qlog(-q)
so that the equations

p_dW _ dW

give Q = qp, P = — log (— q).

The equations (2) for \ a r e n o w

giving x = (— lY •

Thus the theorem (4) asserts that any linear differential equation

(15)

is satisfied by a family of definite integrals of the type

t, (16)

where <f> (t) is a solution of the differential equation
_ d d_

F(—e <u, —erf', t) <f> = 0. (17)
In particular, let

•A (q) = F (a, p, y, z + q),

where F now denotes the hypergeometric function, so that ifj satisfies
the differential equation (corresponding to (15) above)

+ > +
The equation for j> (t), corresponding to (17), is therefore

d d d_ d

{(—ze*tt + t+ a)(— ze*<t + t+P) + (— zed't + t + y ) e
or
z(z-l)(t+l)(t + 2)j(t + 2)
+ (t+ l){y + t-(A + p+2t+ l)z}<f>(t+ 1) + (a + t) tf + t) 4>(t)=0,

a difference-equation whose solution is found (by comparing it with
the recurrence-formulae for the hypergeometric function) to be

* to - r ' - " r ' • + " / w+" F c + '• ^ + '• y + '• »)•
1 (y +1)
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Thus the equation (16) becomes
F (a, fi, y, 2 + q) = Constant x

I t is readily seen that the path of integration must be the same
as for the Pincherle-Mellin integral (14), and in fact the complete
formula is

* < < • * » * + * > - *

This formula expresses the general hypergeometric function of the sum of
two arguments, z and q, in terms of hypergeometric functions of the
argument z. The Pincherle-Mellin formula (14) is evidently the special
case of it which arises when z = 1, so that the hypergeometric
function in the integrand reduces to a product of Gamma-functions;
but in this special case the most characteristic property of the more
general formula (18) is lost.

§ 6. The linear differential equation with four regular singularities.
It is well-known1 that the linear differential equation of the

second order with three regular singularities, that is, the equation of
the general hypergeometric function or Riemann P-function

b c \
P Y *\
P 7 )

can be solved by means of definite integrals of the type

\(t- a)" (t - b)1' (t — c)r (z - t)v dt.

I t is therefore natural to enquire whether the linear differential
equation of the second order with four regular singularities, that is
the equation of the function

( a b c e

a 0 y e i
I Qt f t

a P y e

can be solved by means of definite integrals of the type

\(t — a)" {t - b)q (t — c)r (t — e)' (z - t)v dt.
1 Cf. e.f/., Whittaker and Watson, Modern Analysis, § 14.6.
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198 E. T. WHITTAKER

The answer is in the negative: in fact definite integrals of this
last type do occur1 in the solution of linear differential equations with
four singularities, but these linear differential equations are of the third
order.

To discuss this question, consider the contact-transformation
specified by the function

W=-(n+l) log (q - Q),
so that

and therefore

The equations (2)

{«-

Now (19) may be

]q q-Q '

o— n +
q p

i

for x thus become

written

h
dq

dQ

p —

= tx

= ~dt

q -

p.

Q'

(19)

(20)

or
1 d\ n
xdq q - t '

This with equation (20) gives

X = (t- q ) n .

Thus the theorem (4) asserts that a linear differential equation

-is satisfied by a family of integrals of the type

>!>(q) = \(t-q)n<f>(t)dt,

where <j> (t) is a solution of the differential equation

1 Such integrals have been used in the solution of third-order equations by L.
Schlesinger, Math. ZS., 27 (1928), p. 504.
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In particular, suppose that

* (Q = «•(*-I )" («-e)»,

which obviously satisfies the differential equation

_« J 2(! 0 . (21)

Now since when c is any constant and (j> is any function of t, we have

therefore - c = {*- (t - c) - 1 [ {
and therefore equation (21) may be written

_
dt

= a

or, since „ „ _ , j> = KH-1 <j>, whatever operators H and K may be,
UK. ~

d_
dt

1 -

or, operating on this with (— ),

1 — P = 0. (22)

Now the above theorem asserts that the integral

,/, (q) = J <• (f _ 1)3 (« _ e)v (< - g)» d< (23)

satisfies the equation which is obtained from (22) by replacing

- - b y — and replacing t by ] q — (n + 1) (— ) \. Thus the integral
dt dq K ^dq' Jdt ~J dq

(23) satisfies the equation

« P1 —
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Operating with — (q — e) — (n -\- 2), we obtain

= 0. (24)

Now we have

therefore

- 1 / \dq
°(q-l)-n-l =- * } " ' • (25)

Thus (24) may be written

V d
— e) — n — 2 —

d
dq — e) — n

— y

or

Operating with — (g — 1) — (n -f- 1), we have

- 2
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or, using a formula similar to (28),

or, operating with f — q — n),

< / - = 0 ,

or, performing the operations,
dsip , (I - a — n 1 - ft- n 1 — y - n\ tZ2 0

q q — 1 q — e ' dq-

4 - I n -
(? -

, - e))dq

'

This is the differential equation satisfied by the family of definite integrals
(23). It has:—

a singularity at q = 0 , with the exponents 0, 1, a + n + 1
, , ,> J> q ^ J 5) js >) ^» -^) P ~i **' ~t~ -̂

5, »j j j ^ = = ^ ? j) JJ JJ ^> J-, y -\- n -\~ 1

,, ,, ,, q—x- >> >, ,, — » . 1 — W, — a—ft —y—71—1.

Thus <Ae integral (23) satisfies a linear differential equation with four
regular singularities, but this differential equation is of the third order.
We might indeed have guessed that it could not in general satisfy
a, differential equation of the second order, since the number of
independent functions which can be obtained from the integral (23),
by taking different double-circuit paths of integration round the
various singularities, is greater than the number of independent
solutions of a linear differential equation of the second order.
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§7. Integrals involving hypergeometric junctions.

We shall now consider the solution of linear differential equations
by means of definite integrals which involve a hypergeometric
function in the integrand.

By taking the function W (q, Q) which determines the contact-
transformation to be a function of the product qQ, we see that the
equations

Q=pa (qp), P = -ql<j (qp),

where a (qp) is any function of the product qp, define a contact-
transformation. Hence, in particular, the equations

f Q = 1 _
{qp + a)(qp + p)

P = g (qp + a)(qp + P)
qp + v

define a contact-transformation. The corresponding equations (2)

for x (?> 0 a r e

Now (26) gives

or, operating with q(q 5 \- y) (q— + a)(q \-p) on both sides,.
\ oq / \ oq / \ oq '

- - (1 - () ' f , by (27).

Thus x satisfies the partial differential equation

whose solution is x = # (5)> where s = q — qt and 6 is the arbitrary
function.
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Substituting this value of x iQ (27)> w e have
/ d , V V d , V d , o\ a de

V ds / \ ds A ds ' ds
I d V d , o\a I d , \ dd n
Vs dS + aAs IS + p) ° ~ \sTs + V Ts = 0>

which gives 6 = F (a, /?, y, s), where J1 is the hypergeometric function.
Thus X = F{a,p, y, q-qt),
and the theorem (4) asserts that if <f> (t) is a solution of a linear
differential equation

4 4 ) = 0 (28)
then the linear differential equation

d , O W d , W d , \ d

* ^ ° (29)

is satisfied by a family of definite integrals of the type

>P(q) = \F (a, P,y,q- qt) </> (t) dt. (30)

In particular, take <f> (t) = t", so that the equation (28) becomes

and therefore the equation (29), satisfied by ip, becomes

which is the differential equation of the function
tf,=q-'-*F(a-K-l, P - K - 1 , y - K - 1 , q),

where F denotes the hypergeometric function.
Thus the formula (30) becomes

q""i F(a — K— 1, j3 — K — 1, y — K— 1, q) = Constant x \F(a,p,y, q - qt) f dt

or, writing t for qt, and s for — K — 1,

.F(a + s, j8+ s, y + s, q) = Constant x [ F (a, j8, y, q — Qf^dt.
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It is not difficult to determine the path of integration and the
constant, the final result being

This somewhat remarkable property of the hypergeometric
function, which is new to me, is in a certain sense the reciprocal of
the other new property expressed by equation (18), being in fact (as
Dr Copson has kindly pointed out to me) connected with it by the
Riemann-Mellin Theorem.1

§ 8. Results involving Bessel functions.

If the contact-transformation is taken to be

0 —,.-i. P-i.

the equations to determine x a r e

a2 i 3

1

and these have the solution x = Jo (fiVO where Jo is the Bessel
function of zero order: from this it is easy to derive such formulae as

exp (~ a?) ~ *2 £ e x p (~ ̂ KH) JO {qVt) dL

Similarly the contact-transformations

gives the x-fu n c t i o n X = JniiVt) and leads to definite integrals
having the Bessel function of order n in the integrand.

1 Riemann, Berlin Monatsb., 2sov. 1859 : Mellin, Ada Math., 25 (1902), p. 138 :
Math. Ann.,.68 C1909), p. 305.
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