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1. Introduction

The iterated equation of generalized axially symmetric potential theory
(GASPT), in the notation of the first paper of this series [1] which will be
designated I, is the equation

(i) mn = o,
where the operator Lk is defined by

Lk(f) =

It was seen in I that generalized axially symmetric potential theory
arises from the discussion of the generalized Stokes-Beltrami equations

(2) d<f>ldx-y-»8y>ldy = 0, dfldx+y' dftdy = 0,

from which it is immediately deduced that

(3) £,(*) = 0. L _ » = 0.

In the application of these equations to hydrodynamics, ^ is a velocity
potential and ip a stream function which each describe the pattern of a
particular irrotational fluid motion which, for p = 0, is a two-dimensional
flow in the x—y plane and, for p = 1, is an axially symmetric flow with
OX as the axis of symmetry and the x—y plane as. a meridian plane.

When p = 0, the Stokes-Beltrami equations (2) become the Cauchy-
Riemann equations and <f> and ip are conjugate harmonic functions, the real
and imaginary parts of an analytic function w of the variable z = x-\-iy.

When p ^ 0, a pair of function <f> and tp which satisfy the Stokes-
Beltrami equations (2) and hence their respective GASPT equations (3)
can also be described as conjugate functions. j> and %p can again be combined
to form a function, this time of both z and z, by the relation (defined in the
region y > 0)
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w(z, I) = <f>{x, y)+iy-"y>(x, y)

and w will be called a p-analytic function. (As can be seen in [3] and the
references given there, this /(-analytic function is a special case of the
pseudo-analytic functions introduced by Beltrami [2] and the generalized
analytic functions of Vekua. The name used here has advantages in the
present context as it is easily adapted when a similar but more general,
function is introduced in section 5.) Now that this new function w has been
introduced, it is convenient to reverse the statement and say that if
w = <f>-\-iy~pip is a /(-analytic function, then Lp((f>) = 0, L_p(y>) = 0 and
<f>, y> are conjugate functions, satisfying the Stokes-Beltrami equations (2).
It can easily be proved that if <f> or y> is known, the other member of the
conjugate pair of functions can be found. This means that if tf> is given such
that Lp((f>) = 0, then a /(-analytic function can be found whose real part is
<j>; if ip is given such that L_p(y) = 0, then a /(-analytic function can be
found whose imaginary part is y~"ip; a n ( i if the two /(-analytic functions
are the same, then <f> and ip are conjugate functions. It can therefore be said
that conjugate general solutions of equations (3) are given by the real part
and yp times the imaginary part respectively of a /(-analytic function. All
of these properties are of course familiar in the special case^ = 0.

In the first part of this paper, a definition of conjugate solutions is
set up which applies to the pair of iterated equations

(4) i ; W = 0, L%(V) = O

and expressions are found for conjugate general solutions of these equations.
The results just described for the case n = 1 are special cases of course but
they do not give much help in deciding how they should be generalized. A
better lead comes from another familiar special case, that of the two-
dimensional biharmonic equation V4/ = 0 which is obtained from equation
(1) by putting k = 0 and n = 2. It is well-known that a general solution of
this equation is given by either the real part <f> or the imaginary part y>
of a function of the form

(5) <f>+if = wm+zwa)

where wm, wa) are arbitrary analytic functions of z. It is reasonable to
define <f> and y> given by (5) as conjugate biharmonic functions. When the
general results for equations (4) are obtained (section 4.5) it will be seen
that they follow naturally from these special cases.

The second part of the paper makes use of the ideas developed in the
first part to generalize the work of Parsons [4], who, for the special case
n = p = 1, in the context of axially symmetric flow of a perfect fluid,
proved four theorems concerning conjugate solutions of equation (3).
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Corresponding theorems will be obtained which apply to the general equa-
tions (4) and are valid for all positive integers n and all values of p. These
theorems appear as theorems 5.2, 6, 7.1, 7.2.

2. Solutions of Lp(<f>) = 0, LZp(tf>) = 0
in terms of a given p-analytic function

The ^-analytic function w = <f>-\-iy~py> is used to define two new func-
tions of z and z with their corresponding real and imaginary parts as fol-
lows: for any integer n ^ 0, let

(6) 6,+*y~*V» = ven = wzn,

(7) &n+iy-»Wn = Wn = wz\

Two preliminary results are required.

LEMMA 2.1 For any integer n 5: 2, <j>n,xpn,0n,
xFn all satisfy the re-

currence relation fn = 2xfn_1—r2fn_2.
It is easily verified that

wn = (z+z)wn_1-zzwn_2, Wn = (z+z)W\_x—zzW'n_2.

Since z-\-z = 2x and zz = r% are real, the required result follows at once.

LEMMA 2.2. For integers m^\, n ^ 2, all the functions <f>n,tpn,
0n, Wn satisfy the equation

-4mr d/dr L^1 {fn_2)-2rn(2m+k)Lt-1 (/„_,).

This result is obtained by using the recurrence relation of Lemma 2.1
and the expressions for L%(xf) and L™(r2/) given for any function / by
equations (5) and (14) of I.

It can now be shown that the functions defined in (6) and (7) are
solutions of equations of the type (4).

THEOREM 2.1

(i) For n ^ 1, L",(4>n) = 0, L%(y,n) = 0.

(»*) For n^O, Ln
p+

1(0n) = 0, L"?^) = 0.

These results are proved by induction, using Lemma 2.2. For (i),
it is easily verified that -£.3,(̂ 1) = i_P(Vi) = 0 and so L^fj) = 0 where,
for n ^ 0, /„ represents <f>n or ipn according as k = p or — p. Lemma 2.2,
with m = n, is used to prove that if iJT^/n-i) = 0, then LJ!(/J = 0. For
(ii), it is clear that Lk(f0) = 0 where now /„ represents 0n or Wn according
as k = p or —p. Lemma 2.2, with m = n-\-\ this time, is used to prove
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that if £"(/n_i) = 0, then L£+1(/J = 0. In each case the proof by induction
can be completed.

Another set of results which will be needed later can now be proved.

THEOREM 2.2

( i ) For n ^ l , Ln
p(<f,n+1) = -

(ii) For n ^ 1, Ln
v{0n) = 4nn\dn<f>ldxn,

Ln_p{Vn) = 4=nn\dny>ldx".

For (i), theorem 2.1 (i) and lemma 2.2 with m = n—1 show that if
/„ represents <j>n or y>n according as k = p or —p and n ^ 2 then

It follows that, for n ^ 1,

Finally, it can be shown that Lfc(/2) = —2kf (where / stands for <f> or tp
according as k = p or — ̂>) and so the required results are obtained.

For (ii), theorem 2.1 (ii) and lemma 2.2 with m = n show that if /„
represents &n or Wn according as k = p or — p and n ^ 2 then

It follows that, for w 3; 1,

This time it can be shown that Lk{f^) = Idf/dx (f again standing for <f> or
y according as k = p or — p) and so the results are obtained.

3. General solutions of Lp(^) = 0, L%{tp) = 0

Theorem 2.1 gives a family of solutions of the equations ££(<£) = 0,
Llp(y>) = 0. In particular, it is evident that Z.£(#J = 0 and LZp{Wm) = 0
for any integer m in the range 0 f£ m :£ n—1. These solutions can be used
to build up general solutions of the equations.

THEOREM.

(i) A general solution of the equation ££(<£) = 0 is given by

(8) <f> = ^{w^+zwa)-\ M""1^'"-"1'},

where the functions wlt) are p-analytic.

(ii) A general solution of the equation LZj,(y>) = 0 is given by
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(9) y-»y> = S{w{w+zw™+ h^""1^1""11},

where the functions ww are p-analytic.
Theorem 2.1 shows that any function given by (8) is a solution of the

equation L^(<f>) = 0 and any function given by (9) is a solution of
L2j,(v) = 0. It remains to prove that any solutions of the equations
Lp(<f>) = 0, LZP{y>) = 0 can be expressed in the forms (8) or (9) respectively.

LEMMA. Define the operator Ik so that

h(f) = J'/(f, y)#- j\-*dr, J V | (a, QdC,

where a, b, c are arbitrary constants. Then Ik has the properties

(10) dldxlk(f) = /,

(11) LkIk(f) = \XLk{f)dx.
J a

(The form of Ik{f) is found by assuming that

J a

so that (10) is true, and then finding F(y) so that (11) also holds.)
The two parts of the theorem have similar proofs and only part (i)

is considered in detail. It has to be shown that any solution of the equation
L"(<f>) = 0 can be expressed in the form (8). The case n = 1 is easily proved
and the general result is proved by induction.

If ^ is a known function such that ££(<£) = 0, then / = Lp"1^) is a
known function such that Lp(f) = 0. Repeated application of (11) shows
that the function <£(n-1) defined by

(12) <p-i> = / J - 1 ( / ) /4»- 1 (« - l ) !

satisfies the equation L ^ ' " - 1 ' ) = 0. It has been pointed out (in section 1)
that the function y*""1' which is conjugate to <^(n~1) can be constructed.
Then L_vW>-») = 0 and the function M/<—" = . p - u + t j r V 1 " " is p-
analytic. New functions <&n-2{x, y), ^Pn-i(

x> V) a n ( i ^ ( ^ *) a r e n o w

defined so that

Then theorem 2.2 gives

(13) M*(f:
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Since <^(B~1), fin~v are conjugate functions, it is easily proved that
dH-zpn-vjdx*-*, d—V—^/da;"-2 and hence L$-%(0n_2), Ll~2(^n_2) are
also pairs of conjugate functions. Substituting in (13) the expression for
^(«-i) given in its definition (12) and using (10) gives

so that a further application of (10) gives

(14) 4(n-l)dldxL;-*(

The function 0n-x is
 n o w defined so that

(15) #„-! = 4>-*®n-*-

and equations (5) and (35) of I are used to show that

Since L^~i(0n_2) and L"~2 (S/
B_2) are conjugate functions,

L;-1^^) = o, i^e^-a) = o,

Thus L;-1(0n_1) = Ln
p-

1(<f>)-4:(n-l)dldxLl-2(&n_2) and the definition of
/ and equation (14) combine to show that L^,~1(0n_1) = 0.

The theorem is now assumed to be true for the equation U£~x(<f>) = 0
so that 0n_x can be expressed in the form

where the functions w{t) are ^-analytic. Since

and ze)'""1' is /(-analytic, it follows from (15) that

tf> = @{w

where all the functions ww are ^-analytic. This is the result required to set
up the inductive proof of part (i) and part (ii) can be proved similarly.

It will be observed that the general solutions of the equations L%{<f>) = 0
and i",(v) = 0 which are given by the theorem include all the special cases
mentioned in the introduction.

4. n-Conjugate functions and p"-analytic functions

A function <f> such that L^(<j>) = 0 is given in terms of ^-analytic func-
tions by an expression of the form (8). Similarly, if \p is such that L^p(ip) = 0,

https://doi.org/10.1017/S1446788700004134 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004134


296 J. C. Burns [7]

then y~py> is given by an expression of the form (9). If the ^-analytic func-
tions in these expressions are the same so that

(16) <f>+iy-*y> = w = ww+w™z-\ j-tp'"-"!"-1,

where the functions wm are ^-analytic, then the pair of functions <f> and y>
will be described as n-conjugate functions.

Any function w(z, z) which can be expressed in terms of ^-analytic
functions as in (16) will be called pn-analytic and it can now be said that
a pair of w-conjugate general solutions of the equations L^(<j>) = 0,
L\{ip) = 0 is given by the real part and y" times the imaginary part
respectively of an arbitrary ^"-analytic function. This is the generalization
of the classical result (obtained from the general result by taking p = 0,
n = 1) that a pair of conjugate harmonic functions is given by the real and
imaginary parts of any analytic function.

5. Solutions of L°(<f>) = 0, Lfp(t/>) = 0
in terms of a given pm-analytic function

Theorem 2.1 which gives solutions of the equations L^((f>) = 0 and
L"j,(v) = 0 in terms of a given ^-analytic function can now be generalized.
A given ^-analytic function, w = <j>+iy~Ilip, is used to define two new
functions of z and z with their corresponding real and imaginary parts,
exactly as in equations (6) and (7): for any integer n ^ 0, let

Wn = Wn = Wz«.

The following generalizations of theorem 2.1 can now be proved.

THEOREM 5.1

(i) For n ^ 1 and 1 < m ^ n, ££(<£„) = 0, L%(Vn) = 0;

for « ^ 1 and n < m, L™(«£n) = 0, L%(Vn) = 0.

(ii) For n ^ 0 and m^l, L™+n{&n) = 0, L^*(Wn) = 0.

(i) Consider first the case 1 5g m ^ n. Since w is />m-analytic,
w — J ^o 1 w<*)2i where the functions wM are ^-analytic. Hence

8=0 *=0

where zz = r2. Let zei<»>z"-» = <f>t+iy~*ipt so that

m—1 m—1

Since wM is ^-analytic, theorem 2.1 shows that LJ~'(^.) = °- ^-^'(v.) = °
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for Of^sf^n—1. Theorem 3.5 of I shows that, for 0 f=L s ^L n—1,
Ll{r*f) = 0 provided L^~'{f) = 0. Hence, for 0 ^ s ^ n-1, Ln

v{r^^t) = 0
and LZ9{ruipt) = 0 and so, since m<,n, ££(<£„) = 0 and L%(ipn) = 0 as
required.

When m > n,
m-l

J=0
n—1 m—n—1

8=0 <=0

Let

a=0

so that <£„ = / i + / 2 , YV = &i+#2- From the first part of the proof,
Ln

P(fi) = 0. i- ,fei) = 0 and so a fortiori, ZJft) = 0, L ^ ^ ! ) = 0. The func-
tion f2+iy-*g2 is seen to be ^-"-analytic so Z.™""(/2) = 0, L™~"(g2) = 0 and
theorem 3.5 of I is used again to deduce that L^(rZnf2) = 0, L™p(r

2ng2) = 0.
Thus, LZ(fn) = 0 and L%{rpn) = 0.

(ii) Since w is ̂ ""-analytic and so is given by w = 22K)1 wls) ^> Wn = wzn

can be expressed in the form Wn = 2 S " " 1 wl*~n)z* and so is seen to be
/>m+"-analytic which implies that L™+n(<PJ = 0 and L™+n(lFn) = 0 as re-
quired. Moreover, &n and S^ are (w+»)-conjugate functions.

A particular case of this theorem, obtained by taking tn = n, enables
new solutions of Lp(<f>) = 0 and LZP(y>) = 0 to be constructed in terms of a
given pair of M-conjugate functions. Thus, the first of Parsons' theorems
[4] is generalized:

THEOREM 5.2 If <f>(x, y) and y>(x, y) are n-conjugate functions so that
w(z, z) = <f>{x, y)+iirvv{x, y) is pn-analytic, and functions <f>n(x, y), y>n(x, y)
and wn(z, z) are defined so that <f>n-{-iy~vfn = wn = wzn, then !-£(<£„) = 0,
L1M) = 0.

6. Construction of new solutions of L°(<l>) = 0, L°p(tp) = 0
by changing variables

New variables £, r\ are introduced as in section 5 of I so that
f = i+ir) is related to r = x+iy by the equation £ = a2/z. Thus if
z = reie, C = peid where pr = a2. The operator in the | , r\ plane which cor-
responds to Lk in the x—y plane is defined as Ak = d^jd^+d2/^^^-1 d/dr).
In section 5.4 of I it is proved that for any function f(r, 8) and the cor-
responding function f(p, 6) = /(a2/p, 6),
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(17) A2{{pla)-*-****£) = (r/a)*+2+*»L£(/).

Parsons' second theorem [4] can now be generalized:

THEOREM. / / <j>(x, y) and ip(x, y) are n-conjugate functions so that
w(z, z) = <j>(x, y)+iy~^y>(x, y) is pn-analytic, and functions $(!-, rj), #(£, ??)
and w(C, C) are defined so that 4+iv~vV = w= {rla)"+2-2nw, then A${$) = 0,
A%{w) - 0.

Since rja — [pia)-1 and r\ = a?yjr2, it is easily verified that if
», 0) = 0(r, 0) and tp(j>, 0) = v{r, 6), then

, 8) = 0>/a)^-*w-^(p, 0), ${p, 6) = -(pla)*-wy(p, 6).

Hence, since L^{<f>) = 0, Z.%(y) = 0, the theorem follows from equation (17).
The theorem provides (non-conjugate) solutions of A^) = 0 and

A1j,(y>) = 0 in terms of known (conjugate) solutions of L^(<f>) = 0 and
L"j,(v>) = 0 respectively.

7. Construction of a new pa-analytic function
from a given pn-analytic function

The last stage is to show that the transformations used in sections 5
and 6, when applied in succession, lead to a new pair of M-conjugate func-
tions of | , r\ and so to a new ^"-analytic function of C, C- It is shown further
that the relation between this new ^"-analytic function and the original
^"-analytic function is symmetric.

THEOREM 7.1 If <f>(x, y) and y>{x, y) are n-conjugate functions so
that w(z,z) = <f>{x,y)-\-iy~v%p{x,y) is pn-analytic, and functions $n(£,rj),
y>n(£, T)) and wn(£, f) are defined so that

then Ap($n) = 0, AZp{y>n) = 0 and <j>n, tfn are n-conjugate functions so that
wn is pn-analytic. (The relation between wn and w has been amended slightly
by the introduction of a factor a~n.)

The first stage in the proof of this theorem is to prove the special case
n = 1. Parsons has proved this theorem for the particular case p = 1; a
proof for general p can be modelled directly on Parsons' proof but an al-
ternative method is given here.

For any function w = ^>-{-iy~vrp, define the two functions g and A
by the relations

g = d<j>ldx-y~» df/dy, h = df/dx+y-* d<f>jdy.

Then it can be proved that
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d d dw dw
y>g = j.{yw)+ &*), * *

The condition that <f> and y be conjugate functions and w a ^-analytic
function is g = h = 0 and in this case

d 8 i-b
(18) — (jfw) = - — (jpw) = -f- y*{w+w),

OZ OZ W)

The function ze'1(C, C) is shown to be ^-analytic by verifying that
1 = h1 = 0, where

This is conveniently done in two stages corresponding to the successive
transformations used in obtaining wx from w. First wx is replaced by {rla)pw1

and the relation f = a2/£ is used to obtain

Now w1 is replaced by wzja and because ze» is ^-analytic the conditions
given in (18) and (19) can be used to show that £x = %x = 0 and so wx is
^-analytic as required.

This theorem leads to a second preliminary result which is needed
before the main theorem can be proved.

LEMMA. / / <f>(x, y) and y>(x, y) are conjugate functions so that
w(z, z) = </>(x,y)-\-iy~pip(x,y) is p-analytic, and the function W(C, Z) is
defined so that

(C/a)"-1^ = {rla)»+*-*n(zla)nw,

then W(C, C) is p-analytic.
Using the relation f = az\z, it is easily proved that W = (r\a)v(z\a)w

and so by the case n = 1 of theorem 7.1 which has just been proved,
W is ^-analytic.
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The main theorem can now be proved. Since w is ^"-analytic,
w = 21M? (zla)'wU) where the functions w{>) are />-analytic. Hence

n- l
•&n = {rjay+2-2n 2 (zla)'(zla)"w<»

8=0

n- l

= 2 (r/a)*+2-2<B-')(z/a)n-'w<<i).

Since w(a) is ^-analytic, the lemma shows that

where TF<«-»> is ^-analytic. Hence z£n = 2£"o (C/a)"-'-1^1"-'1 and so wn

is ^"-analytic as required.
Finally, an elementary calculation shows that the relation between

w(z, z) and wn(C, I) is symmetric:

THEOREM 7.2 / / &nn(z, z) = (p/a)"+2-2"(C/a)n^B(C, I), then Snn = w.
Theorems 7.1, 7.2 are generalizations of results given by Parsons [4]

for the case n = p = 1.
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