ON A THEOREM OF J. A. GREEN

MICHAEL F. O'REILLY

(Received 25 July 1974)

Let G be a finite group, k a field of characteristic p and Γ the group algebra of G over k. Let $e = \sum_{g \in G} \alpha_g g$, $\alpha_g \in k$, be a primitive central idempotent of Γ ; let $supp e = \{g \in G : \alpha_g \neq 0\}$. We provide a short proof of a slightly stronger version of Theorem 5 of Green (1968).

THEOREM. Let P be any p-subgroup of G containing a defect group D of e. There exist p-regular elements $x, y, z \in$ supply such that xy = z, D is a Sylow p-subgroup of C(x), C(y), C(z) and $D = P \cap P^x = P \cap P^y = P \cap P^z$.

For $X \subset G$ let $\overline{X} = \sum_{g \in X} g$. For $H \leq G$ let $A_H = \{\gamma \in \Gamma: \gamma^h = \gamma, \text{ all } h \in H\}$. For $\gamma \in A_H$ and $H \leq L \leq G$ write $\gamma_H^L = \sum_l \gamma^l$ where *l* ranges over a right transversal of *H* in *L*; then $\gamma_H^L \in A_L$. A_L has as basic the distinct *L*-orbit sums $\{g_{C_L(g)}^L: g \in G\}$. If $H \leq C_L(x)$ and $K \leq C_L(y)$, $x, y \in G$ then

(1)
$$x_{H}^{L}y_{K}^{L} = \sum_{b} (x^{b}y)_{H^{b}\cap K}^{L}$$

where b ranges over a (H, K) double coset transversal in L. See Green (1968; Lemma 4f).

Let L be a p-subgroup of G. If $S \leq L$ and $g \in C(S)$ then

$$g_{S}^{L} = [C_{L}(g): S]g_{C_{L}(g)}^{L}$$

which is zero unless $S = C_L(g)$. Hence if $(x^b y)_{H^b \cap K}^{L_b \cap K}$ is a non-zero term in (1) then $H^b \cap K = C_L(x^b y), H = C_L(x)$ and $K = C_L(y)$. So $x^b, y \in C(C_L(x^b y))$. We deduce

(2) if L is a p-subgroup and z_s^L a non-zero L-orbit sum occurring as a summand in (1) then $z = x^b y^c$ for some $b, c \in L$ with $x^b, y^c \in C(S)$.

For such a term $C_L(z) = L$ if and only if H = K = L. It follows that the

linear projection $\sigma_L: A_L \to A_L$ which annihilates terms $g_{C_L(g)}^L$ with $C_L(g) < L$ is an algebra homomorphism.

Let P be a p-subgroup of G, $a \in G$. Let $S(a) = C_P(a)$.

LEMMA. If $a_{S(a)}^{P} \notin rad A_{P}$ then $S(a) = P \cap P^{a}$.

PROOF. If $S(a) < P \cap P^a$,

$$\overline{Pa}_{S(a)}^{P} = [P \cap P^{a}: S(a)] \overline{PaP} = 0.$$

Thus for any $g \in G$, $\overline{PgPa}_{S(a)}^{P} = 0$ i.e. right multiplication $\lambda(a_{S(a)}^{P})$ by $a_{S(a)}^{P}$ annihilates an element of each indecomposable summand in the $P \times P$ -module decomposition $\Gamma_{P \times P} = \bigoplus \Sigma[PgP]$; here the sum ranges over the $P \times P$ -modules [PgP] spanned by the double cosets PgP. Thus $\lambda(a_{S(a)}^{P}) \in rad End_{P \times P} \Gamma$, (Jacobson (1943; page 60, Theorem 8). Since λ embeds A_{P} in $End_{P \times P} \Gamma$, $a_{S(a)}^{P} \in A_{P} \cap$ $\lambda^{-1}\{rad End_{P \times P} \Gamma\} \subset rad A_{P}$.

PROOF OF THEOREM. Writing *e* as the sum of *P*-orbit sums, $e = \sum_a \beta_a a \beta_{aa}^{P}$, where $\beta_a \in k$, each *a* is *p*-regular, $D \ge_G$ any Sylow *p*-subgroup of C(a) and S(a) = D for some *a* with $\beta_a \neq 0$. See Green (1968; Lemma 2d). Thus $e\sigma_D \neq 0$.

Let $\mathcal{H} = \ker \sigma_D \cap A_P$, $R = \mathcal{H} + \operatorname{rad} A_P$. The elements $\operatorname{emod} \mathcal{H}$ and $\operatorname{emod} R$ are non-zero idempotents. If $a_{S(a)}^P \notin R$ then

(i) $a_{S(a)}^{P} \notin \mathcal{K}$ whence S(a) = PD and by suitable choice of a, S(a) = Dand

(ii) $a_D^P \in rad A_P$ whence from the lemma $D = P \cap P^a$. Thus $e \equiv \sum \beta_a a_D^P \pmod{R}$ where $S(a) = D = P \cap P^a$.

Since $e \mod R$ is idempotent any $z_D^p \notin R$ in this summation—at least one must exist—occurs as a term in the product of some pair of terms u_D^p , $v_D^p \notin R$. By (2) $z = u^b v^c$ where $b, c \in P$ and $u^b, v^c \in C(D)$. Choose $x = u^b, y = v^c$. Then $z = xy, D \leq C(x) \cap C(y) \cap C(z)$. Since $D \geq_G$ any Sylow p-subgroup of C(x), C(y) or C(z), D must be a Sylow p-subgroup of these groups. Since $x_D^p, y_D^p, z_D^p \notin R, D = P \cap P^x = P \cap P^y = P \cap P^z$.

References

J. A. Green (1968), 'Some remarks on defect groups', Math. Z. 107, 133-150. N. Jacobson (1943), The theory of rings (Mathematical Survey A. M. S., 1943).

Department of Mathematics University of Papua New Guinea Port Moresby Papua New Guinea.