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Abstract

If G is a group, then K(G) is the set of commutators of elements of G. C is the class of
groups such that G' = K(G) and d(G) is the minimal cardinality of any generating set of G.

We prove:

THEOREM A. Let G be a nilpotent group of class two such that G' is finite and d(G') < 4.
Then GeC.

THEOREM B. Let G be a finite group such that G' is elementary abelian of order p3. Then

Gee

THEOREM C. Let Gbe a finite group with an elementary abelian Sylow p-subgroup S, of order

p2, such that S C G'. Then S C K(G).

1. Preliminaries

Macdonald (1963) and the author (1974) have investigated groups with a
cyclic derived subgroup in order to determine which elements of the derived
subgroup may or may not be commutators. In this paper we extend our
interest to metabelian groups and abelian subgroups of the derived subgroup.
Here the situation is much more complicated. Consequently the results
obtained are very restricted and are mostly concerned with finite groups.

If G is a group, then K(G) is the set of commutators of elements of G, C
is the class of groups such that G' = K(G)and d(G) is the minimal cardinality
of any generating set of G.

Let STL(n,p) denote the group of all upper unipotent matrices of degree
n over the field of p elements. We prove:

THEOREM A. Let G be a nilpotent group of class two such that G' is finite
and d(G')<4. Then G EC.
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THEOREM B. Let G be a finite group such that G' is elementary abelian of
order p3. Then G G C.

THEOREM C. Let G be a finite group with an elementary abelian Sylow
p-subgroup S, of order p2, such that S C G'. Then S C K(G).

We will frequently refer to the following results.

THEOREM 1.1 (D. Gorenstein (1968), Theorem 5.2.3). Let Abe a p'- group
of automorphisms of the finite abelian p-group P. ThenP = CP(A)x[P,A].

THEOREM 1.2 (D. Gorenstein (1968), Theorem 5.3.5). If A is a p'-group of
automorphisms of the finite p-group P, then P = CP(A)[A, P].

THEOREM 1.3 (D. Gorenstein (1968), Theorem 5.3.6). If A is a p'-group of
automorphisms of the finite p-group P, then [P, A,A] = [P,A ]. In particular, if
[P,A,A] = (l), then A = <1>.

2. Theorem A

PROOF OF THEOREM A. By an argument of Macdonald (1963), it suffices to

assume that G is finite. Now G is finite nilpotent if and only if G is the direct
product of its Sylow subgroups. Thus it suffices to consider G as a finite
p-group.

Let G = (a, 11 S i g n). If c, = [a,, a,], then, because G' is an abelian
p-group, we can select a minimal generating set from the d/s.

There are eight possible configurations that may arise:

(1) G' = <c12>; (2) G' = (c12,c13>;
(3) G ' = (c,2,C34>; (4) G ' = (c I 2 ,c1 3 ,c1 4) ;

(5) G ' = <Ci2, c,3, c23>; (6) G ' = <c,2, c34, Cn);

(7) G ' = (c12,C34,c15>; (8) G ' = <c12, c34, c56).

We consider the first three cases.

Case 1. Because G is nilpotent of class two we have that c°2 = [tfi,#2],
for all integers a.

Case 2. Here we have c°2Cn= [a^ajaf] for all integers a and j3.

Case 3. Let c, = c^c^ for (i,7)£{(1,3), (1,4),(2,3),(2,4)}. If
aiy ^ 0 (modulo p), then there exists an integer a> such that

di = c'fcjf and avw = 1 (modulo | cu\)-
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Consequently, G' = (c,h c34), which is a presentation of the form discussed in
Case (2).

Similarly, if j3,,f̂ O (modulop), we are reduced to Case (2). So we may
assume that av = ft, = 0 (modulop) for (i,/)G {(1,3), (1,4), (2,3), (2,4)}.

We consider

Let pm = max(|c12|, |c34|).
Then for any integers r and s, c\2c

s,4 £ K(G) if there exist solutions to the
equations

(1 - a23)a + aM/3 = r (modulo p"1)

- /323a + (1 + /314)/8 = s (modulopm) ^ ^

Because a23 = /323 = a u = /314 = 0(modulop) we have that

I (modulo p).
1 + /314

Therefore there exist solutions to the equations (2.1), completing the
proof for Case (3).

The other cases follow in a similar fashion to complete the proof of the
theorem.

We now give two examples of groups that demonstrate the fact that no
generalization of Theorem A is readily apparent. Let

G, = {a, 11 § i g 4 , a2, = \,[[a,, a,], ak] = 1,

and

G, is a relatively well known example of a nilpotent group of class two, of
order 256, such that d(G[) = 4 and G, £ C (c.f. R. Carmichael (1937), p. 39).
In fact [au a4][a2, a3] & K(G,). G2 is also a nilpotent group of class two, of
order 256, such that d(G2) = 4, but one can easily demonstrate that G2 G C.
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3. Theorem B

Theorem A is essentially a statement related to finite p-groups. By
assuming that the groups concerned were nilpotent of class two we were able
to deal with groups of arbitrary exponent.

In Theorem B we only assume the group to be metabelian such that the
derived subgroup is a p-group. We are only able to handle the case where the
derived subgroup is elementary abelian.

PROOF OF THEOREM B. Let S be a Sylow p-subgroup of G. Because
G' C S we have that S < G. So, by the Schur-Zassenhaus Theorem (Gorens-
tein (1968), Theorem 6.2.1), G = S^K, where K is a complement to S in G.
Again because G' C S, we have that K is abelian. By Theorem 1.1 we make
the following crucial observation:

G'=[G',K]xCG(K). (3.1)

We continue by considering, in turn, the various possibilities arising from
(3.1).

Case 1.

G' = [G',K]. (3.2)

Let G' = (au a2, a,), where a, = [b,, kt], bt EG',k,<EK, for 1 ^ i § 3. We
may assume that K = (k,, k2, fc3).

Suppose CG((ku k2)) = (1). Then, once again by Theorem 1.1, G' =
[G',(ki,k2)]. Because K is abelian,

Let g £ G'. Then g = g,g? for some gf e[G'Ak,)}, 1 Si § 2 . If h G G',
then

[h, k •] = [h, k,][h, kt]
k' = [h, k,][h\ k,] = [hh\ fc,-], 1 S / § 2.

Consequently, gi=[h,,kl], for some h, G G', 1 S i S 2. So, g=gigi =
[huk,][h2, k2] = [k,h2, k2hi'), which implies that G GC.

We now consider the possibility that Co((k,, k2)) ̂  (1). By symmetry we
may assume that

If Co{(knk,))n(CaiL(knk,)),Coi(knk,)))^(l\ for r,s, t £{1 ,2 ,3} and r,s,t

pairwise different, then CG((ku k2, k^)) = CG(K)^ (1). This is a contradiction
because of (3.1) and (3.2). Consequently,
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G'= Cc.«fc,, k2)) x Ca((ku fc,»x Co.

Let CG((ku k2)) = <g,>, Co«fc,, fc3» = <g2> and Ca-«k2, fc3» = <g3), where
<gi> - <g2> s (g-0 = Cp, the cyclic group of order p. Now K C NG (CG «fci, k2)),
so gf-1 = gl[, for some 1 g r, < p. If r, = 1, then (1) ^ (g,) C Ca(K), a contradic-
tion. So rt ^ 1. Similarly, gj2 = g? and g3' = g3\ where 1 < r2, r3 < p. Thus,

g?"' = [gi.fc3], g'2
2~1 = [g2, k2] and g',3"1 = [g3, fc,].

Now there exist \, BZ such that (/•< - 1)A, = 1 (modulop) for 1 S i S 3.
Consequently, g, = [gf1, k,], g2 = [g*2, k2] and g, = [g$\ k,]. Let g G C . Then,
g = gtgzgJ, for some a, /3, y G Z. We have

g = [g?\ fc.0" [g52, fc2]" [gJ1, fc.lr = [ g t ' ° g ^ g ^ , k3k2k,],

completing the proof for Case (1).

Case 2.

S induces a group of automorphisms on S', by conjugation. Let <$> be the
canonical homomorphism of S into GL(3,p). Since S is a p-group we may
consider 4>(S) C STL(3,p) which is, by Dixon (1971), Theorem 1.4 A, a Sylow
p-subgroup of GL(3,p). Because S' is abelian, <£(S) is an abelian group. By
Dixon (1971) Theorem 1.2 and Lemma 1.3, STL(3,p) is nilpotent of class two
and of order p \ If | <t>(S)\ = 1, then S centralizes S'. So S is nilpotent of class
two and d(S') = 3. So, by Theorem A, S G C, which implies G G C. There-
fore, either | 4>(S)\ = p or | <t>(S)\ = p2.

Let S' = (gi, g2, g?), where we may assume that g, G K(G) for 1 S i S 3.
From Honda (1953), we see that it suffices to show that gig^g?G K(G) and
g2g?GK(G), where a, /3 G T. We consider t'he various possibilities for the
structure of 4>(S) in turn. Allowing for a suitable change of basis we have:

(i) \4>(S)\ = p2.
So

'1 y 0\ / I 0 1\y

l

o
where y, 5 G Z.

Various situations arise, depending on the values of y, 5 and p. Because
K(G) is a characteristic subset of G it suffices to show that every element
under consideration is conjugate to a commutator. Let g ~ h denote that g is
conjugate to h.
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(a) y =0(modulop). If S = 0(modulop), then \<f>(S)\ = p. So 8
By considering how <t>(S) acts upon S', we see that gi ~ gig3, g2 ~ g2g3 and
g3EZ(S).

So 5 is nilpotent of class 3 and S/{g3) is nilpotent of class 2. By Theorem
A, S/(g,)£C. So g1g2°<g3)GK(S/(g3)) and consequently, g,g?gjGK(S) for
some A6Z, Now g,g?g3 ~ gig2*g3g3 gigigS*', where r E Z. So
g,g?g?EK(S), where a, j8 e Z. Now g2~ g2g.?~ g2g38 g2g?, where
r £ Z . Since S^O(modulop) we have that g2g?EK(S). Trivially, g £ K(S)
implies g £K(G).

(b) y^O (modulo p) and p^2. Now

/I

0

lo

r
l

0

0

5

1
1

/ I

0

lo

0

1

0

1\

0

1
1

= 1

0

r,8

1

where ri,r2EZ. By selecting suitable r, and r2 we have gi ~ gig°g?, where
a, j8 G Z and, consequently, gig°g3 G K(S).

To show that g2g?£ K(5) we observe that there exists an s & S, such
that,

*'1g.* = g.g2g? and [gus] = g2gl

(c) p=2 and y = 1 (modulo2). Let S|,s2£S be such that s, and s2

induce the automorphisms given by

1

0

0

1

1

0

0

8 and

1

0

\o

0

1

0

1\

0

1/

respectively.

Then g\< = g, g\* = g,g3, g^s' = g,g2g, and [g,, s2s,} = g2g,. Conse-
quently, S E C , which implies G 6 C .

(ii) \4>(S)\ = p. There are two possibilities to consider

(a) 1 0 1 \

0 1 0

\0 0 1 /
S/(g3) is nilpotent of class two and by a similar argument to that used in

(i) (a) we may conclude that gigjg? E K(S), where a, /3 E Z.
It remains to show that g2g3 E K(S), where /3 E Z. Let g2 = [s,, s2] and

g3 = [gi, s3] for some si, s2, s3 E S. Now [g,, s] E (g3) for all s E S. So [g,, s,] =
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g3 for some 1 S A S p. If A F O (modulop), then [s,, s2gf] - g2g3A" and for a
suitable choice of /n we have - Xfj. = /3 (modulo p).

Thus it remains to consider the case A = 0 (modulo p). This means
[gi, s,] = 1. Similarly we may assume [g,, s2] = 1. Since g,, [s3, s2], [s3, s,] G S'
which is abelian, we have [s3, s2]g| = [s3, s2] and [s3, Si]8' = [s3, st]. Let

[s3, Si] = gr'g?2g?' and [s3, s2] = gr4g?'grfi

where w, £ Z for l ^ i S 6.
We consider

g = [s.,sfs?,sJsfgfl, where £, fi, y, S, e G Z.

Expanding the commutator gives

We choose y and 5 such that w,-y + w46 = 0 (modulo p) and, either
yFO (modulop) or 5 ^ 0 (modulop). We then choose £, /x and e such that
g = g2g?.

(b)

Let g, = [s,,s2], where s , , s 2 ES. Suppose g5' = gig2, where
ApO(modulop). Consequently, g2' = gigi. So,

[s,,s2grg?] = g1g2°Ag33A and [s,,gTg2
3] = g;aAg3'

SA,

where a, /3 G Z. In the second commutator we can choose a such that
aX = - 1 (modulo p). Consequently, S G C.

Similarly, g i 2 = g ig A , where AFO(modulop), implies that S G C .
So it only remains to consider the case gf1 = g,2 = gt. Now there exists an

s G S such that gt = gtg2 and g2 = g2g3. Let [s, s2] = gi'gfg.i, where y, 5, e G Z.
Then,

and

1

0

\o

1

1

0

0\

1

1/

By suitably selecting A and /x we see that S G C . This concludes the proof for
Case (2).
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Case 3.

[G ' ,K] /G7S r .

By Theorem 1.2 we have,

S = [S, K]CS(K). (3.3)

Now KCNG([S,K]) and

[s1,k]*=[sls2,k][s2,k]-\

where su s2& S and k £ K. Therefore,

[S,K]<G. (3.4)

By considering (3.3) and (3.4), remembering that G' is abelian, we see that

S' = ([[S,K],Cs(K)},Cs(K)'). (3.5)

Because of (3.4) we have,

[[S,K],Cs(K)]C[S,K]. (3.6)

By Theorem 1.3, [S, K] = [[5, K], K]. So,

[[S,K],CS(K)]O[G',K]. (3.7)

Noting that CS(K)'C CG(K) we have, by (3.5), (3.7) and (3.1),

S' = [[S,K],Cs(K)]xCs(K)'. (3.8)

Again by Theorem 1.1,

S'=[S',K]xCs{K). (3.9)

Now,

CS(K)' C Cs(K) C Co(K), [S', K] C [G1, K]

and, by (3.6),

[[S,K],CS(K)]C[G\K].

So, by (3.1),

Cs(K)'=Cs{K). (3.10)

If,

then there exist x <E[[S,K],CS(K)] and y£[S',K] such that 1 ^ xy G
Cs (JQ. But
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([[S,K],CS(K)],[S;K])Q [G'.K]

and, by (3.1), [G\ K] D CO(K) = (1), a contradiction. Therefore,

[[S,K],Cs(K)] = [S',K]. (3.11)

We consider the various possibilities for the structure of S'.
(i) CsiK)=C, and [S',K] = <1>. By (3.9),

S'=CP. (3.12)

Because G = S\K, G' = <[S,K],S'). Recalling that, by Theorem 1.3,
[S, K] = [[S, K],K}. we see that

[S,K] = [G',K] = CpxCP.

So, by (3.1),

Ca(K)=Cp. (3.13)

Let g E G'. Then g = g,g2, where g, G [G\ K] and g2 £ CG (K). By Theorem
1.3 we have [Gr, K] = [[G', K], K]. So

g, = [su fc,][s2, fc2] = [fcis,, fcisj1],

where kuk2eK and s,,s2G[G',K]. By (3.10), (3.12) and (3.13), CG.(/C) =
Cs (K)= Cs(K)'. So g2 = [s3,sA], where s3, s4G CS(K). Consequently,

g = gig2 =

(ii) Cs(K) = [S',K]s=Cp. Because CS(K)C NS([S',K]) and S is a p-

group,

Since [S', K] a Cp,

<1>. (3.14)

Now G' = ([S,K],S'). So, by (3.9), G '= <[S, K], CS(K)>. By Theorem 1.3,
[S,K] = [[S,K],K]. So G' = ([G',K],Cs{K)). Because C S ( X ) 3 Q ,

for some g, E [G', K]\S'. Let g £ G'. Then g = grg2g3, where g2 £ [S', K],
g3£ Cs(K) and a £ Z. Suppose a^O(modulop). Now, as in (i),

g°gi = [kisl,k2s2],

where kuk2GK and 5,,s2£ [G',K]. By (3.10), g3 = [s3,s4], where
s3,s4£ CS(K). Then, by (3.14), (3.11) and because s3,stGCs(K),
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[JcSiSa, /C2S2S4] = [fciSiSs, S4] [k,SiS3, k2S2]''

= [ku s4''J'[s,s}, s4][k,s,, k2s2]'>'<[s3, k2s2]''

= [Si, 54] [*3, 54] [k,.S,, k2S2]s-'!-[s3, fc2S,]''

By (3.11), [s,,s4][s3, s2] = g£ and

[fcis,, fc2s2]
>3*« =

where /i, i) G Z. So,

By (3.11) and (3.14) there exists an s E CS(K) such that g! = gig*, where
A GZ and A^O(modulop). Consequently, there exists an f E Z such that
/j, + r\ 4- £Aa =0 (modulo p). Then,

[k,S,S3, fc2S2S4]SC = g f g 2 g 3 ,

as required.
If a = 0(modulop) it suffices to show that S G C. Now 5' = Cp x Cp. Let

H = S x P, where P is a p-group such that P' is cyclic of order p. Then, by
Case (2), W e C . Consequently, S G C.

(iii) Cs (K) = Cp x Cp. For similar reasons to those in the comment at the
end of Case (3) (ii) we have that CS(K)GC. By (3.1), [G',K] = CP, so
[G',K]CK(G). Let g G G'. Then g = g:g2, where g,GCs(K) and
g2G[G',K]. By (3.10) g, = [5,,s2], where Sl,s2SCs(K) and g2 = [*3, k],
where s3E[G',K] and k G K. Consequently,

g = [si,s2][s3, k]

because

(iv) Cs (K) = (1). By (3.9), S' = [S1, K]. Therefore G' = [G', K], a con-
tradiction. This completes the proof of the theorem.

4. Theorem C

PROOF OF THEOREM C. By Gorenstein (1968), Theorem 7.4.4, we see that
S C Na(S)'. So it suffices to consider the case S < G. We assume G to be a
counter-example of minimal order and we obtain a contradiction.

Let S = (ci)x (c2), where we assume Ci£K(G). Now G induces a
p'-group of automorphisms upon S. Consequently, by Theorem 1.1, S =
[S,G]xCs(G). By the Focal Subgroup Theorem (Gorenstein (1968),
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Theorem 7.3.4), [S, G] = SC\G'=S, so CS(G) = <1>. Thus, there exists a
g, G G such that cf1 / cx. If gi induces a fixed point free automorphism upon
S, then it immediately follows that S C K(G). So we may assume that
Cs(gi)/(1)- We may assume that cV = c2. Let c?1 = c"c", for some v, w E Z.

Suppose that [d, g] G <[d, g,]) for every g G G. Now, [c*, g,] = [cu g,]A,
where AGZ and, consequently, ([cu g i])CK(G). Therefore Ci £ ([c,,gi]).
From D. Passman (1968), Proposition 12.1, G has a proper normal subgroup
K such that

\G/K\\\S/([cugl])\.

Therefore \G/K\ = p. So G/K is abelian and G ' C K . But S C G ' and,
consequently, | G/K | is a p'-number, a contradiction. So we may assume that
there exists a g2G G such that S = ([d, gi],[ci,g2]}. Because S is an abelian
normal subgroup of G the mapping <£ defined by </>: s —> [s, g2], where s G S,
is an endomorphism of S. Moreover $ ( S ) C K ( G ) . So, if [c2, g2] ̂  ([cu g2]),
then <^>(S)= S CK(G) . By the minimality of G we may assume that
G = (S,gug2). If [c2,g2] = 1, then c2<= Z(G) and CS(G)^<1), a contradic-
tion. So [c2, g2] ̂  1 and [c2, g2] = [d, g2]°, for some a G Z, where (a, p) = 1. So
there exists a /3 G Z such that [c2, g2]" = [cu g2]. But [c2, g2]" = [cf, g2] and if
we substitute c2 for c2 we may assume that [ci,g2] = [c2, g2].

Let cf2= c[c", then c!2 = c', 'c"*1, where t, u G Z. If g2gi induces a fixed
point free automorphism upon S, then S C K ( G ) . So we may assume that
Cs(g2g,)^U>. Now,

c\*> = (c',c2)
8' = (crc2

w)'c2
u = e r r -

and

c°2>" = (crcr1)" = (crc27'Ic?+1 = ci'-'cr"-1*"*1.

Since Cs(g2gi)^ (1), there exist A, u G Z such that

Thus,

ufA + u(r - l)/n = A (modulop)

(wr + u)A + (w(t - 1)+ u + l)/i =/x (modulop).

So we have,

(vt - 1)A + v(t - l)n = 0 (modulo p)

(wt+ u)A +(w(t-l)+ U)/JL =0(modulop). v "

The equations (4.1) have a non-trivial solution if and only if
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D f - 1 V(t-l)

^ 0 (modulop).
wt + u w(t — 1)+ u

This reduces to,

u(v-l)-w(t- 1)^0 (modulop). (4.2)

If « =0(modulop), then [cug2] = c[~\ Because S = {[cr,g1],[cug2]),
t- 1 ^0(modulop). Consequently, from Honda (1953), c,£K(G), a con-
tradiction. So we may assume that u^O(modulop).

If v = 1 (modulop), then gi induces a p-automorphism upon S. So
v ̂  1 (modulop). Thus there exists an £EZ such that (v -1)£ =
f - 1 (modulop). We consider £((u - 1)+ w). By (4.2),

£((v - 1)4- w) = £(w(/ - 1)/M + w)(modulop).

But

£((v - 1)+ w) = f - 1 + ^w (modulop),

by construction. Therefore,

t -1 = £w(t - l)/u (modulop).

So, either t = 1 (modulop) or ^H>/M =1 (modulop). If t = 1 (modulop), then,
by (4.2), u(v — 1) = 0(modulop). But neither u =0(modulop) nor u — 1 =
O(modulop), a contradiction. Finally, if £w/u = 1 (modulop), then vv =
f« (modulop). This implies [c,,gi]f = fci,g2], our final contradiction.

The following example gives a first approximation on how far d(S) can
be extended in any generalization of Theorem C. Let H = Cp\(Cq x Cq x Q),
where p and g are different primes. By a routine calculation one can show
that H£C. The Sylow p-subgroup S of H is elementary abelian. such that
d(S) = q3, and is equal to H' x Z(H). Suppose that G s= H/Z(H). It follows
that G&C. Now G' is the Sylow p-subgroup of G and is elementary abelian
such that d(G') = q3 - 1. If p/ 2 we can set 4 = 2 to obtain d(G') = 7, which
is a reasonable bound to any extension of Theorem C.
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