
J. Austral. Math. Soc. 19 (Series A), (1975), 91-96.

ON PRODUCTS OF VECTOR MEASURES

U. K. BANDYOPADHYAY

(Received 18 July 1972, revised 9 October 1973)

Communicated by E. Strzelecki

1. Introduction

Products of positive measures play a very important role in analysis. The
purpose of this paper is to construct a theory of products of two measures taking
values in two (possibly different) Banach spaces. A Fubini theorem is obtained
which generalizes the Fubini theorem for the Bochner integral (Dunford and
Schwartz (1958), Theorem 9, page 190), and hence also the classical result.

We use the theory of vector integration presented in Dinculeanu (1967). Our
arguments rely upon a standard sort of application of the dominated convergence
theorem (cf. Dunford and Schwartz (1958), Theorem 9, page 190), and therefore
do not appear to generalize to any theory of integration where this theorem is
lacking (e.g. Bartle (1956)).

For a Fubini theorem generalized in a different direction see Bogdanowicz
(1965). Also see Duchon (1967) and Duchon and Kluvanek (1967).

This work originated from my Ph.D. thesis at Carnegie-Mellon University,
Pittsburgh. I would like to thank my thesis advisor Professor V. J. Mizel for his
help.

2. Preliminaries

The scalar field is either real or complex. A (5-ring is a ring of sets closed under
countable intersections. A measure space is an ordered 4-tuple (X, S, U, m), where
X is a nonempty set, S a <5-ring of subsets of X, U a Banach space, and m a U-
valued measure on S such that the restriction of its variation to S is finite. This
restriction is denoted by | m |. (We allow m to be unbounded and its variation to
be infinite on X).

Consider two Banach spaces V, W and a continuous bilinear mapping
(u, v) -* uv of U x V into W with norm 1 (i.e. || uv | ^ || u | || v | ) . The following
lemma is used in the next section.

LEMMA 1. An m-measurable function h :X -» V is m-integrable if and
only if the function || h || is \ m \ -integrable. And in this case we have
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[hdm || S [ \ h \ \ d\m\.

(See Dinculeanu (1967); Proposition 4, page 122; line 3, page 137.)

3. Product measures

We consider first two measure spaces (X, S, U, m) and (Y, T, V, n), a Banach
space W, and a continuous bilinear mapping (with norm 1) <t>: (u, v) -*• uv of
U x V into W.

Let S x T denote the <5-ring generated by the measurable rectangles
A x B(A eS,Be T). For any yeY, the Y-section Cy of a set C in S x T is a
set in S defined by

Cy = {xeX:(x,y)eC}.

The following theorem leads to the definition of a product measure.

THEOREM 1. (i) For each given set C in S x T, the U-valued function
y -* m(Cy) on Y is n-integrable.

(ii) The mapping m x n of S x T into W, defined by

(m x n)(Q = I m{Cy)dn{y) {CeS x T),
is a measure.

(iii) m x n is the only W-valued measure on S x T for which

(m x n)(A x B) = m(A)n(B) = <&(m(A), n(B)) (AeS,Be T).

g \m\ x | n j.
= | m| x | n |,
u|| (ueU,veV).

PROOF, (i) Let Q denote the collection of all sets C in S x T such that the
function y -> m{Cy) is n-integrable. Q Clearly contains the ring Qo generated
by the measurable rectangles, every member of Qo being a finite disjoint union
of such rectangles. Also, the monotone class with respect to S x T, generated
by Qo» is precisely the 8-nng S x T [Dinculeanu (1967), Proposition 16, page
11]. Hence it is sufficient to show that Q is a monotone class with respect to
S x T, i.e. C = lim Ck e Q for every monotone sequence {Ck} in Q such that
CeS x T.

For any fixed y e Y, {Cy} is a montone sequence of sets in S such that
lim Cy = Cy. And \JkC

k is contained in a member of Qo which in turn is con-
tained in some measurable rectangle, say A x B [Dinculeanu (1967), Corollary
to Proposition 10, page 6].
Hence

(iv)
(v)

uv 1 =

m
m

=

X

X

1"

n
n

and
m(Ck

y) -* m(Cy) {y e Y) [Dinculeanu (1967), page 18]
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I mity || g | m | (A)XB(y) (y e Y; k = 1,2, • • •)•

It follows now from the dominated convergence theorem [Dinculeanu (1967),
Theorem 3, page 136] that CeQ.

The proof of (ii) is now clear and (iii) follows from a standard result
[Dinculeanu (1967), Proposition 6, page 24].

(iv) We need only observe that for every CeS x T and every finite parti-
tion {Ck} of C into sets of S x T, we have

I \\(m x n)(Ck)\\ = f
„' Y

^ X f |m|(Cj)d|i!|oo
•> Y

= ( | w | x I
(v) By virtue of (iii) and (iv), (v) would follow if we show that

(*) \m x n\(A x B) £ \m\(A)\n\(B)

for an arbitrary measurable rectangle A x B. If {At: i = 1, •••,/} and
{Bj :j = 1, •••, J} are finite partitions of A and B into sets of S and T respectively,
then {At x By :i = 1, •••,l;j = 1, •••,./} is a finite partition of A x B into sets
of S x T, and we have

| m x n (A x B) ^ Z || (m x n)04, x B) ||

•" . j "

| | | | | , | |
i.j

= ( E || m(̂ ,-) ||)( Z ||«(By)|)
i j

This implies (* ) since the partitions of A and B are arbitrary.

DEFINITION. The measure m x n o f Theorem 1 will be called the product of
the measures m and n corresponding to the Banach space W and the bilinear
mapping <P.

REMARK. The existence of the product measure can be established by using
a standard theorem [Dinculeanu (1967), Theorem 3, page 76] on the extension of
vector measures. However, one must show first that the product defined on Qo in
the obvious way is indeed a measure whose variation (restricted to Qo) is finite.

For the following Fubini theorem we consider three more Banach spaces
E. F, G and three continuous bilinear mappings (with norm 1)
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(e, w) -> ew of E x W into G,

(e, u) -* eu of E x U into F,

(f,v) -»/« o f F x F intoG,

such that
e(uv) = (ew)u (e e E, u e [/, v e F).

THEOREM 2. Let h :X x Y -> E be an ( | m | x | « | )-integrable function.
(i) T/je E-valued function x -+ h{x,y) on X is m-integrable for | n | -almost

all fixed ye Y.
(ii) The F-valued function y -* J x h(x,y)dm{x), defined \n\-a.e. on Y, is

n-integrable.
(iii) }jxrliif(ffl x n) = J"y[ jxh(x,y)dm(x)]dn(y).

PROOF, (i) and (ii) are easily obtained by an application of the Fubini theorem
for positive measures to the ( |m \ x \n\)-integrable function || h | on X x Y.
(See Lemma 1.)

To prove (iii) we first assume that

h = exc ( e e £ , C e S x T).
Then

h(x,y) = exCy(x).
Hence

= (̂  [em(C,)]

m(Cy)

= e(m x n\C)

= h d{m x n)
Jxxy

by [Dinculeanu (1967), A routine extn. of Proposition 6, page 123].
It is clear now that (iii) holds for all simple functions. For an arbitrary

(| m | x | n | )-integrable function h, there exists a sequence {hk} of simple func-
tions such that

hk-+h
and

I hk I g I h I , ( | m | x | n | )-a.e.
(See [Dinculeanu (1967), Theorem 2, page 99].)
For I n I -almost all fixed y e Y,
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hk(x,y)-*h(x,y)
and

\hk{x,y)\\ ^ \\h(x,y)\\,\m\-a.c.

Hence, by the dominated convergence thorem [Dinculeanu (1967), Theorem 3,
page 136],

hk(x,y) dm(x) -> I h{x,y) dm{x) |n|-a.e. on 7.
Jx Jx

Since (by Lemma 1),

I! hk(x,y) dm(x) jj g II h(x,y) || d\ m I(x) |n | -a .e .
11 Jx • Jx

another application of the same theorem yields that

I L L hk{x'y)dm{x)]dn(y) -> X [Lh(x'y) dm(x)]dn(y)'
This implies (iii), because

I hk d(m x n) -* I h d(m x n)
JX*Y JXxY

and because we have

I f I hk(x,y) dm(x)\ dn(y) = f hk d(m x n)
JYLJx J JXXY

for all k.

REMARKS. If m and n are scalar valued and if O denotes the regular product
of numbers, then | m x n | = | m | x | n | [Theorem 1 (t>)] and Theorem 2 reduces
to the standard Fubini theorem for (m x n)-integrable functions. However, as
the following example shows, | m x n |-integrability is not sufficient in the general
case. Let X = Y = (0,1), S = T = the Lebesgue measurable sets of (0,1),
U = V = R2, W = R,0)the standard inner product in R2,m(A) = /*G4)<l,0>,
and n(B) = n(B) < 0, 1 >, where /z is the Lebesgue measure on (0,1). m x n is
then the zero measure on S x T. The function h :(x,y)-> 1/x on X x Y is
| m x n | -integrable but fails to satisfy (i) of Theorem 2.
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