ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE

TUNEKITI SIRAO

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday
§ 1. Introduction. Many authors have considered branching Markov processes for the probabilistic treatment of semi-linear equations. Recently J.E. Moyal [11], [12] gave a formulation for a wide class of branching processes. A similar idea was used in A.V. Skorohod [18] and N. Ikeda-M. Nagasawa-S. Watanabe [4]-[7]. Applying their method, we shall consider in this paper the following problems (A) and (B).
(A): Let E be a compact Hausdorff space with the second axiom of countability and assume the following are given: (1) H_{t} : a strongly continuous semi-group on $\boldsymbol{C}(E)=\{f$; continuous function on $E\}$, (2) \mathscr{G} : the infinitesimal operator of H_{t}, (3) $k(x), q_{n}(x), n=0,1,2, \cdots$, are continuous functions on E such that $k(x)=\sum_{n=0}^{\infty} q_{n}(x)$ and $\sum_{n=0}^{\infty}\left|q_{n}(x)\right|<\infty$. How can we interprete probabilistically the following equation?

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=\mathscr{G} u(t, x)+k(x) F(x ; u(t, x)), \quad x \in E, t \geqq 0, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x ; \xi)=\frac{1}{k(x)} \sum_{n=0}^{\infty} q_{n}(x) \xi^{n}, \quad x \in E, \xi \in R^{1} \tag{1.2}
\end{equation*}
$$

(B): How can we interprete probabilistcally the following equation?

$$
\begin{equation*}
\left.\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+G(u(t, x)), \quad x \in R^{d}, t>0,1\right) \tag{1.3}
\end{equation*}
$$

where Δ denotes the Laplacian in x and $G(\xi)$ satisfies

$$
\begin{equation*}
G(0)=G(1)=0, \quad G(\xi)>0 \text { and } G^{\prime}(0)>G^{\prime}(\xi), \quad 0<\xi<1 . \tag{1.4}
\end{equation*}
$$

1) R^{d} denotes the d-dimensional Euclidian space.

The equation (1.3) for more general G was discussed by A. KolmogoroffI. Petrovsky-N. Piscounoff [9].

We first consider the problem (A). Among others, Ikeda-NagasawaWatanabe [4]-[7] have shown that (1.1) can be interpreted probabilistically by means of branching Markov processes when the $q_{n}(x)$ are non-negative, $q_{1}(x)=0$ and

$$
\begin{equation*}
\left.F(x ; \xi)=\frac{1}{k(x)}\left\{\sum_{n \neq 1} q_{n}(x) \xi^{n}-\xi\right\}, 2\right) \quad x \in E, \xi \in R^{1} \tag{1.5}
\end{equation*}
$$

Hence, problem (A) becomes a question of eliminating the restrictions concerning positivity of $q_{n}(x), q_{1}(x)=0$ and the term $-\xi$ in the right hand side of (1.5).

Let us next consider the following special case of (1.1): (1) $E=R^{d} \cup\{\infty\}$ be the spaje obtained by the one-point compactification of R^{d}, (2) $q_{0}=q_{1}=0$ and the other $q_{n}^{\prime} s$ are non-negative constants, (3) $\sum_{n=2}^{\infty} q_{n}=1$, (4) $\mathscr{G}=\frac{1}{2} \Delta$ and

$$
F(\xi)=\sum_{n \neq 1} q_{n} \xi^{n}-\xi
$$

Then (1.1) becomes a special case considered by Ikeda-Nagasawa-Watanabe [6], and is written as follows:

$$
\left.\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+F(u(t, x)), \quad x \in R^{d}, t \geqq 0 .{ }^{3}\right)
$$

where $F(0)=F(1)=0$. If we put $u(t, x)=1-v(t, x)$ and $G(\xi)=-F(1-\xi)$, then the above equation turns out to be the following equation

$$
\frac{\partial v(t, x)}{\partial t}=\frac{1}{2} \Delta v(t, x)+G(v(t, x)), \quad x \in R^{d}, t \geqq 0,
$$

where G satisfies (1.4). This means that problem (B) can be solved by means of a branching Markov process in the special case stated above.

Now, we shall sketch here the contents of $\S \S 2-8$. In $\S 2$, we shall give the notations which are used in the later discussions and give also the definitions of a branching Markov process with age and a signed branching

[^0]Markov process with age after introducing extenced state spaces \boldsymbol{S} and $\tilde{\boldsymbol{S}}$. In $\S 3$, we shall consider a branching Markov process with age Y_{t} on $\hat{\boldsymbol{S}}$ satisfying Condition 1 stated there. Then, for a given system $\left\{q_{n}(x) ; n=0,2,3, \cdots\right\}$ of non-negative functions, $k(x)=\sum_{n \neq 1} q_{n}(x)$ and $F(x ; \xi)$, defined by (1.2) where $q_{1}(x)=0$, we can discuss an integral equation which corresponds to the one called " S-equation" in [7]. Under certain conditions, the integral equation can be transformed into the equation of type (1.1). In this case, $u(t, x)=T_{t} \widehat{f \cdot 2}(x, 0)^{1}$) is a solution of (1.1) with $u(0, x)=f(x)$ if $u(t, x)$ is finite. This shows that we can eliminate the term $-\xi$ in the right hand side of (1.4) by introducing of the notion of age. Moreover, for $G(\xi)=\xi^{n}$, the notion of branching Markov processes with age will serve to answer the question as to the existence of a non-trivial solution of (1.3) which does not blow up in $[0, \infty)$. (See $\S 6$ and M . Nagasawa-T. Sirao [14].)

In §4, we shall consider a signed branching Markov process with age Z_{t} on $\widetilde{\boldsymbol{S}}$ satisfying Condition 2 which is essentially identical to Condition 1 except for the difference of branching (splitting) law caused by the difference of the state spaces $\hat{\mathbf{S}}$ and $\tilde{\mathbf{S}}$. After making the similar considerations as in $\S 3$, we can interpret (1.1) probabilistically. That is to say $u(t, x)=$ $U_{t} \widetilde{\left.f \cdot 2(x, 0,0)^{5}\right)}$ is a solution of (1.1) with $u(0, x)=f(x)$ if $u(t, x)$ is finite. This means that we can solve the problem (A) by means of signed branching Markov processes with age. (The existence of such (signed) branching Markov processes with age discussed in §§ 3-4 will be shown in §§ 7-8.)

In $\S 5$, we shall give a sufficient condition called Condition 3 in this paper which includes Condition 2 and makes a given Markov process Z_{t} become a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$. This part of the present paper, Ikeda-Nagasawa-Watanabe [7] and Nagasawa [13] overlap in some respects, because the proof of Theorem 5.1 is essentially the same as one given in [7].

In $\S 6$, we shall consider a Markov process Z_{t} satisfying Condition 3 whose existence is shown in $\S \S 7-8$. According to the discussions in $\S 5, Z_{t}$ is a signed branching Markov process with age. Let f be a positive con-

[^1]tinuous function on R^{d} with $\|f\|=\sup \left\{|f(x)| ; x \in R^{d}\right\}<1$ and $\alpha \in R^{1}$. When we consider $u(\alpha ; t, x)=U_{t} \overparen{\alpha f \cdot 2(x, 0,0)}$, where U_{t} denotes the semigroup induced by Z_{t} and $x \in R^{d}, u(\alpha ; t, x)$ can be expressed in the power series of α if $u(\alpha ; t, x)$ is finite. But the solution of (1.3) with initial value αf, in general, can not be expressed in the power series of α. Accordingly, if $G(\xi)$ is not an analytic function of ξ, then we can not obtain the solution of (1.5) with initial value f directly by means of signed branching Markov processes with age as in the case of analytic G. However, if G is continuously differentiable on $[0,1]$ and satisfies the condition (1.4), then we can express the solution $u(t, x)$ of (1.3) with initial value f as the uniform limit of $u_{n}(t, x)$ in the wide sense where $u_{n}(t, x)$ is of the type considered in §4, i.e. there exists a sequence of signed branching Markov processes with age $Z_{t}^{(n)}$ on $\widetilde{\boldsymbol{S}}$ and corresponding semi-groups $U_{t}^{(n)}$ such that
$$
u(t, x)=\lim _{n \rightarrow \infty} u_{n}(t, x), \quad x \in R^{d}
$$
where
$$
u_{n}(t, x)=U_{t}^{(n)} \widetilde{f \cdot 2}(x, 0,0), \quad x \in R^{d}, t \geqq 0
$$

In $\S 7$, we shall construct a certain Markov process Y_{t} which will be used in $\S 8$ in the constructions of branching Markov processes with age and signed branching Markov processes with age. We can regard this Markov process Y_{t} as corresponding to the creation of mass in the following sense. Let $k(x)$ be a bounded continuous function on E and consider the equation

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=\mathscr{O} u(t, x)+k(x) u(t, x), \quad x \in E, t \geqq 0 \tag{1.6}
\end{equation*}
$$

where \mathscr{G} is a infinitesimal operator of a semi-group H_{t} corresponding to a Markov process X_{t} on E. If $k(x)$ is non-positive, we can treat (1.6) by killing X_{t}. So we may consider (1.6) as the equation corresponding to the killing when $k(x)$ is non-positive. On the other hand, we may consider (1.6) as the equation corresponding to the creation of mass when $k(x)$ is non-negative. In the theory of Markov processes, there are, as far as I know, two methods of interpreting (1.6) when $k(x)$ is non-negative. One of them has been indicated by G.A. Hunt [3]. The other method is based on the theory of a branching Markov process, where (1.6) appears as the mean number of particles. (cf. K.Ito-H.P.McKean [8] and Ikeda-Nagasawa-Watanabe [6] or [7].) Our method of describing the creation of
mass uses age as an auxiliary variable. Let N be all the non-negative integers. We shall construct a strong Markov process $\left[X_{t}, N_{t}\right.$] on the state space $E \times N$ and consider the corresponding semi-group V_{t}. Then, for a given bounded continuous function f on $E, u(t, x)=V_{t} \widehat{f \cdot 2}(x, 0)$ is the solution of (1.6) with the initial value f.

In §8, we shall construct a Markov process Z_{t} satisfying Condition 3. Then, by the discussions in $\S 5, Z_{t}$ is a signed branching Markov process and the existence of the processes in $\$ \S 3-4$ is proved. We here note that the method of J.E. Moyal [10] will play an essential role in the construction of the processes dealt with in §§ 7-8.

The author wishes to express his hearty thanks to Professors N. Ikeda, M. Nagasawa and S. Watanabe who sent him preprints of their papers [4]-[7] and gave him various advice. The author also expresses his deep gratitude to Professor K. Ito who gave him valuable advice, too.
§ 2. Notations and Definitions. A branching process is one of the typical mathematical models used to describe the growth of the number of particles of a population in which each particle either produces new particles of the same character or dies out, and there is no interference among them. In order to describe the state of n particles, it seems to be natural to use the n-fold symmetric direct product space of the state space of each particle. Following [4], we here introduce some notations along this line.

Let E be a compact Hausdorff space satisfying the second axiom of countability. We denote the n-fold product space of E with itself by $E^{(n)}$ and say that $\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right) \in E^{(n)}$ is equivalent to $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in E^{(n)}$ if and only if $\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ is obtainable from a permutation of $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. The E^{n} is defined as the quotient space of $E^{(n)}$ by the above equivalence relation. By the quotient topology, E^{n} is compact. A point \boldsymbol{x} in E^{n} is also denoted by $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ as a collection of n-points $x_{i} \in E$ disregarding order. E^{0} is considered as the set of the single point ∂, where ∂ denotes an extra point.

Let $N=\{0,1,2, \cdots\}$ and $N^{(n)}$ be the n-fold product space of N with itself. A point $\left(p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{18}^{\prime}\right)$ of $N^{(n)}$ is said to be equivalent to $\left(p_{1}, p_{2}, \cdots, p_{n}\right) \in N^{(n)}$ if $\sum_{i=1}^{n} p_{i}^{\prime}=\sum_{i=1}^{n} p_{i} . .^{6)}$ The quotient space of $N^{(n)}$ by the

[^2]above equivalence relation is denoted by N^{n}. A point \boldsymbol{p} in $N^{n}, n \geqq 1$, is a collection of equivalent points in $N^{(n)}$ and is denoted by $\left[p_{1}, p_{2}, \cdots, p_{n}\right.$] if it contains $\left(p_{1}, p_{2}, \cdots, p_{n}\right) \in N^{(n)} .|\boldsymbol{p}|$ denotes $\sum_{i=1}^{n} p_{i}$ for $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right]$. Let $S=E \times N$ be the topological sum of $E \times\{p\}, p \in N$. Then S is a locally compact Hausdorff space satisfying the second axiom of countability. $S^{(n)}$ is defined as the n-fold product space of S with itself and ($\left(x_{1}^{\prime}, p_{1}^{\prime}\right)$, $\left.\left(x_{2}^{\prime}, p_{2}^{\prime}\right), \cdots,\left(x_{n}^{\prime}, p_{n}^{\prime}\right)\right)$ is said to be equivalent to $\left(\left(x_{1}, p_{1}\right),\left(x_{2}, p_{2}\right), \cdots,\left(x_{n}, p_{n}\right)\right)$ if $\left[x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right]$ is identical to $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ as a point of E^{n} and if $\left[p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{n}^{\prime}\right]$ is identical to $\left[p_{1}, p_{2}, \cdots, p_{n}\right]$ as a point of $N^{n} . S^{n}$ is defined as the quotient space by the above equivalence relation. Then S^{n} is locally compact with respect to the quotient topology. A point z in S^{n} is denoted by $\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$ or, for short, $[\boldsymbol{x}, \boldsymbol{p}]$ when $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in E^{n}$ and $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right] \in N^{n}$.

Let us consider the topological sum $\bigcup_{n=0}^{\infty} S^{n}$ where S^{0} denotes $\{\partial\} \times N, \partial$ being an extra point. This topological sum is denoted by \boldsymbol{S}. Then \boldsymbol{S} is a locally compact and non-compact Hausdorff space satisfying the second axiom of countability. If we consider the mapping g from S to $\left(\bigcup_{n=0}^{\infty} E^{n}\right) \times N$ defined by

$$
g([\boldsymbol{x}, \boldsymbol{p}])=[\boldsymbol{x},|\boldsymbol{p}|],
$$

then S is isomorphic to $\left(\bigcup_{n=0}^{\infty} E^{n}\right) \times N$, where $\bigcup_{n=0}^{\infty} E^{n}$ denotes the topological sum of $E^{n} . \quad \hat{S}=\boldsymbol{S} \cup\{\Delta\}$ is defined as the space obtained by the one-point compactification of \boldsymbol{S}. When A and B are subsets of E and E^{n} respectively, the sets $A \times\{p\}$ and $B \times\{\boldsymbol{p}\}$ are denoted by $[A, p]$ and $[B, \boldsymbol{p}]$ respectively.

Let J be the set $\{0,1,2,3\}$ and $\widetilde{\boldsymbol{S}}$ be the topological sum of $\boldsymbol{S} \times\{j\}$, $j \in J$. A point in $\tilde{\boldsymbol{S}}$ is denoted by $[\boldsymbol{x}, \boldsymbol{p}, j],[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}$, but $\{\Delta\} \times J$ is considered as one point and is denoted simply by Δ. Then we may consider $\widetilde{\boldsymbol{S}}$ is the space obtained by the one-point compactification of $\boldsymbol{S} \times J$. For a subset $[B, \boldsymbol{p}]$ of $\hat{\boldsymbol{S}}$, the set $[B, \boldsymbol{p}] \times\{j\}$ is denoted by $[B, \boldsymbol{p}, j]$.

Now let \mathscr{X} be a compact or locally compact Hausdorff space. We shall introduce the following function spaces which are supposed to be real.
$\boldsymbol{C}(\mathscr{X})=$ the set of all bounded continuous functions on \mathscr{X},
$\boldsymbol{B}(\mathscr{X})=$ the set of all bounded Borel measurable functions on \mathscr{X},

$$
\begin{aligned}
& \boldsymbol{C}^{*}(\mathscr{X})=\left\{f ; f \in \boldsymbol{C}(\mathscr{X}) \text { and }\|f\|=\sup _{x \in \mathscr{X}}|f(x)|<1\right\}, \\
& \boldsymbol{B}^{*}(\mathscr{O})=\{f ; f \in \boldsymbol{B}(\mathscr{X}) \text { and }\|f\|<1\} .
\end{aligned}
$$

When \mathscr{X} is a locally compact Hausdorff space, let $X=\mathscr{X} \cup\{\infty\}$ be the space obtained by the one-point compactification of \mathscr{X} and set

$$
\begin{aligned}
& \boldsymbol{C}_{0}(\mathscr{X})=\left\{f ; f \in \boldsymbol{C}(X), \lim _{x \rightarrow \infty} f(x)=0\right\}, \\
& \boldsymbol{C}_{0}^{*}(\mathscr{X})=\left\{f ; f \in \boldsymbol{C}_{0}(\mathscr{X}),\|f\|<1\right\}
\end{aligned}
$$

$\boldsymbol{C}_{0}(\mathscr{X})$ and $\boldsymbol{C}_{0}^{*}(\mathscr{X})$ are denoted by $\boldsymbol{C}_{0}(X)$ and $\boldsymbol{C}_{0}^{*}(X)$ occasionally. The subclass of each function space introduced above formed of all non-negative elements is denoted by " + ", e.g. $\boldsymbol{C}(\mathscr{X})^{+}, \boldsymbol{B}(\mathscr{X})^{+}, \cdots$, etc. We shall denote by " - " the closure with respect to the norm \| \|, so

$$
\begin{aligned}
& \overline{\boldsymbol{C}}^{*}(\mathscr{O})=\{f ; f \in \boldsymbol{C}(\mathscr{X}) \text { and }\|f\| \leqq 1\}, \\
& \overline{\boldsymbol{B}}^{*}(\mathscr{X})=\{f ; f \in \boldsymbol{B}(\mathscr{X}) \text { and }\|f\| \leqq 1\},
\end{aligned}
$$

and so on.
The set of all Borel subsets of \mathscr{X} is denoted by $\mathscr{B}(\mathscr{X})$.
Now we shall define several operations on functions which will play an important role in the future discussions. First of all let us define a mapping from $\boldsymbol{B}(E)$ into the space of all measurable functions on \boldsymbol{S} by

$$
\widehat{f \cdot \lambda}(\boldsymbol{z})= \begin{cases}\lambda^{p}, & \text { if } \boldsymbol{z}=[\partial, p] \in S^{0} \tag{2.1}\\ \lambda^{|p|} \prod_{i=1}^{n} f\left(x_{i}\right), & \text { if } \boldsymbol{z}=[\boldsymbol{x}, \boldsymbol{p}] \in S^{n} \text { and } \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \\ 0, & \text { if } \boldsymbol{z}=\Delta\end{cases}
$$

where $\lambda \geqq 0$. If $f \in \boldsymbol{C}^{*}(E)$ and $0 \leqq \lambda<1$, then $\widehat{f \cdot \lambda} \in \boldsymbol{C}_{0}^{*}(\widehat{\boldsymbol{S}})$, while $\widehat{f \cdot \lambda}$ is unbounded for $\lambda>1$.

Next we shall define a mapping \sim from $\boldsymbol{B}(E)$ into the space of all measurable functions on $\widetilde{\boldsymbol{S}}$ by

$$
\begin{equation*}
\widetilde{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])=(-1)^{\left[\frac{j}{2}\right]} \widehat{f \cdot \lambda([x, p])}, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}} \tag{2.2}
\end{equation*}
$$

where $\lambda \geqq 0$ and [] denotes Gauss' symbol.
For any function g on \hat{S}, we define a function $\left.g\right|_{E}$ on E by

$$
\begin{equation*}
\left.g\right|_{E}(x)=g([x, 0]), \quad x \in E \tag{2.3}
\end{equation*}
$$

We define also $\left.h\right|_{E}$ for any function on $\widetilde{\boldsymbol{S}}$ by

$$
\begin{equation*}
\left.h\right|_{E}(x)=h(x, 0,0), \quad x \in E \tag{2.4}
\end{equation*}
$$

Remark 1. Let $\left(\bigcup_{n=0}^{\infty} E^{n}\right) \cup\{\Delta\}$ be the space obtained by the one-point compactification of $\bigcup_{n=0}^{\infty} E^{n}$. Ikeda-Nagasawa-Watanabe [4]-[7], used a mapping from $\boldsymbol{B}(E)$ into the space of all Borel measurable functions on $\left(\bigcup_{n=0}^{\infty} E^{n}\right) \cup\{\Delta\}$ defined by

$$
\hat{f}(\boldsymbol{x})= \begin{cases}1, & \text { if } \boldsymbol{x}=\partial \tag{2.5}\\ \prod_{i=1}^{n} f\left(x_{i}\right), & \text { if } \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in E^{n} \\ 0, & \text { if } \boldsymbol{x}=\Delta\end{cases}
$$

Then the linear hull of the set $\left\{\hat{f} ; f \in C^{*}(E)^{+}\right\}$is dense in $C_{0}\left(\bigcup_{n=1}^{\infty} E^{n}\right)$ (cf.
 $0 \leqq \lambda<1\}$ is dense in $\boldsymbol{C}_{0}(\hat{\boldsymbol{S}})$ because the linear hull of $\left\{\lambda ; \lambda(p)=\lambda^{p}, 0 \leq \lambda<1\right.$, $p \in N\}$ is also dense in $\boldsymbol{C}_{0}(N)$.

Comparing the two mappings defined by (2.1) and (2.5), we have

$$
\widehat{f \cdot 1}([x, p])=\hat{f}([x])
$$

So we need not distinguish between $\widehat{f \cdot 1}$ and \hat{f} if there arises no danger of confusion.

Now we shall consider a Markov process $X=\left\{X_{t}, \zeta, \mathscr{B}_{t}, P_{x} ; x \in \mathscr{X}\right\}$ on \mathscr{X}. Let \mathscr{D}_{∞} be the smallest σ-algebra which contains all elements of \mathscr{B}_{t} for any $t \geqq 0$. A non-negative random variable τ is said to be a $\left(\mathscr{B}_{t}{ }^{-}\right)$ Markov time if

$$
\{w ; \tau(w) \leqq t\} \in \mathscr{B}_{t},
$$

for any $t \geqq 0$. For each Markov time τ, we set

$$
\mathscr{D}_{\tau}=\left\{A ; A \in \mathscr{B}_{\infty} \text { and } A \cap\{w ; \tau(w) \leqq t\} \in \mathscr{B}_{t} \text { for any } t \geqq 0\right\}
$$

Then it is easy to see that \mathscr{B}_{τ} is a σ-algebra. A measurable Markov process X is called a strong Markov process if for any Markov time τ and for any $t \geqq 0, x \in \mathscr{X}, f \in \boldsymbol{B}(\mathscr{X})$ and $A \in \mathscr{B}_{\tau}$

$$
E_{x}\left[f\left(X_{t+\tau}\right) ; A \cap\{\tau<\zeta\}\right]=E_{x}\left[E_{X_{\tau}}\left[f\left(X_{t}\right)\right] ; A \cap\{\tau<\zeta\}\right],
$$

where E_{x} denotes the integral by P_{x}.
In this paper, with the exception of $\S \S 7-8$, we shall assume that each sample function of a Markov process is right continuous in t and has its left limit at any $t>0$. We also use the same letter ζ for the terminal times of different Markov processes X and Y and the same letter \mathscr{B}_{t} for the corresponding σ-algebras which make X_{t} or Y_{t} measurable if there arises no danger of confusion.

Let $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, \boldsymbol{p}]} ;[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}\right\}$ be a strong Markov process on $\hat{\boldsymbol{S}}$, where $\left[X_{t}(w), N_{t}(w)\right]=[\boldsymbol{x}, \boldsymbol{p}]$ means $X_{t}(w)=\boldsymbol{x}$ and $N_{t}(w)=\boldsymbol{p}$. We shall define the functionals of Y by

$$
\begin{align*}
& \xi_{t}(w)= \begin{cases}n, & \text { if }\left[X_{t}(w),\right. \\
\infty, & \left.N_{t}(w)\right] \in S^{n}, \quad n \geqq 0 \\
\infty, & \text { if }\left[X_{t}(w),\right. \\
\left.N_{t}(w)\right]=\Delta,\end{cases} \\
& \tau(w)=\inf \left\{t>0 ; \xi_{t}(w) \neq \xi_{0}(w) \text { or } \sup _{s \leq t}\left|N_{s}(w)\right|=\infty\right\}^{7)}, \\
& \sigma(w)=\inf \left\{t<\tau(w) ;\left|N_{t}(w)\right| \neq\left|N_{0}(w)\right|\right\}, \tag{2.6}\\
& \tau_{0}(w)=0, \quad \tau_{1}(w)=\tau(w), \tau_{n+1}(w)=\tau_{n}(w)+\theta_{\tau_{n}} \tau(w), \quad(n \geqq 1), \\
& \sigma_{0}(w)=0, \quad \sigma_{1}(w)=\sigma(w) \text { and } \sigma_{n+1}(w)=\sigma_{n}(w)+\theta_{\sigma_{n}} \sigma(w), \quad(n \geqq 1),
\end{align*}
$$

where θ denotes the shift operator (cf. E.B. Dynkin [1]).
Further let $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\mathbf{S}}\right\}$ be a strong Markov process on $\tilde{\mathbf{S}}$, where $\left[X_{t}(w), N_{t}(w), J_{t}(w)\right]=[\boldsymbol{x}, \boldsymbol{p}, j]$ means $X_{t}(w)=\boldsymbol{x}$, $N_{t}(w)=\boldsymbol{p}$ and $J_{t}(w)=j$. Then we define the functionals of Z by

$$
\begin{align*}
& \eta(w)=\inf \left\{t>0 ; J_{t}(w) \neq J_{0}(w) \text { or } \sup _{s \leq t}\left|N_{s}\right|(w) \mid=\infty\right\}, \\
& \sigma(w)=\inf \left\{t<\eta(w) ;\left|N_{t}(w)\right| \neq\left|N_{0}(w)\right|\right\}, \tag{2.7}\\
& \eta_{0}(w)=0, \quad \eta_{1}(w)=\eta(w), \eta_{n+1}(w)=\eta_{n}(w)+\theta_{\eta_{n}} \eta(w), \quad(n \geqq 1), \\
& \sigma_{0}(w)=0, \sigma_{1}(w)=\sigma(w) \text { and } \sigma_{n+1}(w)=\sigma_{n}(w)+\theta_{\sigma_{n}} \sigma(w), \quad(n \geqq 1) . .^{8}
\end{align*}
$$

Evidently τ_{n}, η_{n} and σ_{n} are Markov times.

[^3]Now we shall give here the definitions of a branching Markov process with age on $\hat{\boldsymbol{S}}$ and a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$.

Definition 2.1. A strong Markov process $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \zeta, \mathscr{B}_{t}\right.$, $\left.P_{[\boldsymbol{x}, \boldsymbol{p}]} ;[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}\right\}$ is said to be a branching Markov process with age, if the semigroup $\left\{T_{t} ; t \geqq 0\right\}$ on $\boldsymbol{B}(\mathbf{S})$ induced by Y satisfies

$$
\begin{equation*}
T_{t} \widehat{f \cdot \lambda}=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}, \quad f \in C^{*}(E), \tag{2.8}
\end{equation*}
$$

where $t \geqq 0$ and $0 \leqq \lambda<1$.
Definition 2.2. A strong Markov process $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}\right.$, $\left.P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}\right\}$ is said to be a signed branching Markov process with age, if the semi-group $\left\{U_{t} ; t \geqq 0\right\}$ on $\boldsymbol{B}(\widetilde{\mathbf{S}})$ induced by Z satisfies

$$
\begin{equation*}
U_{t} \widetilde{f \cdot \lambda}=\overparen{\left.\left(U_{t} \overparen{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}, \quad f \in C^{*}(E), \tag{2.9}
\end{equation*}
$$

where $t \geqq 0$ and $0 \leqq \lambda<1$.
In both processes Y and $Z,\left|N_{t}\right|$ is considered as the total age of the particles and hence σ_{n} is called the nth jumping time of age N_{t}. τ_{n} and η_{n} are called the nth branching times of Y and Z respectively.

Remark 2. As was mentioned already, the linear hull of $\{\widehat{f \cdot \lambda}$; $\left.f \in C^{*}(E), 0 \leqq \lambda<1\right\}$ is dense in $\boldsymbol{C}_{0}(\hat{\boldsymbol{S}})$. Hence the process on $\hat{\boldsymbol{S}}$ is uniquely determined by the values of $T_{t} \widehat{f \cdot \lambda}$ considered in (2. 8). But, unfortunately, the same unique insistence does not hold for the case of U_{t} (cf. Remark 2 in §4).

Remark 3. When $Y_{t}=\left[X_{t}, N_{t}\right]$ is a branching Markov process with age, $[\partial, p], p \in N$, and Δ are traps because

$$
T_{t} \widehat{f \cdot \lambda}(\partial, p)=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}(\partial, p)=\lambda^{p}, \quad p \in N
$$

and

$$
T_{t} \widehat{f \cdot \lambda}(\Delta)=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda(\Delta)}=0,
$$

for any $f \in C^{*}(E)^{+}$and $\left.0 \leqq \lambda<1 .{ }^{9}\right)$

[^4]Remark 4. For any bounded continuous function f on $E, \alpha f \in C^{*}(E)$ if $|\alpha|<1 /\|f\|$. So, if (2.8) holds then we have for $f \in \boldsymbol{C}(E)-C^{*}(E)$

$$
\begin{equation*}
T_{t} \widehat{\alpha f \cdot \lambda}=\left.\widehat{\left(T_{t} \alpha f \cdot \lambda\right)}\right|_{E} \cdot \lambda, \quad|\alpha|<1 /\|f\| \tag{2.12}
\end{equation*}
$$

On the other hand, both sides of the above equation can be expressed in the power series of α. So, if we put

$$
T_{t} \widehat{\alpha f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}])=\sum_{n=0}^{\infty} E_{[x, p]}\left[\widehat{\alpha f \cdot \lambda}\left(Y_{t}\right) ; Y_{t} \in S^{n}\right]=\sum_{n=0}^{\infty} a_{n}([\boldsymbol{x}, \boldsymbol{p}]) \alpha^{n}
$$

and
then (2.10) shows that

$$
\begin{equation*}
a_{n}([\boldsymbol{x}, \boldsymbol{p}])=b_{n}([\boldsymbol{x}, \boldsymbol{p}]), \quad n=0,1,2, \cdots \tag{2.11}
\end{equation*}
$$

Since the finiteness of $T_{t} \widehat{f \cdot \lambda^{10)}}$ and $\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}$ implies that

$$
\sum_{n=0}^{\infty}\left|a_{n}([x, p])\right|<\infty, \sum_{n=0}^{\infty} \mid b_{n}([x, p])<\infty
$$

and

$$
\begin{aligned}
& T_{t} \widehat{f^{\prime} \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}])=\sum_{n=0}^{\infty} a_{n}([\boldsymbol{x}, \boldsymbol{p}]), \\
& \widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}])=\sum_{n=0}^{\infty} b_{n}([\boldsymbol{x}, \boldsymbol{p}]),}
\end{aligned}
$$

we have from (2.11)

$$
T_{t} \widehat{f \cdot \lambda}=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}, \quad f \in \boldsymbol{C}(E), 0 \leqq \lambda<1,
$$

if both sides of the above equation are finite. By the same way, we may consider that if U_{t} satisfies (2.9) and both sides of the following equation are finite then we have

[^5]\[

$$
\begin{aligned}
& U_{t} \widetilde{f \cdot \lambda}=\widetilde{\left.\left(U_{t} \widetilde{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}, \\
& f \in \boldsymbol{C}(E) .
\end{aligned}
$$
\]

Similarly, we can see that

$$
\begin{equation*}
T_{t} \widehat{f \cdot \lambda}=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda}, \tag{2.12}
\end{equation*}
$$

$$
f \in \boldsymbol{C}(E), \quad 0 \leqq \lambda,
$$

and

$$
\begin{equation*}
U_{t} \widetilde{f \cdot \lambda}=\widetilde{\left(\left.\widetilde{\left.U_{t} \cdot \lambda \cdot \lambda\right)}\right|_{E} \cdot \lambda\right.}, \quad f \in \boldsymbol{C}(E), 0 \leqq \lambda, \tag{2.13}
\end{equation*}
$$

if each member of (2.12) and (2.13) is finite.
§ 3. Branching Markov process with age. In this section, we restrict our attention to a branching Markov process with age $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right]\right.$, $\left.\zeta, \mathscr{B}_{t}, P_{[x, p]} ;[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}\right\}$ satisfying the following condition (Condition 1), because it is sufficient to consider such a process for the probabilistic interpretation of equations of type (1.1).

Let $\left\{q_{n}(x) ; n=0,2,3, \cdots\right\}$ be a given system of bounded continuous and non-negative functions on E, let $k(x)=\sum_{n \neq 1} q_{n}(x)$ also be a non-negative bounded continuous function on E, and set

$$
\begin{gather*}
\pi([x, p] ;[B, \boldsymbol{q}])=\sum_{n \neq 1} \frac{q_{n}(x)}{k(x)} \delta_{n}([\boldsymbol{x}, \boldsymbol{p}],[B, \boldsymbol{q}]), \tag{3.1}\\
{[x, p] \in S,[B, \boldsymbol{q}] \in \mathscr{B}(\boldsymbol{S}),}
\end{gather*}
$$

where δ_{n} is defined by
$\delta_{n}([x, p],[B, \boldsymbol{q}])= \begin{cases}1, & \text { if } \boldsymbol{x}=[x, x, \cdots, x] \in B \cap E^{n},|\boldsymbol{q}|=p, \quad n \neq 1 \\ 0, & \text { otherwise } .\end{cases}$
Now we shall state the following
Condition 1. (i)

$$
\begin{gather*}
P_{[x, p]}\left(X_{t} \in A, N_{t}=p+q, t<\tau\right)=P_{[x, 0]}\left(X_{t} \in A, N_{t}=q, t<\tau\right), \tag{3.2}\\
{[x, p] \in S, q \in N, A \in \mathscr{B}(E) .}
\end{gather*}
$$

(ii) There exists a conservative Feller process ${ }^{11)} X^{\prime}=\left\{X_{t}^{\prime}, \mathscr{B}_{t}^{\prime}, P_{x} ; x \in E\right\}$ on E such that

[^6]$$
P_{[x, 0]}\left(X_{\tau-} \in A, \quad \tau \in d t, \sigma_{n} \leqq t<\sigma_{n+1}\right)
$$
(3. 3)
$$
=E_{x}\left[e^{-2 \int_{o}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{n}}{n!} k\left(X_{t}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right]
$$
and
\[

$$
\begin{gather*}
P_{[x, 0]}\left(X_{\sigma-} \in A, \quad \sigma \in d t\right)=E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} k\left(X_{t}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right], \tag{3.4}\\
{[x, 0] \in S, x \in E, A \in \mathscr{B}(E),}
\end{gather*}
$$
\]

where E_{x} denotes the integral by P_{x} and I_{A} denotes the indicator function of A.
(iii) For any $\alpha>0$,

$$
E_{[x, p]}\left[e^{-\alpha \tau} ;\left[X_{\tau}, N_{\tau}\right] \in[B, \boldsymbol{q}]\right]
$$

$$
\begin{array}{r}
=E_{[x, p]}\left[e^{-\alpha \tau} \pi\left(\left[X_{\tau-}, N_{\tau-}\right] ;[B, \boldsymbol{q}]\right)\right], \tag{3.5}\\
\quad[x, p] \in S,[B, \boldsymbol{q}] \in \mathscr{B}(\hat{S}),
\end{array}
$$

and

$$
\begin{align*}
& E_{[x, 0]}\left[e^{-\alpha \sigma} ;\left[X_{\sigma}, N_{\sigma}\right] \in[A, q]\right] \\
= & E_{[x, 0]}\left[e^{-\alpha \sigma} \delta_{\left[X_{\sigma}-N_{\sigma-}+1\right]}([A, q])\right], \tag{3.6}\\
& {[x, 0] \in S, A \in \mathscr{B}(E), q \in N, }
\end{align*}
$$

where $E_{[x, p]}$ denotes the integral by $P_{[x, p]}, \pi$ is given in (3.1) and

$$
\delta_{[x, p]}([A, q])= \begin{cases}1, & \text { if } x \in A, \quad p=q \\ 0, & \text { otherwise } .\end{cases}
$$

For the process X^{\prime} considered in (ii), we give the following
Definition 3. 1. The process X^{\prime} is called the basic Markov process of Y.
In the following, we consider the process $Y_{t}^{0}=\left[X_{t}^{0}, N_{t}^{0}\right]$ defined in the following way:

$$
Y_{t}^{0}(w)=\left\{\begin{array}{cl}
Y_{t}(w), & \text { if } t<\tau(w) \\
\Delta, & \text { if } t \geqq \tau(w) .
\end{array}\right.
$$

The probability measure for Y_{t}^{0} is denoted by $P_{[x, p]}^{0}$ and the integral by
$P_{[x, p]}^{0}$ is denoted by $E_{[x, p]}^{0}$. The semi-group on $\boldsymbol{B}(\hat{\boldsymbol{S}})$ induced by Y_{t}^{0} is denoted by T_{t}^{0}. Accordingly, we have for any $g \in \boldsymbol{B}(\hat{\boldsymbol{S}})$ with $g(\Delta)=0$

$$
\begin{gathered}
T_{t}^{0} g([\boldsymbol{x}, \boldsymbol{p}])=E_{[\boldsymbol{x}, \boldsymbol{p}]}^{0}\left[g\left(Y_{t}^{0}\right)\right]=E_{[x, p]}\left[g\left(Y_{t}\right) ; t<\tau\right] \\
{[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S} .}
\end{gathered}
$$

Definition 3.2. When we restrict the starting points of Y_{t}^{0} on S, Y_{t}^{0} is called the non-branching part of Y.

Now we shall return to the discussion of Condition 1. (i) of the condition states that if we consider the process $\left[X_{t}^{0}, N_{t}^{0}-p\right]$ for the nonbranching part $Y_{t}^{0}=\left[X_{t}^{0}, N_{t}^{0}\right]$ started from $[x, p] \in S$, then $\left[X_{t}^{0}, N_{t}^{0}-p\right]$ is stochastically equivalent to the one started from $[x, 0] \in S$. (ii) of the condition states the relation between the first branching time τ and the nth jumping time σ_{n} of N_{t}. This condition holds if we consider a process such that (a) if we set, for $Y_{t}=\left[X_{t}, N_{t}\right]$ starting from $[x, 0] \in S$,

$$
X_{t}^{0}=\left\{\begin{aligned}
X_{t}, & \text { if } t<\sigma(w) \wedge \tau(w)^{12)} \\
\Delta, & \text { if } t \geqq \sigma(w) \wedge \tau(w),
\end{aligned}\right.
$$

then X_{t}^{0} is stochastically equivalent to the $\exp \left(-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)$ sub-process of X^{\prime} as a process on E, (b) each path of Y_{t} jumps from $\left[X_{\sigma(w) \wedge \tau(w)-}\right.$, 0] to either one of $\left[X_{\sigma(w) \wedge \tau(w)-}, 1\right]$ or some point in $\widehat{S}-S$ at the time $\sigma \wedge \tau$ with probability $1 / 2$. On the other hand (iii) states the branching law at the first branching time τ and the jumping law at the first jumping time σ of N_{t}. (We shall show in $\S 8$ that there exists a branching Markov process with age on \boldsymbol{S} which satisfies Condition 1.) Moreover, if we combine (iii) with the stochastic equivalence of $\left[X_{t}^{0}, N_{t}^{0}-p\right]$ where $N_{0}^{0}=p$ and the nonbranching part where $N_{0}^{0}=0$, then the strong Markov property of Y yields that for any $n \geqq 1$

$$
P_{[x, p]}\left(N_{\sigma_{n}} \neq N_{\sigma_{n}}+1, \quad \sigma_{n}<\tau\right)=0
$$

or for any $n \geqq 1$ and $C \in \mathscr{B}_{o_{n}}$,

$$
\begin{align*}
& P_{[x, p]}\left(C, N_{\sigma_{n}}=N_{\sigma_{n-1}}+1, \sigma_{n}<\tau\right)=P_{[x, p]}\left(C, \sigma_{n}<\tau\right), \quad[x, p] \in S, \tag{3.7}\\
& E_{[x, p]}\left[e^{-\alpha \sigma} ;\left[X_{\sigma}, N_{\sigma}\right] \in[A, q]\right] \\
= & E_{[x, p]}\left[e^{-\alpha \sigma} \delta_{\left[X_{\sigma-}, N_{\sigma-}+1\right]}([A, q])\right], \quad \alpha>0,[x, p] \in S, \quad A \in \mathscr{B}(E), \tag{3.8}
\end{align*}
$$

12) $\sigma(w) \wedge \tau(w)$ denotes the minimum of $\sigma(w)$ and $\tau(w)$.
and
(3. 9)

$$
\begin{gathered}
P_{[x, p]}\left(\left[X_{\tau}, N_{\tau}\right] \in[B, \boldsymbol{p}+\boldsymbol{q}]\right)=P_{[x, 0]}\left(\left[X_{\tau}, N_{\tau}\right] \in[B, \boldsymbol{q}]\right), \\
{[x, p] \in S, B \in \mathscr{B}\left(\bigcup_{n=0}^{\infty} E^{n}\right),}
\end{gathered}
$$

where $\boldsymbol{p}+\boldsymbol{q}$ denotes $\left[p+q_{1}, q_{2}, \cdots, q_{n}\right]$ for $\boldsymbol{q}=\left[q_{1}, q_{2}, \cdots, q_{n}\right]$.
We have also from (ii) and the stochastic equivalence of $\left[X_{t}^{0}, N_{t}^{0}-N_{0}^{0}\right]$ stated above

$$
P_{[x, p]}\left(X_{\tau-} \in A, \tau \in d t, \sigma_{n} \leqq t<\sigma_{n+1}\right)
$$

(3. 10)

$$
=E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{n}}{n!} k\left(X_{s}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right]
$$

and

$$
\begin{gather*}
P_{[x, p]}\left(X_{\sigma_{n+1}-} \in A, \sigma_{n+1} \in d t\right) \\
=E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{n}}{n!} k\left(X_{t}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right], \tag{3.11}\\
n \geqq 0, \quad[x, p] \in S, A \in \mathscr{B}(E) .
\end{gather*}
$$

Now we shall consider a family of measures $K([x, 0] ; \cdot, \cdot)$ on $\mathscr{B}([0, \infty) \times S)$ defined as follows: let Y_{t}^{0} be the non-branching part of Y_{t} and set

$$
\begin{gather*}
K([x, 0] ; d t,[A, p])=P_{[x, 0]}^{0}\left(\tau \in d t, Y_{\tau-}^{0} \in[A, p]\right), \tag{3.12}\\
{[x, 0] \in S, A \in \mathscr{B}(E), p \in N .}
\end{gather*}
$$

Evidently $K([x, 0] ; \cdot, \cdot)$ is a measure on $\mathscr{B}([0, \infty) \times S)$. Moreover, by (3.7) and (3.10), $K([x, 0] ; \cdot, \cdot)$ can be expressed in the following form:

$$
\begin{array}{r}
K([x, 0] ; d t,[A, p])=E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{p}}{p!} k\left(X_{t}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right], \tag{3.13}\\
p \in N, A \in \mathscr{B}(E) .
\end{array}
$$

Further let T_{t}^{0} be the semi-group on $\boldsymbol{B}(S)$ induced by Y_{t}^{0} and F be a function defined by

$$
\begin{equation*}
F(x ; \xi)=\sum_{n \neq 1} \frac{q_{n}(x)}{k(x)} \xi^{n}, \quad x \in E, \quad \xi \in R^{1}, \tag{3.14}
\end{equation*}
$$

where $q_{n}(x)$ and $k(x)$ are functions considered in Condition 1 (or in (3.1)).

For a given system ($\left.T_{t}^{0}, K, F\right)$, consider the following equation:

$$
\begin{gather*}
u(t, x)=T_{t}^{0} \widehat{f \cdot \lambda}([x, 0])+\int_{0}^{t} \int_{S} K([x, 0] ; d s,[d y, p]) \lambda^{p} F(y ; u(t-s, y)), \tag{3.15}\\
f \in \boldsymbol{C}(E), 0 \leqq \lambda, 0 \leqq t \leqq T, x \in E,
\end{gather*}
$$

where T is a positive constant.
Then we have
Lemma 3.1. Let T_{t} be the semi-group on $\boldsymbol{B}(\hat{\boldsymbol{S}})$ induced by a branching Markov process with age Y_{t} on $\hat{\boldsymbol{S}}$ satisfying Condition 1 and let T_{t}^{0} be the semigroup on $\boldsymbol{B}(\boldsymbol{S})$ induced by the non-branching part Y_{t}^{0} of Y_{t}. Let also f be a bounded continuous function on E. If $u(t, x)=\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E}(x)$ is finite for any $x \in E$ and $0 \leqq t \leqq T$, then $u(t, x)$ satisfies (3. 15).

Remark 1. With the exception of $\S 6$, " $\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E}(x)$ is finite" means in this paper that

$$
E_{[x, 0]}\left[|\widehat{f \cdot \lambda}|\left(Y_{t}\right)\right]<\infty
$$

(cf. Foot-note 10)). Let us set for any Borel measurable function g on \boldsymbol{S}

$$
g_{n}([\boldsymbol{x}, \boldsymbol{p}])=\left\{\begin{array}{cl}
g([\boldsymbol{x}, \boldsymbol{p}]), & \text { if }|g([\boldsymbol{x}, \boldsymbol{p}])| \leqq n, \\
0, & \text { otherwise } .
\end{array}\right.
$$

If it holds that

$$
\begin{equation*}
E_{[x, p]}\left(\left|g\left(Y_{t}\right)\right|\right)<\infty, \tag{3.16}
\end{equation*}
$$

then, by the strong Markov property of Y_{t}, we have for any Markov time σ

$$
\begin{aligned}
& E_{[x, p]}\left[\left|g\left(Y_{t}\right)\right| ; \sigma<t\right] \\
= & \lim _{n \rightarrow \infty} E_{[x, p]}\left[\left|g_{n}\left(Y_{t}\right)\right| ; \sigma<t\right] \\
= & \lim _{n \rightarrow \infty} E_{[x, p]}\left[T_{t-\sigma}\left|g_{n}\right|\left(Y_{\sigma}\right) ; \sigma<t\right]^{13)} \\
= & E_{[x, p]}\left[T_{t-\sigma}|g|\left(Y_{\sigma}\right) ; \sigma<t\right],
\end{aligned}
$$

Hence, if (3.16) holds, then we have

$$
E_{[x, p]}\left[\left|g\left(Y_{t}\right)\right| ; \sigma<t\right]<\infty
$$

13) $T_{t-\sigma} g\left(Y_{\sigma}\right)$ or $E_{Y_{\sigma}}\left[g\left(Y_{t-\sigma}\right)\right]$ denote $E_{Y_{\sigma}}\left[g\left(Y_{t-s}\right)\right]$ at $s=\sigma$.
and

$$
\begin{equation*}
E_{[x, p]}\left[g\left(Y_{t}\right) ; \sigma<t\right]=E_{[x, p]}\left[E_{\left[X_{\sigma}, N_{\sigma}\right]}\left[g\left(Y_{t-\sigma}\right)\right] ; \sigma<t\right] \tag{3.17}
\end{equation*}
$$

Proof of Lemma 3.1. By the strong Markov property of Y_{t} and (3.17), it holds that

$$
\begin{gather*}
u(t, x)=E_{[x, 0]}\left[\widehat{f \cdot \lambda}\left(Y_{t}\right) ; t<\tau\right]+E_{[x, 0]}\left[\widehat{f \cdot \lambda}\left(Y_{t}\right) ; \tau \leqq t\right] \tag{3.18}\\
\quad=T_{t}^{0} \widehat{f \cdot \lambda}([x, 0])+E_{[x, 0]}\left[E_{\left[X_{\tau}, N_{\tau}\right]}\left[\widehat{f \cdot \lambda}\left(Y_{t-\tau}\right)\right] ; \tau \leqq t\right] .
\end{gather*}
$$

If we apply the branching property (2.12) to the second term of the right hand side of (3.18), then we can see

$$
\begin{aligned}
E_{\left[X_{\tau}, N_{\tau}\right]}\left[\widehat{f \cdot \lambda}\left(Y_{t-\tau}\right)\right] & =T_{t-\tau} \widehat{f \cdot \lambda}\left(\left[X_{\tau}, N_{\tau}\right]\right) \\
& =\left.\left(T_{t-\tau} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda\left(\left[X_{\tau}, N_{\tau}\right]\right) \\
& \left.=\lambda^{\left|N_{\tau}\right| \hat{u}(t-\tau}, \cdot\right)\left(X_{\tau}\right)^{14)}
\end{aligned}
$$

Combining (3.1), (3.5), (3.12) with the above equation, we have

$$
\begin{align*}
& \left.E_{[x, 0]}\left[E_{\left[X_{\tau}, N_{\tau}\right]} \widehat{f \cdot \lambda}\left(Y_{t-\tau}\right)\right] ; \tau \leqq t\right] \\
= & \int_{0}^{t} \int_{\hat{S}} P_{[x, 0]}\left(\tau \in d s, X_{\tau} \in d \boldsymbol{y}, N_{\tau}=\boldsymbol{p}\right) \lambda^{|\boldsymbol{p}|} \hat{u}(t-s, \cdot)(\boldsymbol{y}) \\
= & \int_{0}^{t} \int_{S} K([x, 0] ; d s,[d y, p]) \lambda^{p} \sum_{n \neq 1} \frac{q_{n}(y)}{k(x)} u(t-s, y)^{n} \tag{3.19}\\
= & \int_{0}^{t} \int_{S} K([x, 0] ; d s,[d y, p]) \lambda^{p} F(y ; u(t-s, y)) .
\end{align*}
$$

Now (3.18) and (3.19) prove the lemma.
Q.E.D.

Next, we shall prove
Lemma 3. 2. Let T_{t}^{J} be the semi-group on $\boldsymbol{B}(S)$ induced by the non-branching part Y_{t}^{0} of a branching Markov process with age Y_{t} satisfying Condition 1 and let H_{t} be the semi-group on $\boldsymbol{B}(E)$ induced by the basic Markov process X_{ι}^{\prime} of Y_{t}. Then we have

$$
\begin{equation*}
T_{t} \widehat{f \cdot 2}([x, 0])=H_{t} f(x), \quad f \in C(E), x \in E \tag{3.20}
\end{equation*}
$$

Proof. Using (3.7) and (3.11), we can see that

[^7]\[

$$
\begin{aligned}
P_{[x, 0]}^{0}\left(X_{t}^{0} \in A, N_{t}^{0}=p\right) & =P_{[x, 0]}\left(X_{t} \in A, \sigma_{p} \leqq t<\sigma_{p+1} \Lambda \tau\right) \\
& =E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{p}}{p!} I_{A}\left(X_{t}^{\prime}\right)\right]
\end{aligned}
$$
\]

for any $A \in \mathscr{B}(E)$. Consequently, we have

$$
\begin{align*}
T_{t}^{0} \widehat{f \cdot \lambda}([x, 0]) & =\sum_{p=0}^{\infty} E_{[x, 0]}\left[\lambda^{p} f\left(X_{t}\right) ; N_{t}^{0}=p\right] \\
& =\sum_{p=0}^{\infty} E_{x x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\lambda \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{p}}{p!} f\left(X_{t}^{\prime}\right)\right] \tag{3.21}\\
& =E_{x}\left[e^{-(2-\lambda) \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} f\left(X_{t}^{\prime}\right)\right], \quad f \in \boldsymbol{C}(E) .
\end{align*}
$$

If we put $\lambda=2$, then (3.20) follows from (3.21) immediately.
Q.E.D.

Now let H_{t} be the semi-group on $\boldsymbol{B}(E)$ and F be the function given in (3.14). For a given system ($\left.H_{t}, k, F\right)$, consider the following equation:

$$
\begin{array}{r}
u(t, x)=H_{t} f(x)+\int_{0}^{t} H_{s}(k(\cdot) F(\cdot ; u(t-s, \cdot)))(x) d s, \tag{3.22}\\
f \in \boldsymbol{C}(E), x \in E, 0 \leqq t \leqq T,
\end{array}
$$

where T is a positive constant.
Then we have
Theorem 3.1. Let T_{t} be the semi-group on $\boldsymbol{B}(\hat{\mathbf{S}})$ induced by a branching Markov process with age Y_{t} on \boldsymbol{S} satisfying Condition 1 and let H_{t} be the semi-group on $\boldsymbol{B}(E)$ induced by the basic Markov process X_{t}^{\prime} of Y_{t}. Further for, $f \in \boldsymbol{C}(E)$, set

$$
u(t, x)=\left.\left(T_{t} \widehat{f \cdot 2}\right)\right|_{E}(x), \quad x \in E
$$

If $u(t, x)$ is finite for any $x \in E$ and $0 \leqq t \leqq T$, then it satisfies (3.22).
Proof. It follows from (3.13) that

$$
\begin{aligned}
& \int_{0}^{t} \int_{S} K([x, 0] ; d s,[d y, p]) 2^{p} F(y ; u(t-s, y)) \\
= & \int_{0}^{t} \sum_{p=0}^{\infty} 2^{p} E_{x}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{\prime}\right) d v} \frac{\left(\int_{0}^{s} k\left(X_{v}^{\prime}\right) d v\right)^{p}}{p!} k\left(X_{s}^{\prime}\right) F\left(X_{s}^{\prime} ; u\left(t-s, X_{s}^{\prime}\right)\right)\right] d s \\
= & \int_{0}^{t} E_{x}\left[k\left(X_{s}^{\prime}\right) F\left(X_{s}^{\prime} ; u\left(t-s, X_{s}^{\prime}\right)\right)\right] d s \\
= & \int_{0}^{t} H_{s}(k(\cdot) F(\cdot ; u(t-s, \cdot)))(x) d s .
\end{aligned}
$$

Then the theorem follows from Lemma 3.1, Lemma 3.2 and the above equation.
Q.E.D.

Remark 2. For any $f \in C^{*}(E)$, there exists $\varepsilon>0$ depending on $\|f\|$ such that $\left.\left(\widehat{T_{t}} \widehat{f \cdot 2}\right)\right|_{E}(x)$ is finite for $t \in[0, \varepsilon$) (cf. Nagasawa [13], Proposition 5. 16 and also, for special cases, see Lemma 6.1).
§4. Signed branching Markov process with age. We have considered the case where $q_{n}(x) \geqq 0$ and $q_{1}(x)=0$ in the last section. In this section, we shall remove such restrictions.

Let $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$ be a system of pairs of non-negative bounded continuous functions on E such that

$$
q_{n}^{+}(x) q_{n}^{-}(x)=0, \quad n=0,1,2, \cdots
$$

Further let $k(x)$ defined by

$$
k(x)=\sum_{n=0}^{\infty}\left\{q_{n}^{+}(x)+q_{n}^{-}(x)\right\}
$$

be a non-negative bounded continuous function on E. Then we shall define the system $\{\pi(\cdot, \cdot)\}$ by

$$
\begin{align*}
& \pi([x, p, 0],[B, \boldsymbol{q}, 1])=\pi([x, p, 1],[B, \boldsymbol{q}, 0]) \\
= & \pi([x, p, 2],[B, \boldsymbol{q}, 3])=\pi([x, p, 3],[B, \boldsymbol{q}, 2]) \\
= & \sum_{n=0}^{\infty} \frac{q_{n}^{+}(x)}{k(x)} \delta_{n}([x, p],[B, \boldsymbol{q}]), \\
& \pi([x, p, 0],[B, \boldsymbol{q}, 3])=\pi([x, p, 3],[B, \boldsymbol{q}, 0]) \tag{4.1}\\
= & \pi([x, p, 1],[B, \boldsymbol{q}, 2])=\pi([x, p, 2],[B, \boldsymbol{q}, 1]) \\
= & \sum_{n=0}^{\infty} \frac{q_{n}^{-}(x)}{k(x)} \delta_{n}([x, p],[B, \boldsymbol{q}]), \\
& \pi\left([x, p, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=0 \quad \text { for the other pairs of }\left(j, j^{\prime}\right), \\
& {[x, p] \in S, j, j^{\prime} \in J,[B, \boldsymbol{q}] \in \mathscr{B}(\mathbf{S}), }
\end{align*}
$$

where $\boldsymbol{\delta}_{n}$ is defined by

$$
\delta_{n}([x, p],[B, \boldsymbol{q}])= \begin{cases}1, & \text { if } \boldsymbol{x}=[x, x, \cdots, x] \in B \cap E^{n},|\boldsymbol{q}|=p, n \geqq 0 \\ 0, & \text { otherwise }\end{cases}
$$

For a given system $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$ and $k(x)=\sum_{n=0}^{\infty}\left(\dot{q}_{n}^{+}(x)+q_{n}^{-}(x)\right)$, let us consider a signed branching Markov process with age $Z=\left\{Z_{t}=\left[X_{t}\right.\right.$, $\left.\left.N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}\right\}$ on $\tilde{\boldsymbol{S}}$ satisfying the following condition.

Condition 2. (i) For any fixed $j \in J$, the process $\left\{Y_{i}^{(j)}=\left[X_{t}, N_{t}\right], \zeta, \mathscr{B}\right.$, $\left.P_{[x, p, j]} ;\{x, p] \in S\right\}$ is a strong Markov process on \hat{S} and it satisfies (i) and (ii) of Condition 1 for given $k(x)$, but where σ and τ for $Y_{t}^{(f)}$ are replaced by σ and η for Z. Also $Y_{t}^{(j)}, j \in J$, are stochastically equivalent to each other.
(ii) It holds that for any $\alpha>0$

$$
\begin{align*}
& E_{[x, p, j]}\left[e^{-\alpha \eta} ;\left[X_{\eta}, N_{\eta}, J_{\eta}\right] \in\left[B, \boldsymbol{q}, j^{\prime}\right]\right] \tag{4.2}\\
= & E_{[x, p, j]}\left[e^{-\alpha \eta} \pi\left(\left[X_{\eta-}, N_{\eta}, J_{\eta-}\right],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)\right],
\end{align*}
$$

and

$$
\begin{align*}
& E_{[x, 0, j]}\left[e^{-\alpha \sigma} ;\left[X_{\sigma}, N_{\sigma}, J_{\sigma}\right] \in[A, q, j]\right] \\
= & E_{[x, 0, j]}\left[e^{-\alpha \sigma} \delta_{\left[X_{\sigma}-, N_{\sigma}-+1\right]}[[A, q])\right], \tag{4.3}\\
& j, j^{\prime} \in J,[x, p] \in S,[B, \boldsymbol{q}] \in \mathscr{B}(\hat{S}), A_{i} \in \mathscr{B}(E),
\end{align*}
$$

where $E_{[x, p, j]}$ denotes the integral by $P_{[x, p, j]} \pi$ is given in (4.1) and $\delta_{[x, p]}(\cdot)$ denotes the δ-measure assigned to $[x, p]$.

The existence of a signed branching Markov process with age satisfying condition 2 will be shown in $\S 8$.
(i) of the condition states that two processes satisfying Condition 1 and 2 have the same character until their first branching, while (ii) gives the new branching law attached to the new space $\widetilde{\boldsymbol{S}}$.

Similarly as in the case of a branching Markov process with age, we shall give the following

Definition 4. 1. The process X^{\prime}. considered in (i) of Condition 2 (or (ii) of Condition 1) is called the basic Markov process of Z.

Let us set

$$
Z_{t}^{0}(w)=\left\{\begin{array}{cl}
Z_{t}(w), & \text { if } t<\eta(w) \\
\Delta, & \text { if } t \geqq \eta(w) .
\end{array}\right.
$$

Then the probability measure for Z_{t}^{0} is denoted by $P_{[x, p, j]}^{0}$ and the integral by $P_{[x, p, j]}^{0}$ is denoted by $E_{[x, p, j]}^{0}$. The semi-group induced by Z_{t}^{0} is denoted by U_{t}^{0}. . Then we have

$$
\begin{gather*}
U_{t}^{0} h([\boldsymbol{x}, \boldsymbol{p}, j])=E_{[x, p, j]}^{0}\left[h\left(Z_{t}\right)\right]=E_{[x, p, j]}\left[h\left(Z_{t}\right) ; t<\eta\right], \tag{4.4}\\
{[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}, h \in \boldsymbol{B}(\widetilde{\boldsymbol{S}}) .}
\end{gather*}
$$

Definition 4. 2. When we restrict the starting point of Z_{t}^{0} on $S \times J$, Z_{t}^{0} is called the non-branching part of Z.

Now we shall define K and F as follows:

$$
\begin{gather*}
K([x, p, j] ; d s,[A, q, j])=P_{[x, p, j]}\left(\eta \in d s, Z_{\eta-} \in[A, q, j]\right), \tag{4.5}\\
{[x, p] \in S, j \in J,}
\end{gather*}
$$

and

$$
\begin{equation*}
F(x ; \xi)=\sum_{n=0}^{\infty} \frac{\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\}}{k(x)} \xi^{n}, \quad x \in E, \quad \xi \in R^{1} \tag{4.6}
\end{equation*}
$$

Then $K([x, p, j] ; \cdot, \cdot)$ is a measure on $\mathscr{B}([0, \infty) \times(S \times J))$ and it follows from (i) of Condition 2 and (3.13) that

$$
\begin{array}{r}
K([x, 0, j] ; d s,[A, p, j])=E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s^{\prime}\right)^{p}}{p!} k\left(X_{t}^{\prime}\right) I_{A}\left(X_{t}^{\prime}\right) d t\right] \tag{4.7}\\
A \in \mathscr{B}(E),
\end{array}
$$

where E_{x} denotes the integral by the probability measure P_{x} of the basic Markov process X^{\prime}. Also, we can see that (3.7)-(3.11) hold if we replace τ by η. Then we have

Lemma 4.1. Let U_{t}^{0} be the semi-group on $\boldsymbol{B}(S \times J)$ induced by the nonbranching part Z_{t}^{0} of a signed branching Markov process with age Z_{i} satisfying Condition 2 and let H_{t} 'be the semi-group on $\boldsymbol{B}(E)$ induced by the basic Markov process X_{t}^{\prime} of Z_{t}. Then we have

$$
\begin{equation*}
U_{t}^{0} \widetilde{f \cdot 2}([x, 0,0])=H_{t} f(x) ; \quad \quad f \in C(E), x \in E \tag{4.8}
\end{equation*}
$$

Now, for a given syṣtem $\left(U_{i}^{0}, K, F\right)$, consider the following equation:

$$
\begin{align*}
& u(t, x)=U_{t}^{0} \widetilde{f \cdot} \cdot \lambda([x, 0,0])+\int_{0}^{t} \int_{y} K([x, 0,0] ; d s,[d y, p, 0]) \lambda^{p} F(y, u(t-s, y)), \tag{4.9}\\
& f \in \boldsymbol{C}(E), 0 \leqq \lambda, 0 \leqq t \leqq T, x \in E,
\end{align*}
$$

where T is a positive constant.
Then we have
Lemma 4.2. Let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\mathbf{S}})$ induced by a signed branching Markov process with age Z_{t} on $\tilde{\boldsymbol{S}}$ satisfying Condition 2 and let U_{t}^{0} be the semi-group on $\boldsymbol{B}(S \times J)$ induced by the non-branching part Z_{t}^{0} of Z_{t}. Let also f be a bounded continuous function on E. If $u(t, x)=\left(\left.\widetilde{\left.U_{t} f \cdot \lambda\right)}\right|_{E}(x)\right.$ is finite ${ }^{15}$ for any $x \in E$ and $0 \leqq t \leqq T$, then $u(t, x)$ satisfies (4.9).

Proof. Let us assume that $u(t, x)$ is finite for $x \in E$ and $0 \leqq t \leqq T$. By the strong Markov property of Z_{t}, it holds that

$$
\begin{equation*}
\left.\left(U_{t} \widetilde{f \cdot \lambda}\right)\right|_{E}(x)=E_{[x, 0,0]}\left[\widetilde{f \cdot \lambda}\left(Z_{t}\right) ; t<\eta\right]+E_{[x, 0,0]}\left[U_{t-\eta} \widetilde{f \cdot \lambda}\left(Z_{\eta}\right) ; \eta \leqq t\right] . \tag{4.10}
\end{equation*}
$$

On the other hand, we have from the signed branching property (2.13) of Z_{t}

$$
U_{t} \widetilde{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])=(-1)^{\left[\frac{j}{2}\right]} \lambda_{\lambda^{\mid \boldsymbol{p}}} \hat{u}(t, \cdot)([\boldsymbol{x}]),
$$

and hence, by (4.2), (4.5) and (4.6), we have

$$
\begin{aligned}
& E_{[x, 0,0]}\left[U_{t-n} \widetilde{f \cdot \lambda\left(Z_{\eta}\right)} ; \eta \leqq t\right] \\
= & \int_{0}^{t} \int_{\tilde{s}} P_{[x, 0,0]}\left(\eta \in d s, Z_{\eta} \in[d \boldsymbol{y}, \boldsymbol{p}, j]\right) U_{t-s} \widetilde{f \cdot \lambda([\boldsymbol{y}, \boldsymbol{p}, j])^{16)}} \\
= & \int_{0}^{t} \int_{S} K([x, 0,0] ; d s,[d y, p, 0]) \lambda^{p}\left\{\sum_{n=0}^{\infty} \frac{q_{n}^{+}(y)}{k(y)} u(t-s, y)^{n}-\sum_{n=0}^{\infty} \frac{q_{\eta}^{-}(y)}{k(y)} u(t-s, y)^{n}\right\} \\
= & \int_{0}^{t} \int_{S} K([x, 0,0] ; d s,[d y, p, 0]) \lambda^{p} F(y ; u(t-s, y)) .
\end{aligned}
$$

Thus the lemma is obtained from (4.10) and the above equation. Q.E.D.
Now let H_{t} be the semi-group on $\boldsymbol{B}(E)$ and F be the function given in (4.6). For a given system ($\left.H_{t}, k, F\right)$, we consider the following equation

$$
\begin{array}{r}
u(t, x)=H_{t} f(x)+\int_{0}^{t} H_{s}(k(\cdot) F(\cdot ; u(t-s, \cdot)))(x) d s, \tag{4.11}\\
f \in \boldsymbol{C}(E), x \in E, 0 \leqq t \leqq T,
\end{array}
$$

15) "($\left.\left(I_{t} \widetilde{f} \cdot \lambda\right)\right|_{E}(x)$ is finite" means that $E_{[x, 0,0]}\left[|\widetilde{f} \cdot \lambda|\left(Z_{t}\right)\right]<\infty$.
${ }^{16)}$ cf. Remark 1 in $\S 3$.
where T is a positive constant. Then we have
Theorem 4. 1. Let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\boldsymbol{S}})$ induced by a signed branching Markov process with age Z_{t} on $\tilde{\boldsymbol{S}}$ satisfying Condition 2 and let H_{t} be the semi-group on $\boldsymbol{B}(E)$ induced by the basic Markov process X_{t}^{\prime} of Z_{t}. Further, for $f \in \boldsymbol{C}(E)$, set

$$
u(t, x)=\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x), \quad x \in E
$$

If $u(t, x)$ is finite for any $x \in E$ and $0 \leqq t \leqq T$, then it satisfies (4.11).
Proof. By the same method as in the proof of Theorem 3.1, we have from (4.7)

$$
\begin{aligned}
& \int_{0}^{t} \int_{S} K([x, 0,0] ; d s,[d y, p, 0]) 2^{p} F(y ; u(t-s, y)) \\
= & \int_{0}^{t} \int_{S} H_{s}(k(\cdot) F(\cdot ; u(t-s, \cdot)))(x) d s .
\end{aligned}
$$

Then the theorem follows from Lemma 4.1 and Lemma 4.2. Q.E.D.
Now let $E=R^{d} \cup\{\infty\}$ be the space obtained by the one-point compactification of R^{d} and consider the standard Brownian motion X^{\prime} on R^{d}. Considering the point ∞ is the trap of X^{\prime}, the process X^{\prime} can be regarded as the process on E. Then we can consider a signed branching Markov process with age Z_{t} on $\tilde{\boldsymbol{S}}$ corresponding to the basic Markov process X^{\prime}. But when we take a starting point of Z_{t} in R^{d} a branching law at ∞ is not needed because almost all sample paths do not reach ∞. Hence it is sufficient in the present case that $q_{n}^{+}(x), q_{n}^{-}(x)$ and $k(x)$ are bounded and continuous in R^{d}, and we may consider $q_{n}^{+}(\infty)=q_{n}^{-}(\infty)=k(\infty)=0$.

Remark 1. For the case stated above, Theorem 4.1 holds for $f \in \boldsymbol{C}\left(R^{d}\right)$ with $f(\infty)=0$. The proof is given as follows: let $\rho_{n}(x), n \geqq 1$, be bounded continuous functions such that

$$
\begin{cases}\rho_{n}(x)=1 \quad, & \text { if }\|x\|<n \\ 0 \leqq \rho_{n}(x) \leqq 1, & \text { if } n \leqq\|x\| \leqq n+1 \\ \rho_{n}(x)=0 \quad, & \text { if }\|x\|>n+1 \text { or } x=\infty\end{cases}
$$

Then $\rho_{n} f \in \boldsymbol{C}(E)$. On the other hand, if $U_{t} \widetilde{f \cdot \lambda}$ is finite ${ }^{17)}$ we have by Lebesgue's convergence theorem

[^8]$$
U_{t} \overparen{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])=\lim _{\boldsymbol{n} \rightarrow \infty} U_{t} \overparen{\rho_{n} f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j]), \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}
$$

Hence it follows from (2.13)

$$
\widetilde{U_{t}} \widetilde{\sim}=\left(U_{t} \widetilde{\widetilde{f \cdot \lambda})\left.\right|_{E} \cdot \lambda}\right.
$$

provided each side is finite, because it holds for $\rho_{n} f$. Then we can see, as in the proof of Lemma 4.2, that Lemma 4. 2 holds for $f \in \boldsymbol{C}\left(R^{d}\right)$ with $f(\infty)=0$. Evidently Lemma 4. 1 holds for our f and accordingly we can see that Theorem 4.1 holds for our f.

Corollary 4.1. Let Z_{t} be a signed branching Markov process with age satisfying Condition 2 whose basic Markov process is a standard Brownian motion on R^{d} and let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\boldsymbol{S}})$ induced by Z_{t}. Let us assume that $k(x) F(x ; \xi)$ satisfies Lipschitz's condition:

$$
\begin{array}{r}
\left|k\left(x_{1}\right) F\left(x_{1} ; \xi_{1}\right)-k\left(x_{2}\right) F\left(x_{2} ; \xi_{2}\right)\right| \leqq K\left\{\left\|x_{1}-x_{2}\right\|+\left|\xi_{1}-\xi_{2}\right|\right\} \\
x_{1}, x_{2} \in R^{d}, \xi_{1}, \xi_{2} \in R^{1}
\end{array}
$$

where K is a positive constant and $\left\|x_{1}-x_{2}\right\|$ denotes the Euclidian distance between x_{1} and x_{2}. If, for $f \in \boldsymbol{C}(E), u(t, x)=\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x)$ is bounded for any $x \in R^{d}$ and $0 \leqq t<T$, then $u(t, x)$ is the bounded solution of parabolic equation

$$
\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+k(x) F(x ; u(t, x)), \quad x \in R^{d}, 0<t<T
$$

with the initial condition $u(0+, x)=f(x)$.
Now we shall give a simple remark on a signed branching Markov process with age.

Remark 2. Let Z_{t} be a signed branching Markov process with age on $\tilde{\mathbf{S}}$ satisfying Condition 2 and let U_{t} be the semi-group induced by Z_{t}. If, for instance, we replace π in (4.2) by π_{1} defined by

$$
\begin{aligned}
& \pi_{1}([x, p, 0],[B, \boldsymbol{q}, 1])=\pi_{1}([x, p, 1],[B, \boldsymbol{q}, 0]) \\
= & \pi_{1}([x, p, 2],[B, \boldsymbol{q}, 3])=\pi_{1}([x, p, 3],[B, \boldsymbol{q}, 2]) \\
= & \sum_{n=0}^{\infty} \frac{q_{n}^{+}(x)}{k(x)} \delta_{n}([x, p],[B, \boldsymbol{q}])(=\pi([x, p, 0],[B, \boldsymbol{q}, 1])), \\
& \pi_{1}([x, p, 0],[B, \boldsymbol{q}, 2])=\pi_{1}([x, p, 2],[B, \boldsymbol{q}, 0])
\end{aligned}
$$

$$
\begin{aligned}
= & \pi_{1}([x, p, 1],[B, \boldsymbol{q}, 3])=\pi_{1}([x, p, 3],[B, \boldsymbol{q}, 1]) \\
= & \sum_{n=0}^{\infty} \frac{q_{n}^{-}(x)}{k(x)} \delta_{n}([x, p],[B, \boldsymbol{q}])(=\pi([x, p, 0],[B, \boldsymbol{q}, 3]), \\
& \pi_{1}\left([x, p, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=0 \quad \text { for the other pairs of }\left(j, j^{\prime}\right), \\
& \quad[x, p] \in S, j, j^{\prime} \in J,[B, \boldsymbol{q}] \in \mathscr{B}(\boldsymbol{S}),
\end{aligned}
$$

then we have a new process Z_{t}^{\prime} and the corresponding semi-group U_{t}^{\prime}. Evidently Z_{t}^{\prime} is not stochastically equivalent to Z_{t}, but it holds that $U_{t} \widetilde{f \cdot \lambda}=U_{t}^{\prime} \widetilde{f \cdot \lambda}$ for any $f \in \boldsymbol{C}(E)$ provided each side exist. Therefore $U_{t} \widetilde{f \cdot \lambda}=U_{t}^{\prime} \widetilde{f \cdot \lambda}$ does not imply the stochastic equivalence of the processes Z_{t} and Z_{t}^{\prime}.
§5. A sufficient condition. Let $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}\right.$, $\left.P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}\right\}$ be a strong Markov process on $\widetilde{\boldsymbol{S}}$ which is not assumed a priori to be a signed branching Markov process with age. In this section, we shall give a sufficient condition which makes the process Z_{t} on $\widetilde{\boldsymbol{S}}$ a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$.

Now let us define U_{t}^{0} and Ψ by

$$
\begin{equation*}
U_{t}^{0} h([\boldsymbol{x}, \boldsymbol{p}, j])=E_{[x, p, j]}\left[h\left(Z_{t}\right) ; t<\eta\right], \tag{5.1}
\end{equation*}
$$

$$
\begin{gather*}
\Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[B, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right)=P_{[x, p, j]}\left(\eta \in d s, Z_{\eta} \in\left[B, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right), \tag{5.2}\\
{[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}},\left[B, \boldsymbol{p}^{\prime}, j^{\prime}\right] \in \mathscr{B}(\widetilde{\boldsymbol{S}}),}
\end{gather*}
$$

where h is a Borel measurable function on $\tilde{\boldsymbol{S}}, \eta(w)=\inf \left\{t>0 ; J_{t}(w) \neq J_{0}(w)\right.$ or $\left.\sup _{s \leq t}\left|N_{s}(w)\right|=\infty\right\}$ and $E_{[\boldsymbol{x}, \mathbf{p}, j]}$ denotes the integral by $P_{[x, p, j]} . \Psi([\boldsymbol{x}, \boldsymbol{p}, j] ;$ $\cdot, \cdot)$ is a measure on $\mathscr{B}([0, \infty) \times \widetilde{\boldsymbol{S}})$. Then we consider the following

Condition 3. (i) Condition 2 holds.
(ii)

$$
\begin{equation*}
U_{t}^{0} \widetilde{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])=\left(U_{t}^{0} \widetilde{\left.{ }_{f} \cdot \lambda\right)\left.\right|_{E} \cdot \lambda([\boldsymbol{x}, p, j])}, \quad f \in \boldsymbol{C}^{*}(E),[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}} .\right. \tag{5.3}
\end{equation*}
$$

(iii) For $f \in \boldsymbol{B}^{*}([0, \infty) \times E)$, set

$$
\widetilde{f^{(t)} \cdot \lambda}=\overparen{f(t, \cdot) \cdot \lambda}
$$

where $f(t, \cdot)$ denotes the function on E for fixed $t \geqq 0$. Then it holds that for any $t \geqq 0, m \geqq n-1$

$$
\begin{align*}
& \int_{0}^{t} \int_{\left.S^{m \times\{ } \times j^{\prime}\right\}} \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) \overparen{f^{(s)} \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right)} \tag{5.4}\\
= & \sum_{i=1}^{\infty} \int_{0}^{t} \int_{S^{m-n+1 \times\left\{j^{\prime}\right\}}} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d s,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right) \overparen{f^{(s)} \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right)} \\
& \cdot \prod_{l \neq i} U_{s}^{0} \overparen{f^{(s)} \cdot \lambda\left(\left[x_{l}, p_{l}, 0\right]\right), \quad m \geqq n-1,}
\end{align*}
$$

where $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right]$.
(iv) Δ and $[\partial, p, j], p \in N$ and $j \in J$, are traps.
(v) Let

$$
\eta_{\infty}=\lim _{n \rightarrow \infty} \eta_{n}, \quad e_{\Delta}=\inf \left\{t>0 ; Z_{t}=\Delta\right\}
$$

where η_{n} is given in (2.7). Then it holds that

$$
P_{[x, p, j]}\left(\eta_{\infty}=e_{\Delta}, \eta_{\infty}<\xi\right)=P_{[x, p, j]}\left(\eta_{\infty}<\zeta\right), \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}
$$

(ii) requires the independence of the motions of n-particles starting from $\left[x_{1}, p_{1}, j\right],\left[x_{2}, p_{2}, j\right], \cdots,\left[x_{n}, p_{n}, j\right]$ and ending at the minimum of their first branching times $\inf \left\{t>0 ; J_{t}(w) \neq J_{0}(w)\right.$ or $\left.\sup _{s \leq t}\left|N_{s}(w)\right|=\infty\right\}$, while (5. 4) means that only one of them branches at the first branching time η and the others do not. ((ii) and (iii) of Condition 3 correspond to the property B III in [7].) The existence of a strong Markov process satisfying Condition 3 will be proved in $\S 8$.

Now our purpose is to prove the following
Theorem 5.1. If a strong Markov process $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}\right.$, $\left.P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}}\right\}$ on $\tilde{\mathbf{S}}$ satisfies Condition 3 , then Z is a signed branching Markov process with age.

First we shall prepare some lemmas. Let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\mathbf{S}})$ induced by Z_{t} and set

$$
\begin{equation*}
U_{t}^{(r)} h([\boldsymbol{x}, \boldsymbol{p}, j])=E_{[x, p, j]}\left[h\left(Z_{t}\right) ; \eta_{r} \leqq t<\eta_{r+1}\right], r \geqq 0,[\boldsymbol{x}, p, j] \in \tilde{\boldsymbol{S}} \tag{5.5}
\end{equation*}
$$

for a Borel measurable function h on $\widetilde{\boldsymbol{S}}$ provided that $E_{[x, p, j]}\left(h\left(Z_{t}\right)\right)$ exists. In the following lemmas, it is always assumed that Condition 3 holds, $f \in \boldsymbol{C}^{*}(E)$ and $0 \leqq \lambda<1$.

Lemma 5. 1. For any $r \geqq 0$, we have

Proof. (5.6) holds for $r=0$ and hence it suffices to prove (5.6) for $r+1$ under the assumption that (5.6) holds for r.

Now it follows from (5.4) and (ii) of Condition 2 that for any $[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}$ and $[B, q] \in \mathscr{B}(\boldsymbol{S})$

$$
\begin{align*}
& \Psi([\boldsymbol{x}, \boldsymbol{p}, 0] ; d t,[B, \boldsymbol{q}, 1])=\Psi([\boldsymbol{x}, \boldsymbol{p}, 1] ; d t,[B, \boldsymbol{q}, 0]) \\
= & \Psi([\boldsymbol{x}, \boldsymbol{p}, 2] ; d t,[B, \boldsymbol{q}, 3])=\Psi([\boldsymbol{x}, \boldsymbol{p}, 3] ; d t,[B, \boldsymbol{q}, 2]), \\
& \Psi(] \boldsymbol{x}, \boldsymbol{p}, 0] ; d t,[B, \boldsymbol{q}, 3])=\Psi([\boldsymbol{x}, \boldsymbol{p}, 3] ; d t,[B, \boldsymbol{q}, 0]) \\
= & \Psi([\boldsymbol{x}, \boldsymbol{p}, 1] ; d t,[B, \boldsymbol{q}, 2])=\Psi([\boldsymbol{x}, \boldsymbol{p}, 2] ; d t,[B, \boldsymbol{q}, 1]), \tag{5.7}\\
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=0, \quad \text { for other pairs of }\left(j, j^{\prime}\right), \\
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\Psi\left([\boldsymbol{x}, \mathbf{0}, j] ; d t,\left[B, \boldsymbol{q}-\boldsymbol{p}, j^{\prime}\right]\right), j, j^{\prime} \in J,
\end{align*}
$$

where $\boldsymbol{q}-\boldsymbol{p}$ denotes \boldsymbol{p}^{\prime} with $\left|\boldsymbol{p}^{\prime}\right|=|\boldsymbol{q}|-|\boldsymbol{p}|$. Then we can see from (5.7) and the strong Markov property of Z_{t} that

$$
\begin{aligned}
& U_{t}^{(r+1)} \widetilde{f \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j])} \\
= & \int_{0}^{t} \int_{\tilde{s}} \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t-s}^{(r)} \widetilde{f \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right)} \\
= & (-1)^{\left[\frac{j}{2}\right]} \int_{0}^{t} \int_{\tilde{s}} \Psi\left([\boldsymbol{x}, 0,0] ; d s,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t-s}^{(r)} \widetilde{f \cdot \lambda([\boldsymbol{y}, \boldsymbol{p}+\boldsymbol{q}, j]),}
\end{aligned}
$$

where $|\boldsymbol{p}+\boldsymbol{q}|=|\boldsymbol{p}|+|\boldsymbol{q}|$. By the assumption of induction, we have from the above equation

$$
\begin{aligned}
& U_{t}^{(r+1)} \widetilde{f \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j])} \\
= & \left.(-1)^{\left[\frac{j}{2}\right.}\right]_{\lambda^{|p|} \mid} \int_{0}^{t} \int_{\tilde{s}} \Psi\left([\boldsymbol{x}, 0,0] ; d s,\left[\boldsymbol{d} \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t-s}^{(r)} \widetilde{f \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right)} \\
= & \left.(-1)^{\left[\frac{j}{2}\right.}\right]_{\left.\lambda^{|p|} U_{t}^{(r+1)} \widetilde{f \cdot \lambda([\boldsymbol{x}, 0,0]}\right),}^{\sim}
\end{aligned}
$$

as was to be proved.
Q.E.D.

Lemma 5. 2. For any $r \geqq 0$ and $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$,

$$
\begin{align*}
& \sum_{r_{1}+r_{2}+\cdots+r_{n}=r} \int_{0}^{t} \sum_{i=1}^{n} \int_{\tilde{S}} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d s,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t-s}^{\left(r_{i}\right)} \widetilde{f \cdot \lambda\left(\left[\boldsymbol{u}, \boldsymbol{q}, j^{\prime}\right]\right)} \tag{5.8}\\
&= \prod_{l \neq i} U_{s}^{0} U_{t-s}^{\left(r_{2}\right)} \widetilde{f \cdot \lambda}\left(\left[x_{l}, p_{l}, 0\right]\right) \\
&{ }^{\left[\frac{j}{2}\right]}{ }_{r_{1}+r_{2}+\cdots+r_{n}=r+1} \sum_{\left.\prod_{i=1}^{n} U_{t}^{\left(r_{i}\right)}\right)}^{\sim \cdot \lambda\left(\left[x_{i}, p_{i}, 0\right]\right) .}
\end{align*}
$$

Proof. According to (i) of Condition 2 and Lemma 5. 1, it holds that

Hence, by (5.7) and Lemma 5.1, it suffices to prove (5.8) for the case $\boldsymbol{p}=\mathbf{0}$ and $j=0$.

Now let us put $g^{\left(r_{i}\right)}(s)=U_{s}^{0} U_{t}^{\left(r_{i}\right)} \widetilde{f} \widetilde{f} \cdot \lambda\left(\left[x_{i}, 0,0\right]\right)$. Then $g^{(0)}(s)$ is indépendent of s by the semi-group property of U_{t}^{0}. Further we can see from the strong Markov property of Z_{t} that for $r \geqq 1$

$$
U_{t-s}^{(r)} \widetilde{f \cdot \lambda}([x, p, j])=\int_{0}^{t-s} \int_{\tilde{s}} \Psi\left([x, p, j] ; d v, \quad\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t-s-v}^{(r-1)} \widetilde{f \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right),}
$$

and hence we have

$$
\left.\left.g^{\left(r_{i}\right)}(s)=\int_{s}^{t} \int_{\tilde{S}} \Psi\left(\left[x_{i}, 0,0\right] ; d v,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) U_{t_{t-v}}^{\left(r_{i}-1\right)} \widetilde{f \cdot \lambda([\boldsymbol{\varphi}}, \boldsymbol{q}, j^{\prime}\right]\right) .
$$

Then the left hand side of (5.8), where $\boldsymbol{p}=\mathbf{0}$ and $j=0$, is equal to

$$
\sum_{r_{1}+r_{2}+\cdots+r_{n}=r} \int_{0}^{t} \sum_{i=1}^{n} d_{s}\left(-g^{\left(r_{i}+1\right)}(s)\right) \prod_{l \neq i} g^{\left(r_{l}\right)}(s)
$$

Writing $r_{i}+1$ as r_{i} and noting $d_{s} g^{(0)}(s)=0$ and $g^{\left(r_{i}\right)}(t)=0$ for $r_{i} \geqq 1$, the above expression is equal to

$$
\begin{aligned}
& \sum_{r_{1}+r_{2}+\cdots \cdot \cdot+r_{n}=r+1} \int_{0}^{t} \sum_{i=1}^{n} d_{s}\left(-g^{\left(r_{i}\right)}(s)\right) \prod_{l \neq i} g^{\left(r_{i}\right)}(s) \\
= & \sum_{r_{1}+r_{2}+\cdots+r_{n}=r+1} \prod_{i=1}^{n} g^{\left(r_{i}\right)}(0)=\sum_{r_{1}+r_{2}+\cdots+r_{n}=r+1} \sum_{i=1}^{n} U^{\left(r_{i}\right)} \widetilde{f \cdot \lambda\left(\left[x_{i}, 0,0\right]\right)},
\end{aligned}
$$

as was to be proved.
Q:E.D.
Lemma 5. 3. For any $r \geqq 0,[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right.$. and $j \in J$, we have
and

$$
\begin{gather*}
\sum_{m=n-1}^{\infty} \int_{0}^{t} \int_{S_{m \times J}} \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) \\
\cdot\left\{(-1)^{\left[j^{\prime}\right.}{ }^{2}\right] \sum_{r_{1}+r_{2}+\cdots+r_{m}=r} \prod_{i=1}^{m} U_{t-s}^{\left(r_{t}\right)} \widetilde{\left.f \cdot \lambda\left(\left[y_{i}, q_{i}, 0\right]\right)\right\}} \tag{5.10}\\
=\sum_{r_{1}+r_{2}+\cdots+r_{n}=r} \int_{0}^{t} \sum_{i=1}^{n} \int_{\tilde{s}} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d s,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right) U_{t-s}^{\left(r_{2}\right)} \widetilde{f \cdot \lambda\left(\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right)} \\
\prod_{l \neq i} U_{s}^{0} U_{t-s}^{\left(r_{1}\right)} \widetilde{f \cdot \lambda\left(\left[x_{l}, p_{l}, 0\right]\right),}
\end{gather*}
$$

where $\boldsymbol{y}=\left[y_{1}, y_{2}, \cdots, y_{m}\right]$ and $\boldsymbol{q}=\left[q_{1}, q_{2}, \cdots, q_{m}\right]$.
Proof. For $r=0$, (5.9) follows from Lemma 5.1, and (5.10) follows from Lemma 5.1 and (iii) of Condition 3. Hence we shall prove the validity of (5.9) and (5.10) for $r+1$ under the assumption that (5.9) and (5.10) hold up to r. Further, by Lemma 5. 1, we may assume $\boldsymbol{p}=\mathbf{0}$ and $j=0$.

By Lemma 5. 2 and the assumption of induction, we have

$$
\begin{aligned}
& \sum_{r_{1}+r_{2}+\cdots+r_{n}=r+1} \prod_{i=1}^{n} U_{t}^{\left(r_{i}\right)} \widetilde{f \cdot \lambda\left(\left[x_{i}, 0,0\right]\right)} \\
= & \sum_{m=n-1}^{\infty} \int_{0}^{t} \int_{S^{m} \times J} \Psi([\boldsymbol{x}, 0,0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) \\
\cdot & \left\{(-1)^{\left[\frac{j}{2}\right]} \sum_{r_{1}+r_{2}+\cdots+r_{m}=r}^{\sum \prod_{i=1}^{m} U_{t-s}^{\left(r r_{s}\right)} \widetilde{\left.f \cdot \lambda\left(\left[y_{i}, p_{i}, 0\right]\right)\right\}}} \begin{array}{l}
= \\
\int_{0}^{t} \int_{\tilde{S}} \Psi([\boldsymbol{x}, 0,0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) U_{t-s}^{(r)} \widetilde{f \cdot \lambda([\boldsymbol{y}, \boldsymbol{p}, j])} \\
=
\end{array} U_{t}^{(r+1)} \widetilde{f \cdot \lambda([\boldsymbol{x}, 0,0]) .}\right.
\end{aligned}
$$

So (5. 9) holds for $r+1$.
Now we note that for any (m, m)-matrix $A=\left(a_{i, j}\right)_{i, j=1}^{m}$

$$
\begin{align*}
& \sum_{\pi} \prod_{i=1}^{m} a_{\pi(i), i}=\prod_{i=1}^{m}\left(\sum_{k=1}^{m} a_{k, i}\right)-_{\left(k_{1}, k_{2}, \cdots, k_{m-1}\right)} \prod_{i=1}^{m}\left(\sum_{j=1}^{m-1} a_{k_{j}, i}\right) \tag{5.11}\\
& +{ }_{\left(k_{1}, k_{2}, \cdots, k_{m-2}\right)} \prod_{i=1}^{m}\left(\sum_{j=1}^{m-2} a_{k_{j}, i}\right)-\cdots+(-1)^{m-1} \sum_{(k)} \prod_{i=1}^{m} a_{k, i},
\end{align*}
$$

holds, where Σ_{π} denotes the summation over all permutations $(\pi(1), \pi(2), \cdots$, $\pi(m))$ of $(1,2, \cdots, m)$ and $\Sigma_{\left(k_{1}, k_{2}, \cdots, k_{r}\right)}, r \leqq m-1$, denotes the summation over all ($k_{1}, k_{2}, \cdots, k_{r}$) such that $1 \leqq k_{i} \leqq m$ and all k_{i} are different. ${ }^{18)}$

Let $h_{i} \in \boldsymbol{B}^{*}([0, \infty) \times E), \quad i=1,2, \cdots, m . \quad$ Considering $\overparen{h_{j}^{(s)} \cdot \lambda}\left(\left[y_{i}, p_{i}, 0\right]\right)$ in the place of $a_{j, i}$ in (5.11), we have for $[x]=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$

$$
\begin{gather*}
\int_{0}^{t} \int_{S^{m} \times\{j\}} \Psi([\boldsymbol{x}, \mathbf{0}, 0] ; d s,[\boldsymbol{d} \boldsymbol{y}, \boldsymbol{p}, j])\left\{(-1)^{\left[\frac{j}{2}\right]} \sum_{\pi} \prod_{i=1}^{m} \overparen{\left.h_{\pi(i)}^{(s)} \cdot \lambda\left(\left[y_{i}, p_{i}, 0\right]\right)\right\}}\right. \\
\left.\left.=\sum_{\nu=0}^{m-1}(-1)^{\nu}{ }_{\left(k_{1}, k_{2}, \cdots ; k_{m-\nu}\right)} \int_{0}^{t} \int_{S^{m} \times\{j\}} \Psi[\boldsymbol{x}, 0,0]\right) ; d s,[\boldsymbol{d} \boldsymbol{y}, \boldsymbol{p}, j]\right) \tag{5.12}\\
\cdot(-1)^{\left[\frac{j}{2}\right]} \prod_{i=1}^{m}\left\{\sum_{r=1}^{m-\nu} \overparen{\left.h_{k_{r}}^{(s)} \cdot \lambda\left(\left[y_{i}, p_{i}, 0\right]\right)\right\} .}\right.
\end{gather*}
$$

According to Lemma 5.1, and (5.4), the right hand side of the above equation is equal to

$$
\begin{aligned}
& \sum_{\nu=0}^{m-1}(-1)^{\nu} \sum_{\left(k_{1}, k_{2}, \cdots, k_{m-\nu}\right)} \int_{0}^{t} \int_{S^{m} \times\{j\}} \Psi([\boldsymbol{x}, \mathbf{0}, 0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) \\
& \overbrace{\left(\sum_{r=1}^{m-\nu} h_{k_{r}}^{(s)}\right) \cdot \lambda[\boldsymbol{y}, \boldsymbol{p}, j]} \\
&=\int_{0}^{t} \sum_{i=1}^{n} \int_{S_{m-n+1 \times\{j\}}} \Psi\left(\left[x_{i}, 0,0\right] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]\right)(-1)^{\left[\frac{j}{2}\right]}\left\{\sum_{\nu=0}^{m-1}(-1)^{\nu} \sum_{\left(k_{1}, k_{2}, \cdots, k_{m-\nu}\right)}\right. \\
&\overbrace{\left(\sum_{r=1}^{m-\nu} h_{k_{r}}^{(s)}\right) \cdot \lambda([\boldsymbol{y}, \boldsymbol{p}, 0]) \prod_{l \neq i} U_{s}^{0}(\sum_{r=1}^{m-\nu} \overbrace{h_{k}}^{(s)} \cdot \lambda)}\left(\left[x_{l}, 0,0\right]\right)\} .
\end{aligned}
$$

Now noting that for $\boldsymbol{y}=\left[y_{1}, y_{2}, \cdots, y_{m-n+1}\right], \boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{m-n+1}\right]$

$$
\left(\sum_{r=1}^{m-\nu} h_{k_{r}}^{(s)}\right) \cdot \lambda([\boldsymbol{y}, \boldsymbol{p}, 0])=\prod_{\mu=1}^{m-n+1} \sum_{r=1}^{m-\nu} \overparen{h_{k_{r}}^{(s)} \cdot \lambda}\left(\left[y_{\mu}, p_{\mu}, 0\right]\right)
$$

and applying again (5.11) to the integrand $\}$, the above expression is equal to

$$
\begin{align*}
& \int_{0}^{t} \sum_{i=1}^{n} \int_{S^{m-n+1} \times\{j\}} \Psi\left(\left[x_{i}, 0,0\right] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]\right) \tag{5.13}\\
& \cdot(-1)\left[\frac{j}{2}\right]_{\left\{\sum_{\pi}^{m-n+1} \overparen{\prod_{\mu=1}^{(s)} \cdot \lambda\left(\left[y_{\mu}, p_{\mu}, 0\right]\right) \cdot \prod_{l \neq i} U_{\substack{0}}^{h_{\pi}^{(s)}\left(\mu_{i}\right)} \cdot \lambda\left(\left[x_{l}, 0,0\right]\right)}\right.} .
\end{align*}
$$

where $\left\{\mu_{l} ; 1 \leqq l \leqq n, l \neq i\right\}=\{m-n+2, m-n+3, \cdots, m\}$ and π is a permutation on $(1,2, \cdots, m)$. If we use the following notations:

[^9]$\sum_{\left\langle k_{1}, k_{2}, \cdots, k_{m-n+1}\right\rangle}$: the sum over all choices ($k_{1}, k_{2}, \cdots, k_{m-n+1}$) from ($1,2, \cdots, m$), $\sum_{\pi}^{(k)} \quad:$ the sum over all permutations π on $\left(k_{1}, k_{2}, \cdots, k_{m-n+1}\right)$, $\sum_{\hat{\pi}}^{(\hat{k})} \quad:$ the sum over all permutations $\hat{\pi}$ on $\left(\hat{k}_{1}, \hat{k}_{2}, \cdots, \hat{k}_{n-1}\right)$ which is the remainder of $(1,2, \cdots, m)$ excluding $\left(k_{1}, k_{2}, \cdots, k_{m-n+1}\right)$,
then (5.13) is equal to
\[

$$
\begin{aligned}
& \int_{0}^{t} \sum_{i=1}^{n}\left\langle k_{1}, k_{2}, \cdots, k_{n-n+1}\right\rangle \sum_{\hat{n}^{(\hat{k})}} \sum_{\pi}^{(k)} \int_{S^{m-n+1} \times\{j\}} \Psi\left(\left[x_{i}, 0,0\right] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]\right) \\
& \cdot(-1)^{\left[\frac{j}{2}\right]} \underset{\mu=1}{m-n+1} \xlongequal[\prod_{\pi(\mu)}^{(s)}]{h_{h_{k}}^{(s)}} \cdot \lambda\left(\left[y_{\mu}, p_{\mu}, 0\right]\right) \cdot \prod_{l \neq i} U_{\substack{0}}^{h_{h_{\hbar_{(}^{s}\left(\mu_{i}\right)}^{s}}} \cdot \lambda\left(\left[x_{l}, 0,0\right]\right) .
\end{aligned}
$$
\]

Now putting $h_{k}^{(s)}=\left.\left(U_{t-s}^{(k)} \widetilde{f \cdot \lambda}\right)\right|_{E}$, we can see from (5.9) for $r_{i} \leqq r+1$

$$
\begin{aligned}
& \int_{0}^{t} \int_{S^{m \times\{j\}}} \Psi([\boldsymbol{x}, \mathbf{0}, 0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) \\
& \cdot\left\{(-1)^{\left[\frac{j}{2}\right]}{ }_{r_{1}+r_{2}+\cdots+r_{m}=r+1} \prod_{i=1}^{m} U_{t-s}^{\left(r_{2}\right)} \widetilde{\left.f \cdot \lambda\left(\left[y_{i}, p_{i}, 0\right]\right)\right\}}\right. \\
& =\int_{0}^{t} \sum_{i=1}^{n} \sum_{r_{i}=0}^{r+1} \sum_{\hat{r}_{1}+\hat{r}_{2}+\cdots+\hat{r}_{n-1}=r+1-r_{t}} \int_{S^{m-n+1} \times\{j\}} \Psi\left(\left[x_{i}, 0,0\right] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]\right) \\
& \cdot\left\{(-1)^{\left[\frac{j}{2}\right]} \underset{r_{1}+r_{2}+\cdots+r_{m-n+1}=r_{i}}{ } \prod_{\mu=1}^{m-n+1} U_{t-s}^{\left(r_{\mu}\right)} \widetilde{\left.f \cdot \lambda\left(\left[y_{\mu}, p_{\mu}, 0\right]\right)\right\}}\right. \\
& \cdot \prod_{l \neq i} U_{s}^{0} U_{t-s}^{\hat{r}_{l}} \widetilde{f \cdot \lambda\left(\left[x_{l}, 0,0\right]\right)} \\
& ={ }_{r_{1}+r_{2}+\cdots+r_{n}=r+1} \int_{0}^{t} \sum_{i=1}^{n} \int_{S_{m-n+1 \times\{j\}}} \Psi\left(\left[x_{i}, 0,0\right] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]\right) \\
& \cdot U_{t-s}^{\left(r_{i},\right.} \widetilde{f \cdot \lambda}([\boldsymbol{y}, \boldsymbol{p}, j]) \cdot \prod_{l \neq i} U_{s}^{0} U_{t-s}^{\left(r_{l}\right)} \widetilde{f \cdot \lambda\left(\left[x_{l}, 0,0\right]\right)} .
\end{aligned}
$$

Summing up both sides of the above equation over all $m \geqq n-1$, we have (5.10) for $r+1$.
Q.E.D.

Lemma 5. 4.

$$
U_{t} \widetilde{f \cdot} \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j])=\sum_{r=0}^{\infty} U_{t}^{(r)} \widetilde{f \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j])}, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\mathbf{S}}
$$

Proof. By (iv) and (v) of Condition 3, we have

$$
\begin{align*}
& \left.U_{t} \widetilde{f \cdot \lambda}[\boldsymbol{x}, \boldsymbol{p}, j]\right)=E_{[x, p, j]}\left[\widetilde{f \cdot \lambda}\left(Z_{t}\right) ; t<\eta_{\infty}\right]+E_{[x, p, j]}\left[\widetilde{f \cdot} \cdot \lambda\left(Z_{t}\right) ; t \geqq \eta_{\infty}\right] \\
= & \sum_{r=0}^{\infty} E_{[x, p, j]}\left[\widetilde{\left.f \cdot \lambda\left(Z_{t}\right) ; \eta_{r} \leqq t<\eta_{r+1}\right]+E_{[x, p, j]}\left[U_{t-\eta_{\infty}} \widetilde{f \cdot \lambda(t)} ; t \geqq \eta_{\infty}\right]}\right. \\
= & \sum_{r=0}^{\infty} U_{t}^{(r)} \widetilde{f \cdot \lambda([x, p, j]) .}
\end{align*}
$$

We are now in a position to prove Theorem 5.1.
Proof of Theorem 5.1. It suffices to prove (2.9). By Lemma 5.4 and 9), we have

$$
\begin{aligned}
& U_{t} \widetilde{f \cdot} \lambda([\boldsymbol{x}, \boldsymbol{p}, j])=\sum_{r=0}^{\infty} U_{t}^{(r)} \widetilde{f \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j])} \\
= & (-1)^{\left[\frac{j}{2}\right]} \lambda^{|\boldsymbol{p}|} \sum_{r=0}^{\infty} \sum_{r_{1}+r_{2}+\cdots+r_{n}=r} \prod_{i=1}^{n} U_{t}^{\left(r_{i}\right)} \widetilde{f \cdot \lambda\left(\left[x_{i}, 0,0\right]\right)} \\
= & (-1)^{\left[\frac{j}{2}\right]} \lambda^{|\boldsymbol{p}|} \sum_{r_{1}=0}^{\infty} \sum_{r_{2}=0}^{\infty} \cdots \sum_{r_{n}=0}^{\infty} \prod_{i=1}^{n} U_{t}^{\left(r_{i}\right)} \widetilde{f \cdot \lambda}\left(\left[x_{i}, 0,0\right]\right) \\
= & (-1)^{\left[\frac{j}{2}\right]} \lambda_{\lambda^{|\boldsymbol{p}|} \mid}^{\prod_{i=1}^{n}} \sum_{r_{i}=0}^{\infty} U_{t}^{\left(r_{i}\right)} \widetilde{f \cdot \lambda\left(\left[x_{i}, 0,0\right]\right)} \\
= & (-1)^{\left[\frac{j}{2}\right]} \lambda_{\lambda^{|\boldsymbol{p}|} \mid}^{\prod_{i=1}^{n}\left(U_{t} \widetilde{f \cdot \lambda)\left.\right|_{E}\left(x_{i}\right)}\right.} \\
= & \left(U_{t} \widetilde{f \cdot \lambda)\left.\right|_{E} \cdot \lambda([\boldsymbol{x}, \boldsymbol{p}, j]), \quad \quad f \in \boldsymbol{C}^{*}(E), 0 \leqq \lambda<1,}\right.
\end{aligned}
$$

here $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right]$.
Q.E.D.
§6. Semi-linear equation. In this section, we shall consider an pplication of Corollary 4.1 to a probabilistic interpretation of the following mi-linear equation:

$$
\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+k(x) F(x ; u(t, x))^{199},
$$

here $k(x)$ is a non-negative bounded continuous function on R^{d} and $F(x ; \xi)$. tisfies the following conditions: there exists a positive constant K such that

$$
\begin{array}{r}
\left|k(x) F(x ; \xi)-k\left(x^{\prime}\right) F\left(x^{\prime} ; \xi^{\prime}\right)\right| \leqq K\left\{\left\|x-x^{\prime}\right\|+\left|\xi-\xi^{\prime}\right|\right\}, \\
x, x^{\prime} \in R^{d}, \xi, \xi^{\prime} \in[0,1],
\end{array}
$$

[^10]where $\left\|x-x^{\prime}\right\|$ denotes the Euclidian distance between x and x^{\prime}, and it also holds that
\[

$$
\begin{equation*}
F(x ; 0)=F(x ; 1)=0 \text { and } 0 \leqq F(x ; \xi) \text { for } 0<\xi<1 \tag{6.3}
\end{equation*}
$$

\]

Throughout this section, we shall consider a strong Markov process Z_{t} satisfying Condition 3 (and hence, by Theorem 5.1, a signed branching Markov process with age) whose basic Markov process is a standard Brownian motion on $E=R^{d} \cup\{\infty\}$ which is obtained by the one-point compactification of $R^{d} .{ }^{20}$

We first consider the special case satisfying Condition (Q) :
(a) Let $q_{n}^{+}(x)$ and $q_{n}^{-}(x)$ be functions given a priori in Condition 3 (through the part (i)). Then $\dot{q}_{0}^{\dagger}(x)=q_{o}^{-}(x)=0$ and there exists an integer $M>0$ such that $q_{n}^{+}(x)=q_{n}^{-}(x)=0$ for $n>M$.
(b) Set

$$
F(x ; \xi)=\sum_{n=1}^{M} \frac{\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\}}{k(x)} \xi^{n},
$$

where $k(x)=\sum_{n=1}^{M}\left(q_{n}^{+}(x)+q_{n}^{-}(x)\right)$. Then

$$
0<F(x ; \xi), \quad x \in R^{d}, \xi \in(0,1),
$$

and also there exists a positive constant K such that

$$
\left|k(x) F(x ; \xi)-k\left(x^{\prime}\right) F\left(x^{\prime} ; \xi^{\prime}\right)\right| \leqq K\left\{\left\|x-x^{\prime}\right\|+\left|\xi-\xi^{\prime}\right|\right\}, x, x^{\prime} \in R^{d}, \xi, \xi^{\prime} \in[0,1] .
$$

(c)

$$
\sum_{n=1}^{M}\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\}=0, \quad x \in R^{d}
$$

Condition 3 is called "Condition 3 with (Q)" when q_{n}^{+}and q_{n}^{-}satisfy Condition (Q).

Lemma 6. 1. Let $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}}\right\}$ be a signed branching Markov process with age on $\tilde{\mathbf{S}}$ satisfying Condition 3 with (Q) and let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\boldsymbol{S}})$ induced by $Z^{21)}$. Then there exists a positive
 with $f(\infty)=0^{22)}$ and $[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}$.

[^11]Proof. First of all, we shall prove the existence of $\delta_{0}>0$ such that $U_{t} \widetilde{1 \cdot 2 \mid} \mid([x, 0,0])=E_{[x, 0,0]}\left[\widetilde{1 \cdot 2 \mid}\left(Z_{t}\right)\right]$ is finite for any $t<\delta_{0}$ and $x \in R^{d}$, where $1(x) \equiv 1$.

By the same method as in the proof of Lemma 5.4, we have
where

$$
U_{t}^{(r)}|\widetilde{1 \cdot 2}|([x, p, j])=E_{[x, p, j]}\left[\widetilde{1 \cdot 2} \mid\left(Z_{t}\right) ; \eta_{r} \leqq t<\eta_{r+1}\right], \quad r \geqq 0
$$

Then, by (ii) of Condition 3, Lemma 5.1 and Lemma 4.1, we have

$$
\begin{align*}
& U_{t}^{o}\left|\widetilde{1 \cdot 2 \mid}([\boldsymbol{x}, \boldsymbol{p}, j])=2^{|\boldsymbol{p}|} U_{t}^{0}\right| \widetilde{1 \cdot 2 \mid} \mid([x, 0,0])=2^{|\boldsymbol{p}|} \prod_{i=1}^{n} E_{x_{i}}\left[1\left(X_{t}^{\prime}\right)\right]=2^{|\boldsymbol{p}|}, \tag{6.5}\\
& \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right], x_{i} \in R^{d}, j \in J,
\end{align*}
$$

where E_{x} denotes the integral by the probability measure of a standard Brownian motion X_{t}^{\prime}. Accordingly, it follows from the strong Markov property of Z_{t} that

$$
\begin{equation*}
U_{t}^{(1)} \mid \widetilde{1 \cdot 2 \mid([x, 0,0])}=E_{[x, 0,0]}\left[U_{i-\eta}^{0} \mid \widetilde{\left.1 \cdot 2 \mid\left(Z_{\eta}\right) ; \eta \leqq t\right]}\right. \tag{6.6}
\end{equation*}
$$

$$
=\sum_{|p|=0}^{\infty} 2^{|p|} \int_{0}^{t} P_{[x, 0,0]}\left(N_{\eta}=p, \eta \in d s\right) .
$$

On the other hand, if we apply (5.4) to $f(t, \cdot)=1$, then we have

$$
\begin{align*}
& P_{[x, 0,0]}\left(N_{\eta}=\boldsymbol{p}, \eta \in d s\right) \\
&=\sum_{i=1}^{n} \sum_{\substack{\sum_{l \neq i}}} \sum_{\left|\boldsymbol{p}_{i}\right|=|\boldsymbol{p}|} \sum_{m=1}^{M+n-1} \sum_{j=0}^{3} \Psi\left(\left[x_{i}, 0,0\right] ; d s,\left[E^{m}, \boldsymbol{p}_{i}, j\right]\right) \tag{6.7}\\
& \cdot \prod_{l \neq i} P_{[x, 0,0]}\left(N_{s}=p_{l}, s<\eta\right)
\end{align*}
$$

Since Z_{t} satisfies Condition 2, (4.7) holds and hence we have

$$
\begin{align*}
& \sum_{m=1}^{M+n-1} \sum_{j=0}^{3} \Psi\left(\left[x_{i}, 0,0\right] ; d s,\left[E^{m}, \boldsymbol{p}_{i} ; j\right]\right) \\
= & P_{\left[x_{i}, 0,0\right]}\left(X_{\eta-} \in R^{d}, \eta \in d s, N_{n-}=\left|\boldsymbol{p}_{i}\right|, \sigma_{\left|p_{i}\right|} \leqq s<\sigma_{\left|\boldsymbol{p}_{i}\right|+1}\right) \tag{6.8}\\
= & E_{x_{i}}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{\prime}\right) d v} \frac{\left(\int_{0}^{s} k\left(X_{v}^{\prime}\right) d v\right)^{\left|\boldsymbol{p}_{i}\right|}}{\left|\boldsymbol{p}_{i}\right|!} k\left(X_{v}^{\prime}\right) d s\right],
\end{align*}
$$

and by (3.11)

$$
\begin{equation*}
P_{\left[x_{l}, 0,0\right]}\left(N_{s}=p_{l}, s<\eta\right)=E_{x}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{\prime}\right) d v} \frac{\left(\int_{0}^{s} k\left(X_{v}^{\prime}\right) d v\right)^{p_{l}}}{p_{l}!}\right] . \tag{6.9}
\end{equation*}
$$

Now let us consider an $n d$-dimensional standard Brownian motion ($\left.X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right)$ and denote by $E_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}$ the integral with respect to the probability measure $P_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}$ corresponding to $\left(X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right) .^{23)}$ Also we set

$$
\check{g}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} g\left(x_{i}\right), \quad g \in \boldsymbol{B}\left(R^{d}\right)
$$

Then it is obtained from (6.7), (6.8) and (6.9) that

$$
\begin{aligned}
& P_{[x, 0,0]}\left(N_{\eta}=p, \eta \in d s\right) \\
& =\sum_{i=1}^{n} \sum_{l \neq i}^{\sum p_{i}+\left|\boldsymbol{p}_{i}\right|=|\boldsymbol{p}|} \left\lvert\, E_{x_{i}}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{\prime}\right) d v} \frac{\left(\int_{0}^{s} k\left(X_{v}^{\prime}\right) d v\right)^{\left|\boldsymbol{p}_{i}\right|}}{\left|\boldsymbol{p}_{i}\right|!} k\left(X_{s}^{\prime}\right) d s\right]\right. \\
& -\prod_{l \neq i} E_{x_{i}}\left[e^{-2 \int k\left(X_{v}^{\prime}\right) d v} \frac{\left(\int_{0}^{s} k\left(X_{v}^{\prime}\right) d v\right)^{p_{t}}}{p_{l}!}\right] \\
& \text { (6.10) } \quad=E_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{(1), ~ X}(2), \cdots, X_{v}^{(n)) d v}\right.}\right. \\
& \left.\cdot\left\{\sum_{i} \sum_{i=|\boldsymbol{p}|} \prod_{i=1}^{n} \frac{\left(\int_{0}^{s} k\left(X_{v}^{(i)}\right) d v\right)^{p_{i}}}{p_{i}!}\right\} \check{k}\left(X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right) d s\right] \\
& =E_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}\left[e^{-2 \int_{0}^{s} k\left(X_{v}^{(1)}, X_{v}^{(2)}, \ldots, X_{v}^{(n)}\right) d v} \frac{1}{|\boldsymbol{p}|!}\left\{\int_{0}^{s} k\left(X_{v}^{(1)}, X_{v}^{(2)}, \cdots, X_{v}^{(n)}\right) d v\right\}^{|\boldsymbol{p}|}\right. \\
& \left.\cdot \check{k}\left(X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right) d s\right] .
\end{aligned}
$$

Applying the above result to the right hand side of (6.6), we have

$$
\begin{aligned}
U_{t}^{(1)} \overparen{1 \cdot 2 \mid([x, 0,0])} & =\int_{0}^{t} E_{\left[x_{1}, x_{2}, \cdots, x_{n}\right]}\left[\check{k}\left(X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right)\right] d s \\
& =\sum_{i=1}^{n} \int_{0}^{t} E_{x_{i}}\left[k\left(X_{s}^{\prime}\right)\right] d s \\
& \leqq n\|k\| t .
\end{aligned}
$$

23) $X_{s}^{(i)}$ are mutually independent and equivalent standard d-dimensional Brownian motions and $x_{i} \in R^{d}, i=1,2, \cdots, n$.

Now we shall assume that for any $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $r \geqq 1$

$$
\begin{equation*}
U_{t}^{(r)}|\widetilde{1 \cdot 2}|([x, 0,0]) \leqq n(n+M) \cdots(n+(r-1) M) \frac{(\|k\| t)^{r}}{r!} \tag{6.11}
\end{equation*}
$$

Since we have by the same method as in the proof of Lemma 5.1

$$
\begin{equation*}
U_{t}^{(r)} \mid \widetilde{1 \cdot 2 \mid}([\boldsymbol{y}, \boldsymbol{p}, j])=2^{|\boldsymbol{p}| U_{t}^{(r)}} \widetilde{|\cdot 2|}([\boldsymbol{y}, \mathbf{0}, 0]) \tag{6.12}
\end{equation*}
$$

it follows from (6.11) and the strong Markov property of Z_{t} that for $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$

$$
\begin{aligned}
& U_{t}^{(r+1)} \overparen{1 \cdot 2 \mid([\boldsymbol{x}, 0,0])} \\
= & \int_{0}^{t} \int_{\tilde{S}} \Psi([\boldsymbol{x}, 0,0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) 2^{|\boldsymbol{p}|} U_{t-s}^{(r)} \mid \widetilde{1 \cdot 2 \mid([\boldsymbol{y}, 0,0])} \\
\leqq & \int_{0}^{t} \int_{\tilde{s}} \Psi([\boldsymbol{x}, 0,0] ; d s,[d \boldsymbol{y}, \boldsymbol{p}, j]) 2^{|\boldsymbol{p}|}(n+M)(n+2 M) \cdots(n+r M) \frac{(\|k\|(t-s))^{r}}{r!},
\end{aligned}
$$

because, by the assumption that $q_{n}^{+}(x)=q_{n}^{-}(x)=0$ for $n>M, \Psi([\boldsymbol{x}, \mathbf{0}, 0] ; d s$, $\left.\left[E^{m}, \boldsymbol{p}, j\right]\right)=0$ for $m>n+M$. Applying (6.10), the right hand side of the above inequality equals

$$
\begin{aligned}
& (n+M)(n+2 M) \cdots(n+r M) \int_{0}^{t} E_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}\left[\check{k}\left(X_{s}^{(1)}, X_{s}^{(2)}, \cdots, X_{s}^{(n)}\right)\right] \frac{(\|k\|(t-s))^{r}}{r!} d s \\
& \quad \leqq n(n+M) \cdots(n+r M) \frac{\|k\|^{r+1}}{r!} \int_{0}^{t}(t-s)^{r} d s \\
& \quad=n(n+M) \cdots(n+r M) \frac{(\|k\| t)^{r+1}}{(r+1)!} .
\end{aligned}
$$

Thus (6.11) holds for any $r \geqq 1$ because it stands for $r=1$.
Now, by (6. 4) and (6.5), we have

$$
\begin{aligned}
U_{t}|\widetilde{1 \cdot 2 \mid}|([x, 0,0]) & =1+\sum_{r=1}^{\infty} U_{t}^{(r)} \mid \widetilde{1 \cdot 2 \mid([x, 0,0])} \\
& \leqq 1+\sum_{r=1}^{\infty}(1+M)(1+2 M) \cdots(1+(r-1) M) \frac{(\|k\| t)^{r}}{r!} \\
& \leqq 1+\sum_{r=1}^{\infty}(M\|k\| t)^{r}, \quad x \in E .
\end{aligned}
$$

This shows that $U_{t} \overparen{\mid \cdot 2} \mid([x, 0,0])$ is finite for any $0 \leqq t<1 / M\|k\|=\delta_{0}$ and $x \in E$.

Next we prove the finiteness of $U_{t}|\widetilde{1 \cdot 2 \mid}|([\boldsymbol{x}, \boldsymbol{p}, j])$ for any $t<\delta_{0}$ and $[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}} . \quad$ As in the proof of (5.9), we may obtain

$$
\begin{aligned}
U_{t}^{(r)} \overparen{\mid 1 \cdot 2} \mid([x, 0,0])= & \sum_{r_{1}+r_{2}+\cdots+r_{n}=r} \prod_{i=1}^{n} U_{t}^{\left(r_{i}\right)} \widetilde{\mid \cdot 2} \mid\left(\left[x_{i}, 0,0\right]\right), \\
& r \geqq 0, \quad x=\left[x_{1}, x_{2}, \cdots, x_{n}\right], t<\delta_{0} .
\end{aligned}
$$

Applying (6.11) to this equation, we have

$$
U_{t}^{(r)} \widetilde{1 \cdot 2} \mid([x, 0,0]) \leqq \sum_{r_{1}+r_{2}+\cdots+r_{\mathrm{n}}=r} \prod_{i=1}^{n}(M\|k\| t)^{r_{i}}, \quad t<\delta_{0}
$$

Hence it follows from (6.4) and (6.12) that

$$
\begin{aligned}
U_{t} \widetilde{|1 \cdot 2|} \mid([\boldsymbol{x}, \boldsymbol{p}, j]) & =2^{|\boldsymbol{p}|} U_{t}|\widetilde{1 \cdot 2 \mid}|([\boldsymbol{x}, 0,0]) \\
& =2^{|\boldsymbol{p}|} \sum_{r=0}^{\infty} U_{t}^{(r)} \widetilde{1 \cdot 2 \mid([\boldsymbol{x}, 0,0])} \\
& \leqq 2^{|\boldsymbol{p}|}\left\{\sum_{r=0}^{\infty}(M\|k\| t)^{r}\right\}^{n} \\
& <\infty, \quad 0 \leqq t<\delta_{0}, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}},
\end{aligned}
$$

as was to be proved.
Q.E.D.

Next we shall consider the following integral equation which turns out to (6.1):

$$
u(t, x)=\int_{R^{d}}\left(\frac{1}{2 \pi t}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 t}} f(y) d y
$$

$$
\begin{gather*}
+\int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}} k(y) F(y ; u(t-s, y)) d y, \tag{6.13}\\
t \geqq 0, x \in R^{d},
\end{gather*}
$$

where $k F$ is bounded and satisfies (6.2) for all $x, x^{\prime} \in R^{d}$ and $\xi, \xi^{\prime} \in R^{1}$ and also (6.3). Further set

$$
\begin{aligned}
& u_{0}(t, x)=\int_{R^{d}}\left(\frac{1}{2 \pi t}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\| 2}{2 t}} f(y) d y \\
& \begin{array}{c}
u_{n+1}(t, x)=u_{0}(t, x)+\int_{0}^{t} \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\| 2}{2 s}} k(y) F\left(y ; u_{n}(t-s, y)\right) d y, \\
\\
t \geqq 0, x \in R^{d}, n \geqq 0 .
\end{array}
\end{aligned}
$$

Then the following result is well known. ${ }^{24)}$
Lemma 6.2. For a given $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$, the following holds:
(i) Let $u(t, x ; f)$ be the unique solution of (6.13) with initial value f. Then we have

$$
\begin{equation*}
0 \leqq u(t, x ; f) \leqq 1, \quad t \geqq 0, x \in R^{d} \tag{6.14}
\end{equation*}
$$

(ii) For any positive constant $T, u_{n}(t, x)$ defined above converges to $u(t, x ; f)$ uniformly in $(t, x) \in[0, T] \times R^{d}$.

Let Z_{t} be a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$ satisfying Condition 3 with (Q) and let U_{t} be the semi-group induced by Z_{t}. If we consider the integral equation (6.13), where $k F$ is given by

$$
k(x) F(x ; \xi)=\sum_{n=1}^{M}\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\} \xi^{n}, \quad x \in R^{d}, \quad \xi \in R^{1},
$$

then it follows from the uniqueness of the bounded solution of (6.13), Lemma 6.1 and Theorem 4.1 that

$$
\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x)=u(t, x ; f), \quad f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}, 0 \leqq t<\delta_{0}, x \in R^{d}
$$

where $u(t, x ; f)$ denotes the solution of (6.13) with initial value f. On the other hand, by Lemma 6.2, the solution $\tilde{u}(t, x ; f)$ of the integral equation (6.13) where $k F$ is replaced by

$$
k(x) F_{1}(x ; \xi)= \begin{cases}\sum_{n=1}^{M}\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\} \xi^{n}, & x \in R^{d}, \xi \in[0,1], \\ 0, & \text { otherwise },\end{cases}
$$

satisfies ' $0 \leqq \tilde{u}(t, x ; f) \leqq 1$ ' for $f \in \bar{C}^{*}\left(R^{d}\right)^{+}$, because $k F_{1}$ satisfies the condition (6.3) and (6.2) for all $x, x^{\prime} \in R^{d}$ and $\xi, \xi^{\prime} \in R^{1}$. Since $F(x ; \xi)=F_{1}(x ; \xi)$ for $\xi \in[0,1]$, we have $u(t, x ; f)=\tilde{u}(t, x ; f) \in \overline{\boldsymbol{C}}^{*}\left([0, \infty) \times R^{d}\right)^{+}$. Hence, using Lemma 6.1 again, we can consider the following:

$$
\begin{aligned}
& U_{t}\left(U_{s} \widetilde{f \cdot 2}\right)([x, 0,0])= \\
= & u(t, x ; u(s, \cdot ; f))= \\
& u(t+s, x ; f), \\
& f \in \bar{C}^{*}\left(R^{d}\right)^{+}, 0 \leqq t, s<\delta_{0}, x \in R^{d} .
\end{aligned}
$$

But, in general, we can not express the left hand side of the above equation
${ }^{24)}$ cf. Kolmogoroff-Petrovsky-Piscounoff [8], theorems 1, 4 and 6.
by $\left.\left(U_{t+s} \widetilde{f \cdot 2}\right)\right|_{E}(x)$ because it may happen that $E_{[x, 0,0]}\left[|\widetilde{f \cdot 2 \mid}|\left(Z_{t}\right)\right]=\infty$. Even so, still we have the following

Theorem 6. 1. Let $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[\boldsymbol{x}, \boldsymbol{p}, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}\right\}$ be a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$ satisfying Condition 3 with (Q) and let U_{t} be the semi-group on $\boldsymbol{B}(\widetilde{\boldsymbol{S}})$ induced by Z. Then, for $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$, we can define $\hat{U}_{t} \widetilde{f \cdot 2([x, 0,0]) \text { with the following properties: }}$
(i) $\quad \hat{U}_{t} \widetilde{f \cdot 2([x, 0,0])}=\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x)$ if $U_{t} \widetilde{f \cdot 2}$ exists, $f \in \bar{C}^{*}\left(R^{d}\right)^{+}$.
(ii) $u(t, x)=\hat{U}_{t} \widetilde{f \cdot 2([x, 0,0])}$ is the unique solution of (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$, where $k F$ is given by

$$
k(x) F(x ; \xi)=\sum_{n=1}^{M}\left\{q_{n}^{+}(x)-q_{n}^{-}(x)\right\} \xi^{n}, \quad x \in R^{d}, \xi \in R^{1}
$$

Proof. According to Lemma 6. 1, there exists $\delta_{0}>0$ such that $U_{t} \widetilde{f \cdot 2}([\boldsymbol{x}, \boldsymbol{p}, j])$ exists for $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}, 0 \leqq t<\boldsymbol{\delta}_{0}$ and $[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}$. Set

$$
\hat{U}_{t} \widetilde{f \cdot 2([x, 0,0])}=U_{t} \widetilde{f \cdot 2}([x, 0,0]), \quad f \in \overline{\boldsymbol{C}}^{*}\left(R^{t}\right)^{+}, 0 \leqq t<\delta_{0}, x \in E .
$$

Since $\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x)=u(t, x ; f) \in \overline{\boldsymbol{C}}^{*}\left(\left[0, \delta_{0}\right) \times R^{d}\right)^{+}$as was mentioned already, $\left(\left.\hat{U}_{t} \widetilde{f \cdot 2)}\right|_{E}(x)\right.$ belongs to $\overline{\boldsymbol{C}}^{*}\left(\left[0, \delta_{0}\right) \times R^{d}\right)^{+}$and also $\left(\left.\hat{U}_{t} \widetilde{f \cdot 2)}\right|_{E}(\infty)=0\right.$. Using Lemma 6.1 again, set

$$
\begin{equation*}
\hat{U}_{t+s} \overparen{\sim} \cdot 2([x, 0,0])=\left(U _ { t } \left(\hat{U}_{s} \overparen{\left.\widetilde{f \cdot 2})\left.\right|_{E} \cdot 2\right)\left.\right|_{E}(x), \quad f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}, 0 \leqq t, s<\delta_{0}, ~}\right.\right. \tag{6.15}
\end{equation*}
$$

because the right hand side of the above equation is equal to

$$
u\left(t, x ;\left.\left(U_{s} \widetilde{f \cdot 2}\right)\right|_{E}\right)=u(t+s, x ; f)
$$

and hence the right hand side of (6•15) depends only on $t+s$ for given $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$and $x \in E . \quad$ Repeating this procedure, we can see that $\hat{U}_{t} \widetilde{f \cdot 2([x, 0,0])}$ can be defined for all $t \geqq 0$ and it is the unique solution of (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$. The property (i) of the theorem is evident by the definition of \hat{U}_{t} and the semi-group property of U_{t}. Q.E.D.

In the sequel of this section, we shall use the notation U_{t} instead of \hat{U}_{t} because $\left.\left(U_{t} \widetilde{f \cdot 2}\right)\right|_{E}(x)=\hat{U}_{t} \widetilde{f \cdot 2([x, 0,0])}$ if $\widetilde{U_{t} \widetilde{f} \cdot 2}$ exists.

Let $\left\{k_{i}(x),\left(q_{i, n}^{+}(x), q_{i, n}^{-}(x)\right) ; n=1,2, \cdots, M_{i}<\infty\right\}, i=1,2,3, \cdots$, be systems satisfying Condition (Q) and $Z_{t}^{(i)}$ be signed branching Markov processes with age on $\tilde{\boldsymbol{S}}$ satisfying Condition 3 with (Q) for given $\left\{k_{i}(x),\left(q_{i, n}^{+}(x)\right.\right.$, $\left.\left.q_{i, n}^{-}(x)\right) ; n=1,2, \cdots, M_{i}\right\}$. Let also $U_{i, t}$ be the semi-group induced by $Z_{t}^{(i)}$ and set

$$
\begin{equation*}
F_{i}(x ; \xi)=\sum_{n=1}^{M_{i}} \frac{\left\{q_{i, n}^{+}(x)-q_{i, n}^{-}(x)\right\}}{k_{i}(x)} \xi^{n}, \quad i=1,2,3, \cdots \tag{6.16}
\end{equation*}
$$

According to Theorem 6.1, if $k_{i} F_{i}$ satisfies

$$
\begin{array}{r}
\left|k_{i}(x) F_{i}(x ; \xi)-k_{i}\left(x^{\prime}\right) F_{i}\left(x^{\prime} ; \xi^{\prime}\right)\right| \leqq K\left\{\left\|x-x^{\prime}\right\|+\left|\xi-\xi^{\prime}\right|\right\}, \tag{6.17}\\
x, x^{\prime} \in R^{d}, \xi, \xi^{\prime} \in[0,1],
\end{array}
$$

where K is a positive constant independent of i, then $u^{(i)}(t, x)=\left(\left.U_{i, t} \widetilde{f \cdot 2)}\right|_{E}(x)\right.$ is the solution of the integral equation (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$ where $k F$ is replaced by $k_{i} F_{i}$. Then we have

Theorem 6. 2. Let $\left\{k_{i}(x),\left(q_{i, n}^{+}(x), q_{i, n}^{-}(x)\right) ; n=1,2, \cdots, M_{i}\right\}$ be systems satisfying Condition (Q) and let $k_{i}(x) F_{i}(x ; \xi)$ given in (6.16), $i=1,2,3, \cdots$, satisfy (6. 17). If $k_{i} F_{i}$ converges to $k F$ considered in (6.13) uniformly in $(x, \xi) \in R^{d} \times[0,1]$, then $\left\{u^{(i)}(t, x)=\left.\left(U_{i, t} \widetilde{f \cdot 2}\right)\right|_{E}(x) ; i=1,2,3, \cdots\right\}$ is a uniformly convergent sequence in $(t, x) \in[0, T] \times R^{d}$ for any given $T>0$. Moreover, $u(t, x)=\lim _{i \rightarrow \infty} u^{(i)}(t, x)$ is the unique solution of the integral equation (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$.

Proof. According to (i) of Lemma 6. 2, we may regard $k_{\iota}(x) F_{i}(x ; \xi)=$ $k(x) F(x ; \xi)=0$ for $\xi \notin[0,1]$ so far as we consider the solution of integral equation of type (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$, because F_{i} and F satisfy (6.3) and (6.17), and hence we may apply Lemma 6.2 in the present case.

Let us set

$$
\begin{aligned}
& u_{0}^{(i)}(t, x)=\int_{R^{d}}\left(\frac{1}{2 \pi t}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 t}} f(y) d y, \\
& u_{n+1}^{(i)}(t, x)=u_{0}^{(i)}(t, x)+\int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}} k_{i}(y) F_{i}\left(y ; u_{n}^{(i)}(t-s, y)\right) d y, \\
& n \geqq 0, \quad i=1,2,3, \cdots
\end{aligned}
$$

For any given $\varepsilon>0$, we take also N_{0} so large as

$$
\begin{equation*}
\left|k_{i}(x) F_{i}(x ; \xi)-k_{j}(x) F_{j}(x ; \xi)\right|<\varepsilon, \quad x \in R^{d}, \xi \in R^{1},,^{25)} \tag{6.18}
\end{equation*}
$$

holds for any $i, j \geqq N_{0}$. Noting that $u_{0}^{(i)}(t, x)$ is independent of i, we can see by (6. 18)

$$
\begin{aligned}
& \left|u_{1}^{(i)}(t, x)-u_{1}^{(j)}(t, x)\right| \leqq \int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}} \\
& \cdot\left|k_{i}(y) F_{i}\left(y ; u_{0}^{(i)}(y, t-s, y)\right)-k_{j}(y) F_{j}\left(y ; u_{0}^{(j)}(t-s, y)\right)\right| d y \leqq \varepsilon t, \\
& x \in R^{d}, \quad i, j \geqq N_{0} .
\end{aligned}
$$

Assume

$$
\begin{equation*}
\left|u_{n}^{(i)}(t, x)-u_{n}^{(j)}(t, x)\right| \leqq \varepsilon t \sum_{p=0}^{n-1} \frac{(K t)^{p}}{p!}, \quad x \in R^{d}, i, j \geqq N_{0} \tag{6.19}
\end{equation*}
$$

and it follows from (6.17), (6.18) and (6.19) that

$$
\begin{aligned}
& \quad\left|u_{n+1}^{(i)}(t, x)-u_{n+1}^{(j)}(t, x)\right| \\
& \leqq \int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}}\left\{\left|k_{i}(y) F_{i}\left(y ; u_{n}^{(i)}(t-s, y)\right)-k_{j}(y) F_{j}\left(y ; u_{n}^{(j)}(t-s, y)\right)\right| d y\right. \\
& \leqq \int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\| \mathbf{R}^{2}}{2 s}}\left\{\left|k_{i}(y) F_{i}\left(y ; u_{n}^{(i)}(t-s, y)\right)-k_{j}(y) F_{j}\left(y ; u_{n}^{(i)}(t-s, y)\right)\right|\right. \\
& \left.\quad+\left|k_{j}(y) F_{j}\left(y ; u_{n}^{(i)}(t-s, y)\right)-k_{j}(y) F_{j}\left(y ; u_{n}^{(j)}(t-s, y)\right)\right|\right\} d y \\
& \leqq \varepsilon t+\int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}} K\left|u_{n}^{(i)}(t-s, y)-u_{n}^{(j)}(t-s, y)\right| d y \\
& \leqq \varepsilon t+\varepsilon t \sum_{p=1}^{n} \frac{(K t)^{p}}{p!} \\
& =\varepsilon t \sum_{p=0}^{n} \frac{(K t)^{p}}{p!}, \quad x \in R^{d}, i, j \geqq N_{0} .{ }^{26)}
\end{aligned}
$$

Therefore, by induction, (6. 19) holds for any $n \geqq 0$. Then (ii) of Lemma 6. 2 shows that

$$
\left|u^{(i)}(t, x)-u^{(j)}(t, x)\right| \leqq \varepsilon t e^{\mathbb{K} t}, \quad i, j \geqq N_{0} .
$$

Since $\varepsilon>0$ is arbitrary, the above inequality proves the first half of the theorem.

[^12]On the other hand, $u^{(2)}(t, x)$ is the solution of

$$
u^{(i)}(t, x)=u_{0}^{(i)}(t, x)+\int_{0}^{t} d s \int_{R^{d}}\left(\frac{1}{2 \pi s}\right)^{-\frac{d}{2}} e^{-\frac{\|y-x\|^{2}}{2 s}} k_{i}(y) F_{i}\left(y ; u^{(i)}(t-s, y)\right) d y
$$

Letting i tend to infinity in the above equation, we can see that $u(t, x)=$ $\lim _{i \rightarrow \infty} u^{(i)}(t, x)$ is the unique solution of (6.13) with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$. Q.E.D.

Transforming (6.13) into the corresponding differential equation, we have

Corollary 6. 1. Let $k_{i}(x) F_{i}(x, u), u^{(i)}(t, x)$ and $k(x) F(x, u)$ be functions as in Theorem 6. 3. Then $u(t, x)=\lim _{i=\infty} u^{(i)}(t, u)$ is the bounded solution of the parabolic equation

$$
\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+k(x) F(x ; u(t, x)),
$$

with initial value $f \in \overline{\boldsymbol{C}}^{*}\left(R^{d}\right)^{+}$.
In the following corollary, we consider the case where $k(x)$ is a positive constant and $F(x ; \xi)$ is a function of ξ alone.

Corollary 6. 2. Let $F(\xi)$ be a function which is continuously differentiable on $[0,1]$ and $F^{\prime}(0)>0$. Let also $F(\xi)$ satisfies the condition:

$$
\begin{equation*}
F(0)=F(1)=0 \text { and } 0<F(\xi) \text { for } 0<\xi<1 \tag{6.20}
\end{equation*}
$$

Then the unique solution $u(t, x ; f)$ of the parabolic equation

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+F(u), \tag{6.21}
\end{equation*}
$$

with initial value $f \in C^{*}\left(R^{d}\right)^{+}$is expressed as the limit of $u^{(i)}(t, x)$ of the type which appeared in Theorem 6. 2.

Proof. Since $F^{\prime}(\xi)$ is continuous on $[0,1]$, there exists a sequence of polynomials $g_{i}^{\prime}(\xi)$ converging to $F^{\prime}(\xi)$ uniformly on $[0,1]$. Set

$$
G_{i}(\xi)=\int_{0}^{\xi} g_{i}^{\prime}(s) d s+c_{i} \xi, \quad i=1,2,3, \cdots
$$

where c_{i} is chosen so that $G_{i}(1)=0$. Then c_{i} tends to zero as i increases, because $F(1)=0$ and $g_{i}^{\prime}(\xi)$ converge to $F^{\prime}(\xi)$ uniformly on $[0,1]$. Hence the polynomials $G_{i}(\xi)$ converge to $F(\xi)$ uniformly on $[0,1]$ and $G_{i}^{\prime}(\xi)$ is uni-
formly bounded. Moreover, $\xi_{i}=\inf \left\{\xi>0 ; G_{i}(\xi)=0\right\}$ tends to 1 as i increases because $F^{\prime}(0)>0$ and $F(\xi)>0$ for $0<\xi<1$. Expressing $G_{i}(\xi)$ in the following form:

$$
\left.G_{i}(\xi)=\sum_{n=1}^{M_{i}}\left(q_{i, n}^{+}-q_{i, n}^{-}\right) \xi^{n}, \quad i=1,2,3, \cdots, 27\right)
$$

where $q_{i, n}^{+}$and $q_{\overline{i, n}}^{-}$are non-negative constants such that $q_{i, n}^{+} q_{\bar{i}, n}^{-}=0$ and $\sum_{n=1}^{M_{i}}\left(q_{i, n}^{+}-q_{i, n}^{-}\right)=0$, we set

$$
\begin{aligned}
& k_{i}=\sum_{n=1}^{M_{1}}\left(q_{i, n}^{+}+q_{i, n}^{-}\right), \\
& F_{i}(\xi)=\frac{1}{k_{i}} \sum_{n=1}^{M_{1}}\left(q_{i, n}^{+}-q_{i, n}^{-}\right) \xi^{n},
\end{aligned} \quad i=1,2,3, \cdots .
$$

Since $k_{i} F_{i}=G_{i}, k_{i} F_{i}(\xi)$ converges to $F(\xi)$ uniformly on $[0,1]$, and there exists a positive constant K such that

$$
\left|k_{i} F_{i}(\xi)-k_{i} F_{i}\left(\xi^{\prime}\right)\right| \leqq K\left|\xi-\xi^{\prime}\right|, \quad \xi, \xi^{\prime} \in[0,1], i=1,2,3, \cdots
$$

Also it holds that

$$
\begin{aligned}
& 0<F_{i}(\xi), \quad 0<\xi<\xi_{i}, \\
& k_{i} F_{i}(0)=k_{i} F_{i}\left(\xi_{2}\right)=0,
\end{aligned}
$$

Now let $Z^{(i)}$ be signed branching Markov process with age on $\widetilde{\boldsymbol{S}}$ satisfying Condition 3 with (Q) for $\left\{\left(q_{i, n}^{+}, q_{i, n}^{-}\right) ; n=1,2, \cdots, M_{i}\right\}$ given above where the condition $0<F(x ; \xi), 0<\xi<1$, is replaced by $0<F_{i}(\xi)$ for $0<\xi<\xi_{i}$, and let $U_{i, t}$ be the semi-group induced by $Z^{(i)}$. Then, by Theorem 6. 1, $u^{(i)}(t, x)=\left.\left(U_{i, t} \widetilde{f \cdot 2}\right)\right|_{E}(x)$ is the solution of the integal equation of (6.13), where $k F$ is replaced by $k_{i} F_{i}$, with initial value $f \in C^{*}\left(R^{d}\right)^{+}$ whose norm $\|f\|$ is less than ξ_{i}. Moreover, it holds that

$$
\left.0 \leqq u^{(i)}(t, x) \leqq \xi_{i} \leqq 1 .^{28}\right)
$$

Since $k_{i} F_{i}(\xi)$ converge to $F(\xi)$ uniformly on $[0,1]$, we can see, as in the proof of the convergence of $u^{(i)}(t, x)$ in Theorem 6.2, that $u^{(i)}(t, x)$ converges to the solution of (6.21) with initial value $f \in C^{*}\left(R^{d}\right)^{+}$, where $\|f\| \leqq \inf$ $\left\{\xi_{\imath} ; i=1,2,3, \cdots\right\}$, because the integral equation of type (6.13) is equiva-

[^13]lent to (6.21) in the present case. On the other hand, ξ_{i} tends to one as i increases, and hence the same assertion holds for any $f \in C^{*}\left(R^{d}\right)^{+}$.
Q.E.D.
§ 7. Construction of signed branching Markov processes with age (I). (Non-branching part.)

In this and in the next section, we shall construct the process discussed in the previous sections. Although such a process can be constructed by continuation of sample paths, ${ }^{29}$) we shall here construct them by an analytic method originated by J.E. Moyal [10].

In this section, we shall deal with a process corresponding to a nonbranching part. For this purpose, we construct a process which is able to describe the creation of mass, i.e. using the process, we can interpret probabilistically the parabolic equation:

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=\frac{1}{2} \Delta u(t, x)+k(x) u(t, x), \quad x \in R^{d} \tag{7.1}
\end{equation*}
$$

where $k(x)$ is a bounded continuous continuous function on R^{d}.
First, we shall state some known results which are useful for the construction of our processes. Let S be a locally compact Hausdorff space satisfying the second axiom of countability and let $\chi_{0}(t, x, \cdot)$ and $\Psi(x ; t, \cdot)$ be measures on $\mathscr{B}(S)$ for fixed $x \in S$ and $t \geqq 0$. Let also $\chi_{0}(t, \cdot, B)$ and $\Psi(\cdot ; t, B)$ be Borel measurable functions for fixed t and $B \in(S)$. Let the pair of χ_{0} and Ψ also satisfy the following conditions:

$$
\begin{equation*}
\chi_{0}(t+s, x, B)=\int_{S} \chi_{0}(t, x, d y) \chi_{0}(s, y, B), \tag{7.2}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \Psi(x ; t, S)=1-\lim _{t \rightarrow \infty} \chi_{0}(t, x, B) \tag{7.3}\\
& \Psi(x ; t+s, B)=\Psi(x ; t, B)+\int_{S} \chi_{0}(t, x, d y) \Psi(y ; s, B), \tag{7.4}
\end{align*}
$$

$$
\begin{equation*}
\Psi(x ; t, S) \text { is continuous in } t, \tag{7.5}
\end{equation*}
$$

$$
x \in S, B \in \mathscr{B}(S), t, s \geqq 0
$$

Then it is said that χ_{0} and Ψ satisfy the $\chi_{0} \Psi$-condition. ${ }^{30)}$ When χ_{0} and Ψ

[^14]satisfy the $\chi_{0} \Psi$-condition, by (7.4), $\Psi(x ; t, B)$ is nomotone non-decreasing in t. Let $\Psi(x ; d t, B)$ be the measure induced by $\Psi(x ; t, B)$ for fixed x and B. Wè define Ψ_{r} and χ_{r} by
\[

$$
\begin{equation*}
\Psi_{1}(x ; d t, B)=\Psi(x ; d t, B) \tag{7.6}
\end{equation*}
$$

\]

(7. 6) $\quad \Psi_{r+1}(x ; d t, B)=\int_{0}^{t} \int_{S} \Psi_{r}(x ; d s, d z) \Psi(z ; d(t-s), B), \quad r \geqq 0$,
$\Psi_{r}(x ; t, B)=\int_{0}^{t} \Psi_{r}(x ; d s, B), \quad r \geqq 1$,
(7. 7)

$$
\chi_{r}(t, x, B)=\int_{0}^{t} \int_{S} \Psi_{r}(x ; d s, d z) \chi_{0}(t-s, z, B), \quad r \geqq 1
$$

Then we have the following
Lemma 7. 1^{31} (J.E. Moyal) If the $\chi_{0} \Psi$-condition is satisfied, then it holds that: (i)

$$
\begin{equation*}
\Psi_{r+r^{\prime}}(x ; d t, B)=\int_{0}^{t} \int_{s} \Psi_{r}(x ; d s, d y) \Psi_{r^{\prime}}(y ; d(t-s), B), \quad r, r^{\prime} \geqq 1 \tag{7.8}
\end{equation*}
$$

(7. 9) $\quad \chi_{r+r^{\prime}}(t, x, B)=\int_{0}^{t} \int_{S} \Psi_{r}(x ; d s, d y) \chi_{r^{\prime}}(t-s, y, B), \quad r \geqq 1, r^{\prime} \geqq 0$,
(7. 10) $\quad \chi_{r}(t+s, x, B)=\sum_{r^{\prime}=0}^{r} \int_{S} \chi_{r^{\prime}}(t, x, d y) \chi_{r-r^{\prime}}(s, y, B)$, $r \geqq 0$,
(7. 11) $\sum_{r=0}^{\infty} \chi_{r}(t, x, S)=1-\lim _{r \rightarrow \infty} \Psi_{r}(x ; t, S), \quad x \in S, \quad B \in \mathscr{B}(S), t, s \geqq 0$.
(ii) The function χ defined by

$$
\begin{equation*}
\chi(t, x, B)=\sum_{r=0}^{\infty} \chi_{r}(t, x, B), \quad x \in S, \quad B \in \mathscr{B}(S), t \geqq 0, \tag{7.12}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\chi(t+s, x, B)=\int_{S} \chi(t, x, d y) \chi(s, y, B) \tag{7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(t, x, B)=\chi_{0}(t, x, B)+\int_{0}^{t} \int_{S} \Psi(x ; d s, y) \chi(t-s, y, B) . \tag{7.14}
\end{equation*}
$$

${ }^{31)}$ cf. J.E. Moyal [9], theorems in \$82-8.
(iii) For given χ_{0} and Ψ, χ is the minimal non-negative solution of (7.14), and if

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Psi_{r}(x ; t, S)=0 \tag{7.15}
\end{equation*}
$$

holds, then χ is the unique solution of (7.14).
Now let us set

$$
\begin{array}{ll}
T_{t}^{(r)} f(x)=\int_{S} \chi_{r}(t, x, d y) f(y), & r \geqq 0, \\
T_{t} f(x)=\int_{S} \chi(t, x, d y) f(y), & \tag{7.16}
\end{array}
$$

According to (7.2) and (7.13), there exist two Markov processes (but we do not assume the right continuity of sample paths here) X_{t}^{0} and X_{t} whose semi-groups are given by $T_{t}^{(0)}$ and T_{t} respectively. When we consider that there exists a Markov time τ of X_{t} and X_{t}^{0} is the process obtained by the killing of X_{t} at the time τ, it is expected that $\Psi(x ; d t, B)$ denotes $P_{x}\left(\tau \in d s, X_{\tau} \in B\right)$ under certain conditions, where P_{x} denotes the probability measure of X_{t}. About this, we quote from Sirao [17] the following

Lemma 7. 2.32) Let Ψ_{r}, χ_{r} and χ be the functions defined by (7. 6), (7. 7) and (7.12). Let them also satisfy the following conditions: (a) $T_{t}^{(0)}$ given in (7. 16) is strongly continuous on $\boldsymbol{C}_{0}(S)$. (b) $T_{t}^{(r)}$ given in (7.16) maps $\boldsymbol{C}_{0}(S)$ into itself and also we have

$$
\lim _{t \rightarrow 0}\left\|T_{t}^{(r)} f\right\|=0, \quad r \geqq 1, f \in C_{0}(S)
$$

Then it holds that (i) there exists a strong Markov process $X=\left\{X_{t}, \zeta, \mathscr{B}_{t}, P_{x} ; x \in S\right\}$ corresponding to the semi-group T_{t} given in (7.16) whose sample paths are right continuous and quasi left continuous, ${ }^{33)}$ (ii) there exists a ($\mathscr{B}_{t^{-}}$) Markov time τ of X_{t} such that there exists a strong Markov process $X^{0}=\left\{X_{t}^{0}, \tau, \mathscr{B}_{t}^{0}, P_{x}^{0} ; x \in S\right\}$ corresponding to the semi-group $T_{t}^{(0)}$ and X^{0} is the killed process of X at the time τ, and (iii) setting

[^15]$$
\left.\tau_{0}=\tau, \quad \tau_{1}=\tau, \quad \tau_{r+1}=\tau_{r}+\theta_{\tau_{r}} \tau, \quad r \geqq 1,34\right)
$$
we have
\[

$$
\begin{align*}
& P_{x}\left(X_{t} \in B, \tau_{r} \leqq t<\tau_{r+1}\right)=\chi_{r}(t, x, B) \tag{7.17}\\
& P_{x x}\left(X_{\tau_{r}} \in B, \quad \tau_{r} \in d t\right)=\Psi_{r}(x ; d t, B), \tag{7.18}\\
& \quad x \in S, \quad B \in \mathscr{B}(S), t \geqq 0, r \geqq 0 .
\end{align*}
$$
\]

Now let us apply the above lemmas for our case. In the sequel of this section, let E be a locally compact Hausdorff space ${ }^{35)}$ satisfying the second axiom of countability and $X^{\prime}=\left\{X_{t}^{\prime}, \mathscr{B}_{t}^{\prime}, P_{x} ; x \in E\right\}$ be a conservative Feller process. Then the semi-group H_{t} induced by X_{t}^{\prime} is strongly continuous on $\boldsymbol{C}_{0}(E) . .^{36}$ As in $\S 2$, we shall consider the topological sum $S=\bigcup_{p=0}^{\infty} E \times\{p\}$ $=E \times N$, where $N=\{0,1,2, \cdots\}$. Then $S \cup\{\delta\}, \delta$ being an isolated point, is a locally compact Hausdorff space satisfying the second axiom of countability. A point of S and a Borel sub-set of S are denoted by $[x, p]$ and [A, p] respectively, where $A \in \mathscr{B}(E)$.

Let $k(x)$ be a bounded continuous function on E and let $k(x)=k^{+}(x)-k^{-}(x)$ where $k^{+}(x)=\max (k(x), 0)$ and $k^{-}(x)=\max (-k(x), 0)$. Then

$$
\begin{align*}
& \varphi_{t}(w)=\int_{0}^{t}\left|k\left(X_{s}^{\prime}(w)\right)\right| d s, \\
& \varphi_{t}^{+}(w)=\int_{0}^{t} k^{+}\left(X_{s}^{\prime}(w)\right) d s, \tag{7.19}\\
& \varphi_{t}^{-}(w)=\int_{0}^{t} k^{-}\left(X_{s}^{\prime}(w)\right) d s,
\end{align*}
$$

are non-negative additive functionals of X^{\prime} and hence we can consider the $\exp \left(-\varphi_{t}\right)$ sub-process of X^{\prime}, which will be denoted by $X^{0}=\left\{X_{t}^{0}, \sigma, \mathscr{B}_{t}^{0}, P_{x}^{0} ; x \in E\right\}$. Then it trivially holds that

$$
\begin{gather*}
P_{x}^{0}\left(X_{t}^{0} \in B\right)=P_{x}^{0}\left(X_{t}^{0} \in B, t<\sigma\right)=E_{x}\left[e^{-\varphi} ; X_{t}^{\prime} \in B\right], \tag{7.20}\\
x \in E, B \in \mathscr{B}(E),
\end{gather*}
$$

[^16]where E_{x} denotes the integral by P_{x}.
Now let us set
\[

\chi_{0}(t,[x, p],[B, q])= $$
\begin{cases}\delta_{p q} P_{x}^{0}\left(X_{t}^{0} \in B\right), & x \in E, \tag{7.21}\\ 0 & , \text { if }[x, p]=\delta \text { and } \delta \notin[B, q], \\ 1 & , \text { if }[x, p]=\delta \text { and } \delta \in[B, q],\end{cases}
$$
\]

and
(7. 22) $\Psi([x, p] ; d t,[B, q])=\left\{\begin{array}{l}E_{x}\left[e^{-\varphi_{t} t \varphi_{t}^{+}} d t ; X_{t}^{\prime} \in B\right], \text { if } x \in E \text { and } q=p+1, \\ E_{x}\left[e^{\left.-\varphi_{t} \frac{d \varphi_{t}^{-}}{d t} d t\right],} \text { if } x \in E \text { and } \delta \in[B, q],\right. \\ 0 \quad, \quad \text { otherwise, }{ }^{37)} \\ {[x, p] \in S,[B, q] \in \mathscr{B}(S \cup\{\delta\}),}\end{array}\right.$
where $\delta_{p q}$ denotes Kroncecker's delta. Then χ_{0} is a measure on $\mathscr{B}(S \cup\{\delta\})$ with parameters t and $[x, p] \in S \cup\{\dot{\delta}\}$ and Ψ is a measure on $\mathscr{B}([0, \infty) \times S \cup\{\grave{\jmath}\})$ with parameter $[x, p] \in S \cup\{\delta\}$. Moreover $\chi_{0}(t,[x, p],[B, p+q])$ and $\Psi([x, p]$; $d t,[B, p+q+1])$ are independent of p and vanish for $q \neq 0$. Let also set

$$
\begin{align*}
\Psi([x, p] ; t,[B, q]) & =\int_{0}^{t} \Psi([x, p] ; d s,[B, q]), \tag{7.23}\\
{[x, p] } & \in S \cup\{\dot{\delta}\}, t \geqq 0,[B, q] \in \mathscr{B}(S \cup\{\delta\}\}] .
\end{align*}
$$

Then we have
Lemma 7. 3. Let $\chi_{0}([x, p], t, \cdot)$ and $\Psi([x, p] ; t, \cdot)$ be measures given in (7.21) and (7.23) respectively. Then they satisfy the Moyal's $\chi_{0} \Psi$-condition.

Proof. By the definition of χ_{0} and $\Psi, \chi_{0}(t, \delta,\{\delta\})=1$ and $\Psi(\delta ; t, S)=0$ for any $t \geqq 0$. So it suffices to show that the conditions (7.2) - (7.5) hold for $[x, p] \in S$.

Since X_{t}^{0} is a Markov process and $\chi_{0}([x, p], t,[\cdot, p])$ corresponds to the transition function of X_{t}^{0}, (7.2) holds evidently.

Combining (7.22) and (7.23), we can see that

$$
\Psi([x, p] ; t, S \cup\{\delta\})=E_{x}\left[\int_{0}^{t} e^{-\varphi_{s}} d\left(\varphi_{s}^{+}+\varphi_{s}^{-}\right)\right]
$$

[^17]\[

$$
\begin{aligned}
& =E_{x}\left[\int_{0}^{t}\left(-d e^{-\varphi_{s}}\right)\right] \\
& =E_{x}\left[1-e^{-\varphi_{t}}\right] \\
& =1-\chi_{0}(t,[x, p], S \cup\{\delta\}), \quad[x, p] \in S,
\end{aligned}
$$
\]

which proves (7.3).
Now set $B^{+}=B \cap\{x ; k(x) \geqq 0\} \quad$ and $B^{-}=B \cap\{x ; k(x)<0\}$ for any $B \in \mathscr{B}(E)$. Then we have

$$
\begin{aligned}
& \Psi([x, p] ; t+s,[B, p+1]) \\
= & E_{x}\left[\int_{0}^{t+s} e^{-\varphi_{v}} I_{B}\left(\left(X_{v}^{\prime}\right) d \varphi_{v}^{+}\right]\right. \\
= & E_{x}\left[\int_{0}^{t} e^{-\varphi_{v}} I_{B}\left(X_{v}^{\prime}\right) d \varphi_{v}^{+}\right]+E_{x}\left[e^{-\varphi} E_{X_{t}^{\prime}}\left[\int_{0}^{s} e^{-\varphi_{v}} I_{B}\left(X_{v}^{\prime}\right) d \varphi_{v}^{\dagger}\right]\right] \\
= & \Psi([x, p] ; t,[B, p+1])+\int_{E} \chi_{0}(t,[x, p],[d y, p]) \Psi([y, p] ; s,[B, p+1]) \\
= & \Psi([x, p] ; t,[B, p+1])+\int_{S \cup\{\bar{\delta}\}} \chi_{0}(t,[x, p],[d y, q]) \Psi([y, q] ; s,[B, p+1]), \\
& \quad[x, p] \in S, t, s \geqq 0, B \in \mathscr{B}(E),
\end{aligned}
$$

where I_{B} denotes the indicator function of B. Similarly we get

$$
\begin{aligned}
& \Psi([x, p] ; t+s,\{\delta\}) \\
= & \Psi([x, p] ; t,\{\delta\})+\int_{S \cup\{\delta\}} \chi_{0}(t,[x, p],[d y, q]) \Psi([y, q] ; s,\{\delta\}) .
\end{aligned}
$$

The above two equations prove (7. 4), because $\chi_{0}(t,[x, p],[B, q])=\Psi([x, p]$; $t,[B, q+1])=0$ for $p \neq q, B \in \mathscr{B}(E)$.

Since (7.5) is evident by the definition of Ψ, we have proved the lemma. Q.E.D.

Now let us set
$\Psi_{1}([x, p] ; d t,[B, q])=\Psi([x, p] ; d t,[B, q])$,
$\Psi_{r+1}([x, p] ; d t,[B, q])=\int_{0}^{t} \int_{S \cup\{\delta\}} \Psi_{r}\left([x, p] ; d s,\left[d y, p^{\prime}\right]\right) \Psi\left(\left[y, p^{\prime}\right] ; d(t-s),[B, q]\right)$,
$\Psi_{r}([x, p] ; t,[B, q])=\int_{0}^{t} \Psi_{r}([x, p] ; d s,[B, q])$,
(7. 24)

$$
\chi_{r}(t,[x, p],[B, q])=\int_{0}^{t} \int_{S \cup\{\delta\}} \Psi_{r}\left([x, p] ; d s,\left[d y, p^{\prime}\right]\right) \chi_{0}\left(t-s,\left[y, p^{\prime}\right],[B, q]\right),
$$

$$
\begin{aligned}
\chi(t,[x, p],[B, q]) & =\sum_{r=0}^{\infty} \chi_{r}(t,[x, p],[B, q]), \\
r & \geqq 1,[x, p] \in S \cup\{\delta\},[B, q] \in \mathscr{B}(S \cup\{\delta\}], t \geqq 0 .
\end{aligned}
$$

Then we may apply Lemma 7.1 for our χ_{r}, Ψ_{r} and χ.
Lemma 7. 4. Let Ψ_{r} be defined in (7. 24). Then we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Psi_{r}([x, p] ; t, S \cup\{\delta\})=0, \tag{7.25}
\end{equation*}
$$

for any $t \geqq 0$.
Proof. When $[x, p]=\delta,(7.25)$ is evident. Let $[x, p] \in S$ and let $B \in \mathscr{B}(E)$. First we shall prove
 $r \geqq 1$.

By the definition of Ψ_{1}, (7.26) holds for $r=1$. Assume that (7.26) holds for r. Then we can obtain from Lemma 7.1 and the strong Markov property of X^{\prime} that

$$
\begin{aligned}
& \Psi_{r+1}([x, p] ; t,[B, p+r+1]) \\
= & \int_{0}^{t} \int_{0}^{v} \int_{S \cup\{\delta\}} \Psi_{1}([x, p] ; d s,\lceil d y, q]) \Psi_{r}([y, q] ; d(v-s),[B, p+r+1]) \\
= & \int_{0}^{t} \int_{E} \Psi_{1}([x, p] ; d s,[d y, p+1]) \Psi_{r}([y, p+1] ; t-s,[B, p+r+1]) \\
= & E_{x}\left[\int _ { 0 } ^ { t } e ^ { - e _ { s } } d \varphi _ { s } ^ { + } E _ { X _ { s } ^ { \prime } } \left[\int_{0}^{t-s} \int_{s_{1}}^{t-s} \cdots \int_{s_{r-1}}^{t-s} e^{\left.\left.-\varphi_{s} I_{B}\left(X_{s_{r}}^{\prime}\right) d \varphi_{s_{1}}^{+} d \varphi_{s_{2}}^{+} \cdots d \varphi_{s_{r}}^{+}\right]\right]}\right.\right. \\
= & E_{x}\left[\int_{0}^{t} \int_{v_{1}}^{t} \cdots \int_{v_{r}}^{t} e^{\left.-\varphi_{v_{r+1}} I_{B}\left(X_{v_{r+1}}^{\prime}\right) d \varphi_{v_{1}}^{+} d \varphi_{v_{2}}^{+} \cdots d \varphi_{v_{r+1}}^{+}\right]}\right.
\end{aligned}
$$

which shows the validity of (7.26) for $r+1$. So we can see inductively the validity of (7.26) for any $r \geqq 0$.

Similarly we get

$$
\begin{aligned}
& \Psi_{r}([x, p] ; t,\{\delta\}) \\
& =E_{x}\left[\left[\int_{0}^{t} \int_{s_{1}}^{t} \cdots \int_{s_{r-1}}^{t} e^{-\varphi_{s+}} d \varphi_{s_{1}}^{+} d \varphi_{s_{2}}^{+} \cdots d \varphi_{s_{r-1}}^{+} d \varphi_{s_{r}}^{-}\right], \quad r \geqq 0 .\right.
\end{aligned}
$$

Combining (7.26) with the above equation, we have

$$
\begin{aligned}
& \Psi_{r}([x, p] ; t, S \cup\{\delta\}) \\
& =E_{x}\left[\int_{0}^{t} \int_{s_{1}}^{t} \cdots \int_{s_{r-1}}^{t} e^{-\varphi_{s_{r}}} d \varphi_{s_{1}}^{+} d \varphi_{s_{2}}^{+} \cdots d \varphi_{s_{r-1}}^{+} d \varphi_{s_{r}}\right], \quad r \geqq 1
\end{aligned}
$$

Since $k(x)$ is bounded on E, it follows from the definitions of $\varphi_{s}, \varphi_{s}^{+}, \varphi_{s}^{-}$ and the above equation that

$$
\begin{equation*}
\Psi_{r}([x, p] ; t, S \cup\{\delta\}) \leqq \frac{(\|k\| t)^{r}}{r!}, \quad r \geqq 1 \tag{7.27}
\end{equation*}
$$

which proves the lemma.
Q.E.D.

Here we note that

$$
\chi(t,[x, p], S \cup\{\delta\})=1, \quad[x, p] \in S \cup\{\delta\}
$$

which follows from (7.11), (7.12) and (7.25).
Let us now consider the function space

$$
\boldsymbol{C}_{0}(S \cup\{\hat{\delta}\})=\left\{f ; f(\delta)=0,\left.f\right|_{s} \in \boldsymbol{C}_{0}(S)\right\},
$$

where $\left.f\right|_{s}$ denotes the restricted function of f on S. Let also V_{t} be the operator defined by

$$
\begin{align*}
V_{t} f([x, p]) & =\int_{S \cup\{\delta\}} \chi(t,[x, p],[d y, q]) f([y, q]), \tag{7.28}\\
& f \in C_{0}(S \cup\{\delta\}),[x, p] \in S \cup\{\delta\}, t \geqq 0 .
\end{align*}
$$

Then we have
Theorem 7. 1. Let H_{t} be the semi-group on $C_{0}(E)$ induced by the Feller process X_{t}^{\prime}. Then V_{t} mentioned above is a strongly continuous and non-negative contraction semi-group on $\boldsymbol{C}_{0}(S \cup\{\delta\})$.

Proof. Let us set
(7. 29) $\quad V_{t}^{0} f([x, p])=\int_{S \cup\{\delta\}} \chi_{0}(t,[x, p],[d y, q]) f([y, q]), \quad f \in C_{0}(S \cup\{\hat{\delta}\}), t \geqq 0$.

Then it holds by the definition (7.21) that

$$
\begin{equation*}
V_{t}^{0} f([x, p])=E_{x}\left[e^{-\int_{0}^{t}\left|k\left(X_{s}^{\prime}\right)\right| d s} f\left(\left[X_{t}^{\prime}, p\right]\right)\right], \quad[x, p] \in S, \tag{7.30}
\end{equation*}
$$

where $f([x, p])$ is considered as a function on E for fixed p. Since H_{t} is strongly continuous on $\boldsymbol{C}_{0}(E)$ and $k(x)$ is bounded continuous on E, theright hand side of (7.30) belongs to $\boldsymbol{C}_{0}(E)$ as a function of $x \in E$. Hence
the semi-group V_{t}^{0} is strongly continuous on $C_{0}(S \cup\{\delta\})$, because $V_{t}^{0} f(\delta)=f(\boldsymbol{\delta})$ for $t \geqq 0$.

On the other hand, we can see from Lemma 7.1 and Lemma 7. 3 that

$$
\begin{aligned}
\left\|V_{t}-V_{t}^{0}\right\| & =\sup _{[x, p] \in S} \int_{0}^{t} \int_{S \cup\{\delta\}} \Psi([x, p] ; d s,[d y, q]) x(t-s,[y, q], S \cup\{\delta\}) \\
& =\sup _{[x, p] \in S} \sum_{r=1}^{\infty} \int_{0}^{t} \int_{S \cup\{\delta\}} \Psi_{r}([x, p] ; d s,[d y, q]) \chi_{0}(t-s,[y, q], S \cup\{\delta\}) \\
& \leqq \sup _{[x, p] \in S} \sum_{r=1}^{\infty} \Psi_{r}([x, p] ; t, S \cup\{\delta\})
\end{aligned}
$$

Applying (7.27) to the right hand side of the above inequality, we have

$$
\begin{equation*}
\left\|V_{t}-V_{t}^{0}\right\| \leqq \sum_{r=1}^{\infty} \frac{(\|k\| t)^{r}}{r!}=e^{\|k\| t}-1, \quad t \geqq 0 \tag{7.31}
\end{equation*}
$$

Next we shall prove that V_{t} maps $\left.\left.\boldsymbol{C}_{0}(S \cup\} \delta\right\}\right)$ into itself. Set

$$
V_{\iota}^{(r)} f([x, p])=\int_{S \cup\{\delta\}} \chi_{r}(t,[x, p],[d y, q]) f([y, q]), f \in \boldsymbol{C}_{0}(S \cup\{\delta\}), r \geqq 0, t \geqq 0
$$

As was proved already, $V_{t}^{(0)}=V_{t}^{0}$ maps $\boldsymbol{C}_{0}(S \cup\{\hat{\delta}\})$ into itself. Accordingly, we may use the mathematical induction. Assume that $V_{t}^{(r)}$ maps $C_{0}(S \cup\{\dot{\delta}\})$ into itself. Setting $k^{+}([x, p])=k^{+}(x)$ for $x \in E$ and $k^{+}(\delta)=0$, we can see from (7.9) that

$$
\begin{aligned}
& V_{t}^{(r+1)} f([x, p]) \\
= & \int_{S \cup\{\delta\}} \int_{0}^{t} \int_{S \cup\{\delta \delta\}} \Psi([x, p] ; d s,[d y, q]) \chi_{r}\left(t-s,[y, q],\left[d z, q^{\prime}\right]\right) f\left(\left[z, q^{\prime}\right]\right) \\
= & \int_{0}^{t} \int_{S \cup\{\delta\}} \Psi([x, p] ; d s,[d y, q]) V_{t-s}^{(r)} f([y, q]) \\
= & \int_{0}^{t} E_{x}\left[e ^ { - \int _ { 0 } ^ { s } | k (X _ { v } ^ { \prime }) | d v } k ^ { + } \left(\left[\left[X_{s}^{\prime}, p+1\right]\right) V_{t-s}^{(r)} f\left(\left[X_{s}^{\prime}, p+1\right]\right) d s\right.\right. \\
= & \int_{0}^{t} V_{s}^{0}\left(k^{+} V_{t-s}^{(r)} f\right)([x, p+1]) d s, \quad f \in C_{0}(S \cup\{\delta\}),[x, p] \in S .
\end{aligned}
$$

Since $\left\|V_{t-s}^{(r)} f\right\| \leqq\|f\|$ and $V_{s}^{0}\left(k^{+} V_{t-s}^{(r)} f\right) \in C_{0}(S \cup\{\delta\})$, the above equation shows that $\left.\left(V_{t}^{(r+1)} f\right)\right|_{s} \in \boldsymbol{C}_{0}(S)$. Also $\Psi(\dot{\delta} ; \cdot, \cdot)=0$, and hence the above equation shows that $V_{t}^{(r+1)} f \in \boldsymbol{C}_{0}(S \cup\{\dot{\partial}\})$. Thus we can see that $V_{t}^{(r)} f \in \boldsymbol{C}_{0}(S \cup\{\dot{\delta}\})$ for any $f \in C_{0}(S \cup\{\delta \delta)$ and $r \geqq 1$.

Now the function

$$
V_{t} f([x, p])=\sum_{r=0}^{\infty} V_{t}^{(r)} f([x, p]), \quad f \in C_{0}(S \cup\{\delta\}), t \geqq 0,
$$

belongs to $\boldsymbol{C}_{0}(S \cup\{\dot{\delta}\})$, because $V_{t}^{(r)} f \in \boldsymbol{C}_{0}(S \cup\{\delta\})$ and, by (7.27),

$$
\begin{equation*}
\left\|V_{t}^{(r)} f\right\| \leqq \frac{(\|k\| t)^{r}}{r!}\|f\| \tag{7.32}
\end{equation*}
$$

holds for any $r \geqq 1$. Hence the strong continuity of V_{t}^{0} on $C_{0}(S \cup\{\delta \delta)$, (7.31) and (7.13) prove that V_{t} is a strongly continuous semi-group on $\boldsymbol{C}_{0}(S \cup\{\delta\})$.

The non-negative property of V_{t} follows from the definitions of χ and χ_{r} and the contractive property of V_{t} follows from (7.11). Q.E.D.

New let us consider Markov processes on $S \cup\{\delta\}$. Since V_{t}^{0} and $V_{t}^{(r)}$ satisfy the conditions (a) and (b) in Lemma 7.2, there exist two strong Markov processes $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p]} ;[x, p] \in S \cup\{\delta\}\right\}$ and $Y^{0}=\left\{Y_{t}^{0}=\left[X_{t}^{0}, N_{t}^{0}\right], \zeta^{0}, \mathscr{B}_{t}^{0}, P_{[x, p]}^{0} ;[x, p] \in S \cup\{\delta \partial\}\right\}$ corresponding to the semigroups V_{t} and V_{t}^{0} respectively and a Markov time τ of Y_{t} such that

$$
Y_{t}^{0}(w)=\left\{\begin{array}{cc}
Y_{t}(w), & \text { if } t<\tau \tag{7.33}\\
\delta, & \text { if } t \geqq \tau
\end{array}\right.
$$

Also, we may assume that the sample paths of Y_{t} are right continuous and quasi left continuous and, by Lemma 7.1 and Lemma 7.4, Y_{t} is a conservative Markov process. Let us set

$$
\begin{equation*}
\sigma_{r}(w)=\inf \left\{t>0 ; N_{t}(w)=N_{0}(w)+r\right\}, \quad r \geqq 0 \tag{7.34}
\end{equation*}
$$

Then we have
Theorem 7.2. Let χ_{r} and Ψ_{r} be measures given in (7.2). Let also $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \mathscr{B}_{t}, P_{[x, p]} ;[x, p] \in S \cup\{\delta\}\right\}$ be the strong Markov process mentioned above and let σ_{r} be the Markov time given in (7.34). Then we have

$$
\begin{equation*}
P_{[x, p]}\left(Y_{t} \in B, \quad \sigma_{r} \leqq t<\sigma_{r+1}\right)=\chi_{r}(t,[x, p], B) \tag{7.35}
\end{equation*}
$$

$$
\begin{align*}
& P_{\left[x, p_{j}\right.}\left(Y_{\sigma_{r}} \in B, \sigma_{r} \in d t\right)=\Psi_{r}([x, p] ; d t, B), \tag{7.36}\\
& \quad[x, p] \in S \cup\{\grave{\delta}\}, B \in \mathscr{B}(S \cup\{\sigma\}), r \geqq 0 .
\end{align*}
$$

Proof. If $[x, p]=\delta$, then (7.35) and (7.36) hold evidently. So we shall
prove them for $[x, p] \in S$. Since it follows from the definitions of χ_{r} and Ψ that

$$
\chi_{r}(t,[x, p],[E, p])=0, \quad[x, p] \in S, r \geqq 1
$$

we have

$$
\begin{aligned}
P_{[x, p]}\left(Y_{t} \in B, t<\sigma_{1}\right) & =P_{[x, p]}\left(Y_{t} \in B, N_{t}=p, t<\sigma_{1}\right) \\
& \leqq \chi_{0}(t,[x, p], B) \\
& =P_{[x, p]}\left(Y_{t} \in B, t<\tau\right), \quad B \in \mathscr{B}(S \cup\{\delta\}),
\end{aligned}
$$

and hence

$$
\begin{equation*}
P_{[x, p]}\left(\sigma_{1} \leqq \tau\right)=1, \quad[x, p] \in S \tag{7.37}
\end{equation*}
$$

On the other hand, $\chi_{0}(t,[x, p], \cdot)$ vanishes on $S \cup\{\delta\}-E \times\{p\}$ for any fixed $t \geqq 0$. Hence we have

$$
\begin{array}{r}
P_{[x, p]}\left(N_{t}=p, t<\tau\right)=P_{[x, p]}^{0}\left(N_{t}^{0}=p, t<\tau\right)=P_{[x, p]}(t<\tau), \\
{[x, p] \in S,}
\end{array}
$$

which means

$$
P_{[x, p]}\left(\tau \leqq \sigma_{1}\right)=1, \quad[x, p] \in S
$$

Combining (7.37) with the above equation, we can see that

$$
P_{[x, p]}\left(\tau=\sigma_{1}\right)=1,
$$

and accordingly

$$
P_{[x, p]}\left(\tau_{r}=\sigma_{r}\right)=1, \quad[x, p] \in S, r \geqq 0
$$

where $\tau_{0}=0, \tau_{1}=\tau$ and $\tau_{r+1}=\tau_{r}+\theta_{\tau_{r}} \tau$.
The theorem follows from Lemma 7. 2 immediately.
Q.E.D.

Let us now consider the function defined by

$$
\widehat{f \cdot \lambda}([x, p])=\left\{\begin{array}{cl}
\lambda^{p} f(x), & {[x, p] \in S} \\
0, & {[x, p]=\delta}
\end{array}\right.
$$

for any $f \in \boldsymbol{B}(E)$ and $\lambda \geqq 0$. Then it follows from (7.12) and (7. 32) that

$$
\begin{aligned}
V_{t}|\widehat{f \cdot \lambda}|([x, p]) & =\sum_{r=0}^{\infty} \int_{[E, p+r]} \chi_{r}(t,[x, p],[d y, p+r])|\widehat{f \cdot \lambda}|([y, p+r]) \\
& \leqq \lambda^{p}\|f\| \sum_{r=0}^{\infty} \frac{(\lambda\|k\| t)^{r}}{r!} \\
& =\lambda^{p}\|f\| e^{\lambda\|k\| t}<\infty .
\end{aligned}
$$

Theorem 7. 3. Let V_{t}^{0}, V_{t} and Ψ be semi-groups and measure given in (7.29), (7.28) and (7.22) respectively. Let also $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \mathscr{B}_{t}, P_{[x, p]}\right.$; $[x, p] \in S \cup\{\hat{\partial}\}\}$ be a conservative strong Markov process corresponding to V_{t}. Then the function $u(t, x)=V_{t} \widehat{f \cdot \lambda}([x, 0])$ is a solution of the following integral equation

$$
\begin{gather*}
u(t, x)=V_{t}^{0} \widehat{f \cdot \lambda}+\lambda \int_{0}^{t} \int_{E} u(t-s, y) \Psi([x, 0] ; d s,[d y, 1]), \tag{7.39}\\
x \in E, \quad t \geqq 0, \lambda \geqq 0, \quad f \in C_{0}(E),
\end{gather*}
$$

with initial value $u(0+, x)=f(x)$.
Proof. By (7.38), $V_{t} \widehat{f \cdot \lambda}([x, 0])$ is bounded on $[0, T] \times\{S \cup\{\delta\}\}$ for any given $T>0$. Then we have

$$
\begin{aligned}
V_{t} \widehat{f \cdot \lambda}([x, 0]) & \left.=E_{[x, 0]} \widehat{f \cdot \lambda}\left(Y_{t}\right) ; t<\sigma\right]+E_{[x, 0]}\left[V_{t-\sigma} \widehat{f \cdot \lambda}\left(Y_{\sigma}\right) ; \sigma \leqq t\right] \\
& =V_{t}^{0} \widehat{f \cdot \lambda}([x, 0])+\int_{0}^{t} \int_{E} \Psi([x, 0] ; d s,[d y, 1]) V_{t-s} \widehat{f \cdot \lambda}([y, 1]) .
\end{aligned}
$$

Since $V_{t} \widehat{f \cdot \lambda}([x, p])=\lambda^{p} V_{t} \widehat{f \cdot \lambda}([x, 0])$, we can see that $u(t, x)=V_{t} \widehat{f \cdot \lambda}([x, 0])$ satisfies (7.39). Moreover, V_{t}^{o} is a strongly continuous semi-group on $\boldsymbol{C}_{0}(S \cup\{\grave{\partial}\})$ and hence we have

$$
\begin{equation*}
\lim _{(t, x) \rightarrow\left(0, x_{0}\right)} V_{t} \widehat{f \cdot \lambda}([x, 0])=\lim _{(t, x) \rightarrow\left(0, x_{0}\right)} V_{t}^{0} \widehat{f \cdot \lambda}([x, 0])=\widehat{f \cdot \lambda}\left(\left[x_{0}, 0\right]\right)=f\left(x_{0}\right) . \tag{7.40}
\end{equation*}
$$

Thus we have proved the theorem.
Q.E.D.

Corollary 7.1. Let X^{\prime} be a standard Brownian motion on R^{d}. If $k(x)$ is a bounded continuous function on R^{d}, then $u(t, x)=V_{t} \widehat{f \cdot 2}([x, 0])$ is a solution of the following differential equation

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=-\frac{1}{2} \Delta u(t, x)+k(x) u(t, x), \quad x \in R^{d}, t \geqq 0 \tag{7.41}
\end{equation*}
$$

with initial value $f \in \boldsymbol{C}\left(R^{d}\right)$.
Proof. By the definition of Ψ, we have

$$
\begin{gathered}
\Psi([x, 0] ; d t,[B, 1])=E_{x}\left[e^{-\int_{0}^{t}\left|k\left(X_{s}^{\prime}\right)\right| d s} k^{+}\left(X_{t}^{\prime}\right) I_{B}\left(X_{t}^{\prime}\right)\right] d t, \\
x \in R^{d}, B \in \mathscr{B}\left(R^{d}\right),
\end{gathered}
$$

where E_{x} denotes the integral by the probability measure of a standard Brownian motion X_{t}^{\prime}. Then it follows from Theorem 7.3 that

$$
\begin{align*}
u(t, x) & =V_{t}^{0} \widehat{f \cdot 2}([x, 0])+2 \int_{0}^{t} \int_{E \times\{1\}} \Psi([x, 0] ; d(t-s),[d y, 1]) u(s, y) \tag{7.42}\\
& =u_{0}(t, x)+v(t, x),
\end{align*}
$$

where

$$
u_{0}(t, x)=E_{x}\left[e^{-2 \int_{0}^{t}\left|k\left(X_{s}^{\prime}\right)\right| d s} f\left(X_{t}^{\prime}\right)\right]
$$

and

$$
v(t, x)=2 \int_{0}^{t} E_{x}\left[e^{-2 \int_{0}^{t-s}\left|k\left(X_{v}^{\prime}\right)\right| d v} k^{+}\left(X_{t-s}^{\prime}\right) u\left(s, X_{t-s}^{\prime}\right)\right] d s
$$

On the other hand, by Kac's theorem, ${ }^{38)}$ we have

$$
\frac{\partial u_{0}(t, x)}{\partial t}=\frac{1}{2} \Delta u_{0}(t, x)-|k(x)| u_{0}(t, x),
$$

and

$$
\begin{gathered}
\frac{\partial v(t, x)}{\partial t}=2 k^{+}(x) u(t, x)+\int_{0}^{t} \Delta E_{x}\left[e^{-2 \int_{0}^{t-s}\left|k\left(X_{v}^{\prime}\right)\right| d v} k^{+}\left(X_{t-s}^{\prime}\right) u\left(s, X_{t=s}^{\prime}\right)\right] d s \\
-|k(x)| v(t, x) .
\end{gathered}
$$

Combining (7. 42) with the above two equations, we have

$$
\begin{aligned}
\frac{\partial u(t, x)}{\partial t} & =\frac{1}{2} \Delta u_{0}(t, x)-|k(x)| u_{0}(t, x)+2 k^{+}(x) u(t, x)+\frac{1}{2} \Delta v(t, x)-|k(x)| v(t, x) \\
& =\frac{1}{2} \Delta u(t, x)+\left(2 k^{+}(x)-|k(x)|\right) u(t, x) \\
& =\frac{1}{2} \Delta u+k(x) u(t, x)
\end{aligned}
$$

[^18]Since $u(0+, x)=f(x)$, the above equation proves the corollary.

> Q.E.D.

§ 8. Construction of a signed branching Markov processes with

 age (II).According to Theorem 5.1, a strong Markov process on $\tilde{\boldsymbol{S}}$ satisfying Condition 3 is a signed branching Markov process with age. We shall construct such a process in this section.

Let E be a compact Hausdorff space satisfying the second axiom of countability, and consider $S^{(n)}, S^{n}, \widehat{S}$ and $\tilde{\boldsymbol{S}}$ defined in $\S 2$. We shall define the mapping γ from $\bigcup_{n=0}^{\infty} \boldsymbol{S}^{(n)}$ into \hat{S} by

$$
\gamma\left(\left(x_{1}, p_{1}\right),\left(x_{2}, p_{2}\right), \cdots,\left(x_{n}, p_{n}\right)\right)=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right] \in S^{n} .
$$

Let $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$ be a system of pairs of non-negative continuous functions on E such that

$$
\begin{equation*}
k(x)=\sum_{n=0}^{\infty}\left\{q_{n}^{+}(x)+q_{n}^{-}(x)\right\}, \quad x \in E, \tag{8.1}
\end{equation*}
$$

is bounded continuous on E, and

$$
\begin{equation*}
q_{n}^{+}(x) q_{n}^{-}(x)=0, \quad x \in E, n=0,1,2, \cdots \tag{8.2}
\end{equation*}
$$

Further let X_{t}^{\prime} be a conservative Feller process on E, H_{t} be the strongly continuous semi-group on $\boldsymbol{C}(E)$ induced by X_{t}^{\prime}, and let $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right]\right.$, $\left.\mathscr{B}_{t}, P_{[x, p]} ;[x, p] \in S\right\}$, where $S=E \times N$, be the strong Markov process constructed in $\S 7$ from the system $\left\{k(x), X_{t}^{\prime}\right\}$. (Since $k(x)$ is non-negative, the extra point δ is not needed.) Then, by (i) of Lemma 7. 2, we may assume that almost all sample paths of Y_{t} are right continuous and, for any given Markov time $\tau>0$, they have their left limit $Y_{\tau-}$ at the time τ.

Let us set

$$
k([x, p])=k(x), \quad[x, p] \in S,
$$

and

$$
\varphi_{t}(w)=\int_{0}^{t} k\left(Y_{s}(w)\right) d s
$$

We shall denote the $\exp \left(-\varphi_{t}\right)$ sub-process of Y_{t} by $Y^{0}=\left\{Y_{t}^{0}=\left[X_{t}^{0}, N_{t}^{0}\right], \eta\right.$, $\left.\mathscr{B}_{t}^{0}, P_{[x, p]}^{0} ;[x, p] \in S\right\}$. Let also $Y_{i, t}^{0}, i=1,2, \cdots, n$, be Markov processes
such that their fundamental spaces are identical to the one for Y_{t}^{0}, each of them is stochastically equivalent to Y_{t}^{0} and they are mutually independent to each other. Then the probability measure of the joint process ($Y_{1, t}^{0}, Y_{2, t}^{0}$, $\left.\cdots, Y_{n, t}^{0}\right)$ starting from $\left(\left(x_{1}, p_{1}\right),\left(x_{2}, p_{2}\right), \cdots,\left(x_{n}, p_{n}\right)\right) \in S^{(n)}$ is given by the product measure $P_{\left[x_{1}, p_{2}\right]}^{0} \times P_{\left[x_{1}, p_{2}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}$. Using this product measure, we shall define a measure $\chi_{0}(t,[x, p], \cdot)$ on $\mathscr{B}(\hat{S})$ by

$$
\begin{align*}
& \chi_{0}(t,[x, p],[B, q]) \\
& = \begin{cases}P_{\left[x_{1}, p_{2}\right]}^{0} \times P_{\left[x_{1}, p_{2}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}\left(\left(Y_{1, t}^{0}, Y_{2, t}^{0}, \cdots, Y_{n, t}^{0}\right) \in \gamma^{-1}([B, q])\right), \\
& \text { if }[x, p] \neq \Delta,[\partial, p], \\
1 & , \quad \text { if }[x, p]=[\partial, p] \text { and }[\partial, p] \in[B, q], \\
1 & , \quad \text { if }[x, p]=\Delta \text { and } \Delta \in[B, q], \\
0 & , \quad \text { otherwise },\end{cases} \tag{8.3}
\end{align*}
$$

where $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right], \quad \boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right]$ and $B \in \mathscr{B}(\hat{\boldsymbol{S}})$.
Let us next define a measure $\Psi([\boldsymbol{x}, \boldsymbol{p}, j]) ; \cdot, \cdot)$ on $\mathscr{B}([0, \infty) \times \widetilde{\mathbf{S}})$. Using a given system $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$, we shall define $\pi\left([x, p, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)$ by (4.1). Then a measure $\Psi\left([x, p, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)$ on $\mathscr{B}([0, \infty) \times \widetilde{\boldsymbol{S}})$ is defined by

$$
\begin{align*}
\Psi\left([x, p, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)= & E_{[x, p]}^{0}\left(\pi\left(\left[X_{\eta_{-}}^{\circ}, N_{\eta_{-}}^{\circ}, j\right],\left[B, \boldsymbol{q}, j^{\prime}\right]\right) ; \eta \in d t\right) \tag{8.4}\\
& {[x, p, j] \in S \times J,\left[B, \boldsymbol{q}, j^{\prime}\right] \in \mathscr{B}(\widetilde{\boldsymbol{S}}), }
\end{align*}
$$

where $Y_{t}^{0}=\left[X_{t}^{0}, N_{t}^{0}\right]$ is the Markov process mentioned above, $E_{[x, p]}^{0}$ denotes the integral by the probability measure $P_{[x, p]}^{0}$ of Y_{t}^{0} and $J=\{0,1,2,3\}$. Then we shall extend the parameter space of Ψ to $\widetilde{\boldsymbol{S}}$ as follows:

$$
\begin{equation*}
\Psi(\Delta ; d t, \widetilde{\mathbf{S}})=\Psi([\partial, p, j] ; d t, \widetilde{\mathbf{S}})=0, \quad[\partial, p] \in S^{0} \tag{8.5}
\end{equation*}
$$

and for $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right] \in S^{n}$

$$
\begin{aligned}
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
= & \sum_{i=1}^{n} \int_{S} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d t,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right) \chi_{0}\left(t,\left[\boldsymbol{x}_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}\right],\left[B_{y}, \boldsymbol{q}^{\prime}\right]\right)
\end{aligned}
$$

$$
[B, \boldsymbol{q}] \in \mathscr{B}(\hat{\mathbf{S}}), j, j^{\prime} \in J
$$

$\Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\{\Delta\})=0$,
where χ_{0} is given in (8.3), $\boldsymbol{x}_{i}^{\prime}=\left[x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right], \boldsymbol{p}_{i}^{\prime}=\left[p_{1}, \cdots\right.$,
$\left.p_{i-1}, p_{i+1}, \cdots, p_{n}\right]$, and $\left[B_{y}, \boldsymbol{q}^{\prime}\right]$ denotes the Borel set $\left\{[\boldsymbol{z}, \boldsymbol{r}] \in \hat{\boldsymbol{S}} ; \gamma\left(\gamma^{-1}\left(\left[\boldsymbol{u}, \boldsymbol{p}^{\prime}\right]\right)\right.\right.$ $\left.\times \gamma^{-1}(\boldsymbol{z}, \boldsymbol{r}] \in[B, \boldsymbol{q}]\right\}$.

Now we shall define χ_{0}, χ_{r}, χ and Ψ_{r} by

$$
\begin{align*}
& \Psi_{1}\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
& \left.\Psi_{r+1}\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\int_{0}^{t} \int_{\tilde{S}^{2}} \Psi_{r}([\boldsymbol{x}, \boldsymbol{p}, j]) ; d s,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right]\right) \Psi\left(\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right] ;\right. \\
& \left.d(t-s),\left[B, \boldsymbol{q}, j^{\prime}\right]\right), \\
& \Psi_{r}\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\int_{0}^{t} \Psi_{r}\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[B, \boldsymbol{q}, j^{\prime}\right]\right), \\
& \chi_{0}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\delta_{j, j^{\prime}} \chi_{0}(t,[\boldsymbol{x}, \boldsymbol{p}],[B, \boldsymbol{q}]), \tag{8.7}\\
& \chi_{r}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\int_{0}^{t} \int_{\tilde{s}} \Psi_{r}\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d s,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right]\right) \\
& \chi_{0}\left(t-s,\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right],\left[B, \boldsymbol{q}, j^{\prime}\right]\right), \\
& \chi\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\sum_{r=0}^{\infty} \chi_{r}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right), \\
& {[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\mathbf{S}},\left[B, q, j^{\prime}\right] \in \mathscr{B}(\widetilde{\boldsymbol{S}}), r \geqq 1, t \geqq 0 .}
\end{align*}
$$

Then we have
Lemma 8.1. χ_{0} and Ψ mentioned above satisfy the Moyal's $\chi_{0} \Psi$-condition, i.e. it holds that for any $[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}},\left[B, \boldsymbol{q}, j^{\prime}\right] \in \mathscr{B}(\widetilde{\boldsymbol{S}})$ and $t, s \geqq 0$

$$
\begin{align*}
& \chi_{0}\left(t+s,[\boldsymbol{x}, \boldsymbol{p}, j],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\int_{\tilde{s}} \chi_{0}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right]\right) \tag{8.8}\\
& \cdot \chi_{0}\left(s,\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right],\left[B, \boldsymbol{q}, j^{\prime}\right]\right)
\end{align*}
$$

$$
\begin{equation*}
\Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; \infty, \tilde{\mathbf{S}})=1-\lim _{t \rightarrow \infty} \chi_{0}(t,[\boldsymbol{x}, \boldsymbol{p}, j], \widetilde{\mathbf{S}}) \tag{8.9}
\end{equation*}
$$

$$
\begin{align*}
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t+s,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)=\Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \tag{8.10}\\
& \quad+\int_{\tilde{s}} \chi_{0}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right]\right) \Psi\left(\left[\boldsymbol{u}, \boldsymbol{p}^{\prime}, i\right] ; s,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)
\end{align*}
$$

(8. 11) $\quad \Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; \boldsymbol{t}, \boldsymbol{\mathbf { S }})$ is continuous in t.

Proof. Since (8.8) is evident from the definition of χ_{0} and also (8.9)(8. 11) are evident when $[\boldsymbol{x}, \boldsymbol{p}, j]=\Delta$ or $[\boldsymbol{x}, \boldsymbol{p}, j]=[\partial, p, j]$, we shall prove (8. 9)-(8. 11) for $[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}-\left(S^{0} \times J\right) \cup\{\Delta\}$.

Let $Y_{i, t}^{0}, i=1,2, \cdots, n$, be Markov processes and let $P_{\left[x_{1}, p_{1}\right]}^{0} \times P_{\left[x_{2}, p_{2}\right]}^{0} \times$ $\cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}$ be the probability measure used in (8.3). Then it follows from (8.6) that

$$
\begin{aligned}
& \Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; d t, \widetilde{\mathbf{S}}) \\
= & \sum_{i=1}^{n} \int_{\tilde{s}} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d t,\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) \chi_{0}\left(t,\left[\boldsymbol{x}_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}, 0\right], \tilde{\boldsymbol{S}}\right) \\
= & -d_{t} P_{\left[x_{1}, p_{1}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}\left(\left(Y_{1, t}^{0}, \cdots, Y_{n, t}^{0}\right) \in \gamma^{-1} \hat{\boldsymbol{S}}\right), \\
& \quad[\boldsymbol{x}, \boldsymbol{p}]=\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right] \in S^{n}, n \geqq 1 .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; t, \tilde{\mathbf{S}}) & =-\int_{0}^{t} d_{s} P_{\left[x_{1}, p_{1}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}\left(\left(Y_{1, t}^{0}, \cdots, Y_{n, t}^{0}\right) \in \gamma^{-1} \hat{\mathbf{S}}\right) \\
& =1-\chi_{0}(t,[\boldsymbol{x}, \boldsymbol{p}, j], \widetilde{\mathbf{S}}), \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}}, t \geqq 0
\end{aligned}
$$

which proves (8.9).
We shall next show (8. 10). Considering the process $\left(Y_{1, t}^{0}, \cdots, Y_{n, t}^{0}\right)$ mentioned above, we have for $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$

$$
\begin{aligned}
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t+s,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
= & \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, q, j^{\prime}\right]\right)+\int_{t}^{t+s} \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; d v,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
= & \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
& +\int_{t}^{t+s} \sum_{i=1}^{n} \int_{S} \Psi\left(\left[x_{i}, p_{i}, j\right] ; d v,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right) \chi_{0}\left(v,\left[\boldsymbol{x}_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}, j^{\prime}\right],\left[B_{y}, \boldsymbol{q}^{\prime}, j^{\prime}\right]\right) \\
= & \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)+\int_{0}^{s} \sum_{i=1}^{n} \int_{S^{\prime}} E_{\left[x_{i}, p_{i}\right]}^{0}\left[\Psi\left(\left[X_{i, t}^{0}, N_{i, t}^{0}, j\right] ; d v,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right)\right] \\
& \cdot E_{\left[x_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}\right]}^{0}\left[\chi_{0}\left(v,\left[X_{i, t}^{\prime}, N_{i, t}^{\prime 0}, j^{\prime}\right],\left[B_{y}, \boldsymbol{q}^{\prime}, j^{\prime}\right]\right)\right],
\end{aligned}
$$

where $E_{[\boldsymbol{x}, \boldsymbol{p}]}^{0}$ denotes the integral by $P_{\left[x_{1}, p_{1}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}$ for $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}\right.\right.$, $\left.\left.\cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$ and $\left[X_{i, t}^{\prime}, N_{i, t}^{\prime}\right]$ denotes $\left[Y_{1, t}^{0}, \cdots, Y_{i-1, t}^{0}, Y_{i+1, t}^{0}\right.$, $\left.\cdots, Y_{n, t}^{0}\right]$. Then the right hand side of the above equation is equal to

$$
\begin{aligned}
& \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)+\int_{0}^{s} E_{[\boldsymbol{x}, \boldsymbol{p}]}^{0}\left[\sum_{i=1}^{n} \int_{S} \Psi\left(\left[X_{i, t}^{0}, N_{i, t}^{0}, j\right] ; d v,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, j^{\prime}\right]\right)\right. \\
= & \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right) \\
& \left.+\chi_{0}\left(v,\left[X_{i, t}^{\prime o}, N_{i, t}^{\prime o}, 0\right],\left[B_{y}, \boldsymbol{q}^{\prime}, 0\right]\right)\right] \\
= & \Psi\left([\boldsymbol{x}, \boldsymbol{p}, j] ; t,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)
\end{aligned}
$$

$$
+\int_{\tilde{s}} \chi_{0}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, i\right]\right) \Psi\left([\boldsymbol{y}, \boldsymbol{p}, i] ; s,\left[B, \boldsymbol{q}, j^{\prime}\right]\right)
$$

So we have (8. 10) for any $[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}$.
Now $k(x)$ is bounded continuous and hence $\Psi([x, p, j] ; \cdot, \widetilde{\mathbf{S}})$ is absolutely continuous with respect to the Lebesgue measure on $[0, \infty)$. Then (8.6) proves (8. 11) for any $[\boldsymbol{x}, \boldsymbol{p}, j] \in \boldsymbol{\widetilde { S }}$.

Now we shall consider the linear operators $U_{t}^{(r)}$ and U_{t} on $\boldsymbol{B}(\widetilde{\boldsymbol{S}})$ defined by

$$
\begin{align*}
& U_{t}^{(r)} h([\boldsymbol{x}, \boldsymbol{p}, j])=\int_{\tilde{s}} \chi_{r}\left(t,[\boldsymbol{x}, \boldsymbol{p}, j],\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) h\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right), \\
& \left.U_{t} h([\boldsymbol{x}, \boldsymbol{p}, j])=\int_{\tilde{s}} \chi(t,[\boldsymbol{x}, \boldsymbol{p}, j]),\left[d \boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right) h\left(\left[\boldsymbol{y}, \boldsymbol{q}, j^{\prime}\right]\right), \tag{8.12}
\end{align*}
$$

Further set

$$
\widehat{f \cdot \lambda}([x, p, j])=\widetilde{f \cdot \lambda([x, p, 0])}, \quad f \in \boldsymbol{B}(E),[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}
$$

Then we have
Lemma 8.2. Let $U_{t}^{(0)}$ be the operator defined above. Then $U_{t}^{(0)}$ is strongly continuous on $\boldsymbol{C}_{0}(\widetilde{\mathbf{S}})$.

Proof. By Theorem 7.1, the semi-group V_{t} corresponding to the process $Y_{t}=\left[X_{t}, N_{t}\right]$ on S is strongly continuous on $\boldsymbol{C}_{0}(S)$, while $k([x, p])=k(x)(\geqq 0)$ is bounded and continuous on S. Hence $U_{t}^{(0)}$ is strongly continuous on $\boldsymbol{C}_{0}(S)$.

Now suppose $h \in \boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ and set

$$
\left.h\right|_{S^{n} \times\{j\}}([\boldsymbol{x}, \boldsymbol{p}, j])=\left\{\begin{array}{cl}
h([\boldsymbol{x}, \boldsymbol{p}, j]), & \text { if }[\boldsymbol{x}, \boldsymbol{p}] \in S^{n}, n \geqq 0, \\
0, & \text { otherwise } .
\end{array}\right.
$$

Then we have

$$
\begin{equation*}
U_{t}^{(0)} h([\boldsymbol{x}, \boldsymbol{p}, j])=U_{t}^{0}\left(\left.h\right|_{S^{n} \times J}\right)([\boldsymbol{x}, \boldsymbol{p}, j]), \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in S^{n} \times\{j\}, n \geqq 0 . \tag{8.13}
\end{equation*}
$$

On the other hand, the linear hull of $\left\{\widehat{f \cdot \lambda} ; f \in \boldsymbol{C}^{*}(E), 0 \leqq \lambda<1\right\}$ is dense in $\boldsymbol{C}_{0}(\widehat{\boldsymbol{S}})$ and $\left.U_{t}^{(0)} \widehat{f \cdot \lambda}\right|_{S_{n \times\{j\}}} \in \boldsymbol{C}_{0}\left(S^{n} \times\{j\}\right)$ which follows from $\left.U_{t}^{(0)} \widehat{f \cdot \lambda}\right|_{S^{n \times\{j\}}}$ $=\widehat{\left.\left.\left(U_{t}^{(0)} \widehat{f} \cdot \lambda\right)\right|_{E} \cdot \lambda\right|_{S^{n \times\{j\}}}}$ and $\left.U_{t}^{(0)} \widehat{f \cdot \lambda}\right|_{E} \in C_{0}(S)$. So, for any $\varepsilon>0, n \geqq 0$ and $j \in J$, we can find constants $\alpha_{i}, f_{i} \in C^{*}(E)$ and $0 \leqq \lambda_{i}<1, i=1,2, \cdots, i_{n}$, which may depend on ε, n and j, such that

$$
\begin{equation*}
\| h-\sum_{i=1}^{i_{n}} \alpha_{i}\left(\widehat{\left.f_{i} \cdot \lambda_{i}\right)} \|_{S^{n} \times\{j\}}<\varepsilon^{39)} .\right. \tag{8.14}
\end{equation*}
$$

Then (8.13) and the contraction property of $U_{t}^{(0)}$ imply that $U_{t}^{(0)} h \in \boldsymbol{C}_{0}(\tilde{\mathbf{S}})$.
Next we shall show the strong continuity of $U_{t}^{(0)}$ on $\boldsymbol{C}_{0}(\tilde{\boldsymbol{S}})$. As was stated already, $U_{t}^{(0)}$ is strongly continuous on $C_{0}(S)$. Hence we have

$$
\begin{array}{r}
\left\|U_{t}^{(0)} \widehat{f \cdot \lambda}-\widehat{f \cdot \lambda}\right\|_{S \times J} \rightarrow 0 \text { as } t \rightarrow 0 \tag{8.15}\\
f \in C^{*}(E), 0 \leqq \lambda<1
\end{array}
$$

Then, for any $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$ and $j \in J$, it follows from the definitions of $U_{t}^{(0)}$ and χ_{0} that

$$
\begin{align*}
& \left|U_{t}^{(0)} \widehat{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])-\widehat{f \cdot \lambda}([\boldsymbol{x}, \boldsymbol{p}, j])\right| \\
\leqq & \mid \prod_{i=1}^{n} U_{t}^{(0)} \widehat{f \cdot \lambda}\left(\left[x_{i}, p_{i}, 0\right]\right)-\widehat{\prod_{i=1}^{n} \widehat{f \cdot \lambda}\left(\left[x_{i}, p_{i}, 0\right]\right) \mid} \\
= & \mid \sum_{r=1}^{n}\left\{U_{t}^{(0)} \widehat{f \cdot \lambda}\left(\left[x_{r}, p_{r}, 0\right]\right)-\widehat{f \cdot \lambda}\left(\left[x_{r}, p_{r}, 0\right]\right)\right\} \tag{8.16}\\
& \cdot \prod_{i=1}^{r-1} \widehat{f \cdot \lambda}\left(\left[x_{i}, p_{i}, 0\right)\right] \prod_{i=r+1}^{n} U_{t}^{(0)} \widehat{f \cdot \lambda}\left(\left[x_{i}, p_{i}, 0\right]\right) \mid \\
\leqq & C(f, \lambda)\left\|U_{t}^{(0)} \widehat{f \cdot \lambda}-\widehat{f \cdot \lambda}\right\|_{S \times J}, \quad f \in C^{*}(E), 0 \leqq \lambda<1
\end{align*}
$$

where $C(f, \lambda)$ is a constant defined by

$$
C(f, \lambda)=\sup \left\{n\|\widehat{f \cdot \lambda}\|_{S \times J}^{n-1} ; n=1,2,3, \cdots\right\}
$$

Combining (8.15) and (8.16), we have

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|U_{t}^{c 0} \widehat{f \cdot \lambda}-\widehat{f \cdot \lambda}\right\|_{\tilde{S}}=0, \quad f \in \boldsymbol{C}^{*}(E), 0 \leqq \lambda<1 \tag{8.17}
\end{equation*}
$$

because $U_{t}^{(0)} \widehat{f \cdot \lambda}([\partial, p, j])=\widehat{f \cdot \lambda}([\partial, p, j])$ and $U_{t}^{(0)} \widehat{f \cdot \lambda}(\Delta)=\widehat{f \cdot \lambda}(\Delta)=0$. Then it follows from (8.14) and (8.17) that for any fixed $n \geqq 0$ and $j \in J$

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|\left.U_{t}^{(0)} h\right|_{S^{n \times\{j\}}}-\left.h\right|_{S^{n \times\{j\}}}\right\|_{\tilde{S}}=0, \quad h \in C_{0}(\tilde{\boldsymbol{S}}) \tag{8.18}
\end{equation*}
$$

[^19]On the other hand, h and $U_{t}^{(0)} h$ are elements of $\boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$. Hence there exists an n_{0} such that

$$
\left\|U_{t}^{(0)} h-h\right\|_{\tilde{s}} \leqq \max _{n \leqq n_{0}, j \in J}\left\|\left.U_{t}^{(0)} h\right|_{S^{n \times\{j\}}}-h_{S^{n} \times\{j\}}\right\|_{\tilde{s}}
$$

Therefore we can see from (8.18) that $U_{t}^{(0)}$ is strongly continuous on $\boldsymbol{C}_{0}(\tilde{\boldsymbol{S}})$.
Q.E.D.

Now let $Y_{i, t}=\left[X_{i, t}, N_{i, t}\right], i=1,2, \cdots, n$, be Markov processes on S such that their fundamental spaces are identical to the one of Y_{t}, each of them is stochastically equivalent to $Y_{t}=\left[X_{t}, N_{t}\right]$ and mutually independent to each other. Then the probability measure of the joint process $\left(Y_{1, t}, Y_{2, t}\right.$, $\left.\cdots, Y_{n, t}\right)$ is given by the product measure $P_{\left[x_{1}, p_{1}\right]} \times P_{\left[x_{2}, p_{2}\right]} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}$. The integral by the probability measure $P_{\left[x_{1}, p_{1}\right]} \times P_{\left[x_{2}, p_{2}\right]} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}$ is denoted by $E_{(\boldsymbol{x}, \boldsymbol{p})}$ when $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{n}\right]$. Then the process $Y_{i, t}^{0}$ mentioned already can be considered as the $\exp \left(-\varphi_{t}\right)$ subprocess of $Y_{i, t}$.

We shall next define the set D_{n} by

$$
D_{n}=\left\{\boldsymbol{x} ; \boldsymbol{x}=[x, x, \cdots, x] \in E^{n}\right\}
$$

Then, by (8.4), $\Psi([x, p, 0] ; d s,[\cdot, \boldsymbol{q}, \cdot])$ vanishes outside of $\left(\bigcup_{n=0}^{\infty} D_{n}\right) \times\{1,3\}$. Hence it follows from (8.6) and (8.7) that for $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right]\right.$, $\left.\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$

$$
\begin{aligned}
& \Psi([\boldsymbol{x}, \boldsymbol{p}, 0] ; d t,[B, \boldsymbol{q}, 1]) \\
= & \sum_{i=1}^{n} \int_{\hat{S}} \Psi\left(\left[x_{i}, p_{i}, 0\right] ; d t,\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, 1\right]\right) \chi_{0}\left(t,\left[\boldsymbol{x}_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}, 0\right],\left[B_{y}, \boldsymbol{q}^{\prime}, 0\right]\right) \\
= & \sum_{i=1}^{n} \int_{\hat{S}} E_{\left[x_{i}, p_{t}\right]}^{0}\left[\pi\left(\left[Y_{i, \eta-}^{0}, N_{i, \eta}^{0}, 0\right],\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, 1\right]\right) ; \eta \in d t\right] \\
& \cdot P_{\left[x_{1}, p_{1}\right]}^{0} \times \cdots \times P_{\left[x_{i-1}, p_{i-1}\right]}^{0} \times P_{\left[x_{i+1}, p_{i+1}\right]}^{0} \times \cdots \times P_{\left[x_{n}, p_{n}\right]}^{0}
\end{aligned}
$$

$$
\begin{equation*}
\left(\left(Y_{1, t}^{0}, \cdots, Y_{i-1, t}^{0}, Y_{i+1, t}^{0}, \cdots, Y_{n, t}^{0}\right) \in \gamma^{-1}\left(\left[B_{y}, q^{\prime}\right]\right)\right) \tag{8.19}
\end{equation*}
$$

$$
=\sum_{i=1}^{n} \int_{\hat{S}} E_{\left(x_{i}, p_{i}\right)}\left[e^{-\int_{0}^{t} k\left(Y_{i, t}\right) d s} k\left(Y_{i, t}\right) \pi\left(\left[X_{i, t}, N_{i, t}, 0\right],\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}, 1\right]\right)\right]
$$

$$
\cdot E_{\left(x_{i}^{\prime}, p_{i}^{\prime}\right)}\left[e^{-\sum_{r+i}^{\Sigma} \int_{0}^{t} k\left(Y_{r, s}\right) d s}\right.
$$

$$
\left.\cdot I_{r^{-1}\left(\left[B_{v}, \alpha^{\prime}\right]\right)}\left(Y_{1, t}, \cdots, Y_{i-1, t}, Y_{i+1, t}, \cdots, Y_{n, t}\right)\right] d t
$$

$$
\begin{aligned}
=\int_{\hat{S}} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e^{-} \sum_{i=1}^{n} \int_{0}^{t} k\left(Y_{i, s}\right) d s\right. & \sum_{i=1}^{n}\left\{\sum_{m=0}^{\infty} q_{m}^{+}\left(X_{i, t}\right) \delta_{m}\left(Y_{i, t},\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}\right]\right)\right. \\
& \left.\left.\cdot I_{r^{-1}\left(\left[B_{y,}, \boldsymbol{q}^{\prime}\right]\right)}\left(Y_{1, t}, \cdots, Y_{i-1, t}, Y_{i+1, t}, \cdots, Y_{n, t}\right)\right\}\right] d t,
\end{aligned}
$$

where $\left[\boldsymbol{x}_{i}^{\prime}, \boldsymbol{p}_{i}^{\prime}\right]=\left[\left[x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right],\left[p_{1}, \cdots, p_{i-1}, p_{i+1}, \cdots, p_{n}\right]\right]$ and $\left[B_{y}, \boldsymbol{q}^{\prime}\right]=\left\{[\boldsymbol{z}, \boldsymbol{r}] \in \boldsymbol{S} ; \gamma\left(\gamma^{-1}\left(\left[\boldsymbol{y}, \boldsymbol{p}^{\prime}\right]\right) \times \gamma^{-1}([\boldsymbol{z}, \boldsymbol{r}]) \in[B, \boldsymbol{q}]\right\}\right.$. Similarly, we have

$$
\begin{align*}
& \Psi([\boldsymbol{x}, \boldsymbol{p}, 0] ; d t,[B, \boldsymbol{q}, 3]) \\
= & \int_{\hat{S}} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e ^ { - \sum _ { i = 1 } ^ { n } \int _ { 0 } ^ { t } k (Y _ { i , 2 }) d s } \cdot \sum _ { i = 1 } ^ { n } \left\{\sum_{m=0}^{\infty} q_{m}^{-}\left(X_{i, t}\right) \delta_{m}\left(Y_{i, t},\left[d \boldsymbol{y}, \boldsymbol{p}^{\prime}\right]\right)\right.\right. \tag{8.20}\\
& \left.\left.\cdot I_{\gamma^{-1}\left(\left[B_{v}, \boldsymbol{q}^{\prime}\right]\right)}\left(Y_{1, t}, \cdots, Y_{i-1, t}, Y_{i+1, t}, \cdots, Y_{n, t}\right)\right\}\right] d t .
\end{align*}
$$

Then we have
Lemma 8. 3. Let $U_{t}^{(r)}$ be the operator on $\boldsymbol{B}(\tilde{\boldsymbol{S}})$ given in (8.12). Then $U_{t}^{(r)}$ maps $\boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ into itself. Moreover it holds that

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|U_{t}^{(r)} h\right\|=0, \quad h \in \boldsymbol{C}_{0}(\tilde{\mathbf{S}}), r \geqq 1 \tag{8.21}
\end{equation*}
$$

Proof. We shall first prove that $U_{t}^{(r)} h \in \boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ for any $h \in \boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$. By Lemma 8. 2, $U_{t}^{(0)}$ is strongly continuous on $\boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$. So it suffices to prove that for $h \in \boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}}) U_{t}^{(r+1)} h$ is continuous in $(t,[\boldsymbol{x}, \boldsymbol{p}, j])$ as a function on $[0, \infty) \times \widetilde{\boldsymbol{S}}$ and $U_{t}^{(r+1)} h \in \boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ for any fixed $t \geqq 0$ under the assumption that $U_{t}^{(r)} h$ satisfies the same properties.

Now, by (8.7) and (8.12), we have

$$
U_{t}^{(r+1)} h([x, p, 0])=\int_{0}^{t} \int_{\tilde{s}} \Psi([\boldsymbol{x}, \boldsymbol{p}, 0] ; d s,[d \boldsymbol{y}, \boldsymbol{q}, j]) U_{t-s}^{(r)} h([\boldsymbol{\varphi}, \boldsymbol{q}, j])
$$

Applying (8.19) and (8.20) to the right hand side of the above equation, we can see that for $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$

$$
\begin{align*}
& U_{t}^{(r+1)} h([\boldsymbol{x}, \boldsymbol{p}, 0]) \\
= & \int_{0}^{t} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e^{-\sum_{i=1}^{n} \int_{0}^{s} k\left(\left[X_{i, 0}, N_{i, 0}\right]\right) d v}\right. \tag{8.22}\\
\cdot & \sum_{i=1}^{n} \sum_{m=0}^{\infty}\{q_{m}^{+}\left(X_{i, s}\right) U_{t-s}^{(r)} h([X_{1, s}, \cdots, X_{i-1, s}, \underbrace{X_{i, s}, \cdots, X_{i, s}}_{m}, X_{i+1, s}, \cdots, X_{n, s}], \\
& {[N_{1, s}, \cdots, N_{i-1, s}, N_{i, s}, \underbrace{0,0, \cdots, 0}_{m-1}, N_{i+1, s}, \cdots, N_{n, s}], 1]) }
\end{align*}
$$

$$
\begin{gathered}
+q_{m}^{-}\left(X_{i, s}\right) U_{t-s}^{(r)} h([[X_{1, s}, \cdots, X_{i-1, s}, \underbrace{X_{i, s}, \cdots, X_{i, s}}_{m}, X_{i+1, s}, \cdots, X_{n, s}], \\
\\
[N_{1, s}, \cdots, N_{i-1, s}, N_{i, s}, \underbrace{0,0, \cdots, 0}_{m-1}, N_{i+1, s}, \cdots, N_{n, s}], 3])\}] d s .
\end{gathered}
$$

To prove the right hand side of (8.22) is continuous in $(t,[x, p])$ and also belongs to $\boldsymbol{C}_{0}(\hat{\boldsymbol{S}})$ for any fixed $t \geqq 0$, we consider the following function

$$
\begin{align*}
& \quad g(s ;[\boldsymbol{x}, \boldsymbol{p}]) \\
& =\sum_{i=1}^{n} \sum_{m=0}^{\infty}\{q_{m}^{+}\left(x_{i}\right) U_{s}^{(r)} h([[x_{1}, \cdots, x_{i-1}, \underbrace{x_{i}, \cdots, x_{i}}_{m}, x_{i+1}, \cdots, x_{n}], \\
& \tag{8.23}\\
& \quad[p_{1}, \cdots, p_{i-1}, p_{i}, \underbrace{0, \cdots, 0}_{m-1}, p_{i+1}, \cdots, p_{n}], 1]) \\
& +q_{m}^{-}\left(x_{i}\right) U_{s}^{(r)} h([[x_{1}, \cdots, x_{i-1}, \underbrace{x_{i}, \cdots, x_{i}}_{m}, x_{i+1}, \cdots, x_{n}], \\
&
\end{align*}
$$

where $[\boldsymbol{x}, \boldsymbol{p}]=\left[\left[x_{1}, x_{2}, \cdots, x_{n}\right],\left[p_{1}, p_{2}, \cdots, p_{n}\right]\right]$. By the assumption of induction, $U_{s}^{(r)} h$ is bounded and continuous on $[0, T] \times \widetilde{\boldsymbol{S}}$ for any given $T>0$ and belongs to $\boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ for any fixed $t \geqq 0$. On the other hand, $\sum_{m=0}^{\infty}\left\{q_{m}^{+}(x)+q_{m}^{-}(x)\right\}$ converges to $k(x)$ uniformly on the compact space E because $\left\{q_{m}^{+}(x)+q_{m}^{-}(x)\right\} \geqq 0$ and $k(x)$ is continuous. Hence the right hand side of (8.23) is the sum of uniformly convergent series of continuous functions, and accordingly $g(s ;[\boldsymbol{x}, \boldsymbol{p}])$ is continuous in ($s,[\boldsymbol{x}, \boldsymbol{p}]$). Moreover we can see that $g(s ;[\boldsymbol{x}, \boldsymbol{p}])$ belongs to $\boldsymbol{C}_{0}(\hat{\mathbf{S}})$ for any fixed $t \geqq 0$.

Now we have from (8.22) and (8.23)

$$
\begin{aligned}
& U_{t}^{(r+1)} h([\boldsymbol{x}, \boldsymbol{p}, 0]) \\
= & \int_{0}^{t} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e^{-\sum_{i=1}^{n} \int_{0}^{s} k\left(\left[X_{i, v}, Y_{i, v}\right)\right] d v}\right. \\
& \left.\cdot g\left(t-s ;\left[\left[X_{1, s}, X_{2, s}, \cdots, X_{n, s}\right],\left[N_{1, s}, N_{2, s}, \cdots, N_{n, s}\right]\right]\right)\right] d s .
\end{aligned}
$$

Since the semi-group V_{t} corresponding to $Y_{i, t}=\left[X_{i, t}, N_{i, t}\right]$ is strongly continuous on $\boldsymbol{C}_{0}(S)$ and $g(s ;[\boldsymbol{x}, \boldsymbol{p}])$ is bounded and continuous on $[0, T] \times \widehat{\boldsymbol{S}}$, the integrand of the right hand side of the above equation is also continuous on $[0, T] \times \hat{S}$. Hence $U_{t}^{(r+1)} h([\boldsymbol{x}, \boldsymbol{p}, 0])$ is continuous in $(t,[\boldsymbol{x}, \boldsymbol{p}])$ and belongs
to $\boldsymbol{C}_{0}(\hat{\boldsymbol{S}})$ for any fixed $t \geqq 0$ because $g(t,[\boldsymbol{x}, \boldsymbol{p}]) \in \boldsymbol{C}_{0}(\hat{\boldsymbol{S}})$ for fixed $t \geqq 0$. Similarly, we can see that $U_{t}^{(r+1)} h([\boldsymbol{x}, \boldsymbol{p}, j]), j \in J$, are continuous in $(t,[\boldsymbol{x}, \boldsymbol{p}])$ and belong to $\boldsymbol{C}_{0}(\hat{\mathbf{S}})$ for any fixed $t \geqq 0$. Hence $U_{t}^{(r+1)} h$ is continuous in $(t,[\boldsymbol{x}, \boldsymbol{p}, j])$ and belongs to $\boldsymbol{C}_{0}(\widetilde{\boldsymbol{S}})$ for any fixed $t \geqq 0$.

Next we shall prove (8.21). Let $r \geqq 1$. Since $U_{t}^{(r)} h$ is continuous on a compact set $[0, T] \times \widetilde{\boldsymbol{S}}$ as a function of $(t,[\boldsymbol{x}, \boldsymbol{p}, j])$ and vanishes on $[0, T] \times\{\Delta\}$, it holds that for any $\varepsilon>0$, there exists an n_{0} such that

$$
\begin{equation*}
\sup _{n \geq n_{0}}\left\|U_{t}^{(r)} h\right\|_{S_{n \times J}}<\varepsilon, \quad 0 \leqq t \leqq T \tag{8.24}
\end{equation*}
$$

On the other hand, it follows from (8.22) that

$$
\begin{aligned}
&\left|U_{t}^{(r)} h([\boldsymbol{x}, \boldsymbol{p}, j])\right| \\
& \leqq \int_{0}^{t} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e ^ { - \sum _ { i = 1 } ^ { n } } \int _ { 0 } ^ { t } k \left(\left(X_{i, v}, N_{i, 0, j)}\right) d v\right.\right. \\
& \sum_{i=1}^{n} \sum_{m=0}^{\infty}\left(q_{m}^{+}\left(X_{i, s}\right)+q_{m}^{-}\left(X_{i, s}\right)\right) \sup _{0 \leqq s \leq t}\left\|U_{t-s}^{(r-1)} h\right\| d s \\
&(8.25)= \sup _{0 \leqq s \leqq t}\left\|U_{s}^{(r-1)} h\right\| \int_{0}^{t} E_{(\boldsymbol{x}, \boldsymbol{p})}\left[e^{-\sum_{i=1}^{n} \int_{0}^{s} k\left(\left[X_{i, v}, N_{i, 0}\right]\right) d v} \sum_{i=1}^{n} k\left(\left[X_{i, s}, N_{i, s}\right]\right)\right] d s \\
&= \sup _{0 \leqq s \leqq t}\left\|U_{s}^{(r-1)} h\right\|\left(1-e^{-n\|\boldsymbol{k}\| t}\right), \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}, t \geqq 0 .
\end{aligned}
$$

Since $U_{s}^{(r-1)} h$ is bounded on $[0, T] \times \tilde{\mathbf{S}}$, there exists a constant M such that

$$
\sup _{0 \leqq s \leqq T}\left\|U_{s}^{(r-1)} h\right\| \leqq M<\infty .
$$

Then (8.24) and (8.25) show us the following inequality.

$$
\left\|U_{t}^{(r)} h\right\| \leqq M\left(1-e^{-n_{0}\|k\| t}\right)+\varepsilon, \quad 0 \leqq t \leqq T
$$

This proves (8.21) because ε is arbitrary. Q.E.D.

We are now in a position to state the following
Theorem 8.1. Let $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$ be』 a given system of pairs of non-negative continuous functions on E such that

$$
k(x)=\sum_{n=0}^{\infty}\left(q_{n}^{+}(x)+q_{n}^{-}(x)\right), \quad x \in E
$$

is bounded continuous on E, and

$$
q_{n}^{+}(x) q_{n}^{-}(x)=0, \quad n=0,1,2, \cdots
$$

Then there exists a signed branching Markov process with age $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right]\right.$, $\left.\zeta, \mathscr{B}_{t}, P_{[\boldsymbol{x}, \boldsymbol{p}, j]} ;[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}}\right\}$ on $\widetilde{\boldsymbol{S}}$ satisfying Condition 3 for a given $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ;\right.$ $n=0,1,2, \cdots\}$.

Proof. According to Lemma 7. 2 and Lemma 8.2-8.3, there exists a right continuous strong Markov process $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p, j]} ;\right.$ $[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}\}$ on $\tilde{\boldsymbol{S}}$ corresponding to the semi-group $U_{\boldsymbol{t}}$ given in (8.12) and a \mathscr{B}_{t}-Markov time η such that

$$
\begin{align*}
& P_{[x, p, j]}\left(Z_{t} \in B, \eta_{r} \leqq t<\eta_{r+1}\right)=\chi_{r}(t,[\boldsymbol{x}, \boldsymbol{p}, j], B), \\
& P_{[x, p, j]}\left(Z_{\eta_{r}} \in B, \eta_{r} \in d t\right)=\Psi_{r}([\boldsymbol{x}, \boldsymbol{p}, j] ; d t, B), \tag{8.26}\\
& \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}}, B \in \mathscr{B}(\widetilde{\mathbf{S}}), r \geqq 0, t \geqq 0,
\end{align*}
$$

where

$$
\eta_{0}=0, \quad \eta_{1}=\eta, \quad \eta_{r+1}=\eta_{r}+\theta_{\eta_{r}} \eta, r \geqq 1 .
$$

Let us set

$$
\tilde{\eta}(w)=\inf \left\{t>0 ; J_{t}(w) \neq J_{0}(w) \text { or } \sup _{s \leq t}\left|N_{s}(w)\right|=\infty\right\}
$$

Since we can see from (8.4), (8.6) and (8.26) that

$$
P_{[\boldsymbol{x}, \mathrm{p}, j]}\left(J_{\eta}=J_{0} \text { or } \sup _{s \leqq \eta}\left|N_{s}(w)\right|=\infty\right)=0, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}},
$$

we have

$$
P_{[x, p, j]}(\tilde{\eta}>\eta)=0, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}}
$$

On the other hand, $\chi_{0}(t,[\boldsymbol{x}, \boldsymbol{p}, j], \cdot)$ vanishes outside of $\boldsymbol{S} \times\{j\}$. Hence we have

$$
P_{[x, p, j]}\left(J_{t} \neq J_{0}, t<\eta\right)=0,
$$

which means

$$
P_{[x, p, j]}\left(J_{s}=J_{0} \text { for any } s \leqq t<\eta\right)=P_{[x, p, j]}(t<\eta),
$$

because J_{t} is right continuous. So we have

$$
P_{[\boldsymbol{x}, \boldsymbol{p}, j]}(\tilde{\eta} \neq \eta)=0, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\boldsymbol{S}},
$$

which means that we may regard η_{r} is the r th branching time of Z_{t}.
Now we shall check the conditions in Condition 3 for our process.
(a) (i) of Condition 1 follows from (8.4), (8.26) and the definition of Y_{t}^{0} which was used to construct χ_{0}.
(b) Let X_{t}^{\prime} be the conservative Feller process on E and let $Y_{t}=\left[X_{t}, N_{t}\right]$ be the strong Markov process on S which are mentioned in the first part of this section. Then it follows from the way of constructions of χ_{0} and Ψ, that

$$
\begin{aligned}
& \left.P_{[x, 0, j]}\left(\left[X_{n-}, N_{n}\right]\right] \in[B, n], \eta \in d t\right) \\
= & E_{[x, 0]}\left[e^{-\int_{0}^{t} k\left(\left[X_{s}, N_{s}\right]\right) d s} k\left(\left[X_{t}, N_{t}\right]\right) I_{B \times\{n\}}\left(\left[X_{t}, N_{t}\right]\right)\right] d t \\
= & E_{x}\left[e^{-2 \int_{0}^{t} k\left(X_{s}^{\prime}\right) d s} k\left(X_{t}^{\prime}\right) I_{B}\left(X_{t}^{\prime}\right) \frac{\left(\int_{0}^{t} k\left(X_{s}^{\prime}\right) d s\right)^{n}}{n!}\right] d t, x \in E, j \in J, B \in \mathscr{B}(E) .
\end{aligned}
$$

where $E_{[x, p]}$ and E_{x} denote the integrals by the probability measures of Y_{t} and X_{t}^{\prime} respectively, and $k([x, p])=k(x)$. So (3.3) holds. Similarly, (3. 4) holds. Moreover, by the definitions of χ_{0}, Ψ and Ψ_{r}, we have

$$
\begin{aligned}
& \chi_{0}(t,[\boldsymbol{x}, \boldsymbol{p}, j],[B, \boldsymbol{q}, J])=\chi_{0}\left(t,\left[\boldsymbol{x}, \boldsymbol{p}, j^{\prime}\right],[B, \boldsymbol{q}, J]\right), \\
& \Psi([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,[B, \boldsymbol{q}, J])=\Psi\left(\left[\boldsymbol{x}, \boldsymbol{p}, j^{\prime}\right] ; d t,[B, \boldsymbol{q}, J]\right),
\end{aligned}
$$

and hence

$$
\begin{array}{r}
\Psi_{r}([\boldsymbol{x}, \boldsymbol{p}, j] ; d t,[B, \boldsymbol{q}, J])=\Psi_{r}\left(\left[\boldsymbol{x}, \boldsymbol{p}, j^{\prime}\right] ; d t,[B, \boldsymbol{q}, J]\right), \\
{[\boldsymbol{x}, \boldsymbol{p}] \in \hat{\boldsymbol{S}}, j, j^{\prime} \in J,[B, \boldsymbol{q}] \in \mathscr{B}(\boldsymbol{S}) .}
\end{array}
$$

So we have

$$
\begin{aligned}
\chi(t,[\boldsymbol{x}, \boldsymbol{p}, j],[B, \boldsymbol{q}, J]) & =\chi\left(t,\left[\boldsymbol{x}, \boldsymbol{p}, j^{\prime}\right],[B, \boldsymbol{q}, J]\right), \\
{[\boldsymbol{x}, \boldsymbol{p}] } & \in \boldsymbol{S}, j, j^{\prime} \in J,[B, \boldsymbol{q}] \in \mathscr{B}(\boldsymbol{S}) .
\end{aligned}
$$

Thus our process satisfies (i) of Condition 2.
(c) (4.2) follows from (8.26) and (8.4). (4.3) follows also from Theorem 7.2 and (7. 22).

Combining $(a)-(c)$, we can see that our process satisfies (i) of Condition 3.
(d) (ii) of Condition 3 follows from (8.3), (8.7) and the definition of " ~".
(e) (iii) of Condition 3 follows from (8.6).
(f) (iv) of Condition 3 follows from (8.3), (8.5) and (8.7).
(g) By the definition of χ and (8.26), we have

$$
\begin{aligned}
P_{[x, p, j]}\left(Z_{t} \in \widetilde{\mathbf{S}}\right) & =\sum_{r=0}^{\infty} U_{t}^{(r)} I_{\tilde{S}}([\boldsymbol{x}, \boldsymbol{p}, j]) \\
& =\sum_{r=0}^{\infty} P_{[\boldsymbol{x}, \boldsymbol{p}, j]}\left(\eta_{r} \leqq t<\eta_{r+1}\right) \\
& =P_{[x, p, j]}\left(t<\eta_{\infty}\right), \\
& {[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\mathbf{S}} . }
\end{aligned}
$$

Therefore we may consider that

$$
P_{[x, p, j]}\left(\eta_{\infty}<\zeta\right)=0, \quad[\boldsymbol{x}, \boldsymbol{p}, j] \in \widetilde{\boldsymbol{S}} .
$$

If we consider a new process \tilde{Z}_{t} defined by

$$
\tilde{Z}_{t}(w)=\left\{\begin{array}{cl}
Z_{t}(w), & \text { if } t<\eta_{\infty}(w) \wedge \zeta(w), \\
\Delta, & \text { if } t \geqq \eta_{\infty}(w) \wedge \zeta(w),
\end{array}\right.
$$

and Borel field $\widetilde{\mathscr{B}}_{t}$ induced naturally from \mathscr{B}_{t}, then \tilde{Z}_{t} satisfies (v) of Condition 3.

We shall denote \tilde{Z}_{t} by Z_{t} again. Then $(a)-(g)$ implies that our process Z_{t} satisfies Condition 3. Moreover, by Theorem 5.1, Z_{t} is a signed branching Markov process with age on $\tilde{\boldsymbol{S}}$.
Q.E.D.

Corollary 8.1. Let $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$ be a given system of pairs of non-negative continuous functions on E such that $k(x)=\sum_{n=0}^{\infty}\left(q_{n}^{+}(x)+q_{n}^{-}(s)\right)$ is bounded continuous on E and $q_{n}^{+}(x) q_{n}^{-}(x)=0, n=0,1,2, \cdots$ Then there exists a signed branching Markov process $Z=\left\{Z_{t}, \zeta, \mathscr{B}_{t}, P_{[\boldsymbol{x}, \boldsymbol{p}, j]} ;[\boldsymbol{x}, \boldsymbol{q}, j] \in \widetilde{\mathbf{S}}\right\}$ on $\tilde{\mathbf{S}}$ satisfying Condition 2 for a given $\left\{\left(q_{n}^{+}(x), q_{n}^{-}(x)\right) ; n=0,1,2, \cdots\right\}$.

Corollary 8.2. Let $\left\{q_{n}(x) ; n=0,2,3, \cdots\right\}$ be a given system of nonnegative continuous functions on E such that $k(x)=\sum_{n \neq 1} q_{n}(x)$ is bounded continuous on E. Then there exists a branching Markov process with age $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right]\right.$, $\left.\zeta, \mathscr{B}_{t}, P_{[\boldsymbol{x}, \boldsymbol{p}]} ;[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}\right\}$ on \boldsymbol{S} satisfying Condition 1 for a given $\left\{q_{n}(x) ; n=0,2\right.$, $3, \cdots\}$.

Proof. Let us consider in Theorem 8. 1 the special case where $q_{n}^{-}(x)=0$, $n=0,1,2, \cdots$, and $q_{1}^{+}(x)=0$. Let $Z=\left\{Z_{t}=\left[X_{t}, N_{t}, J_{t}\right], \zeta, \mathscr{B}_{t}, P_{[x, p, j]} ;\right.$ $[\boldsymbol{x}, \boldsymbol{p}, j] \in \tilde{\mathbf{S}}\}$ be the process obtained in Theorem 8.1 for the present case. Setting

$$
\xi_{t}(w)= \begin{cases}n, & \text { if }\left[X_{t}(w), N_{t}(w)\right] \in S^{n}, n \geqq 0, \\ \infty, & \text { if }\left[X_{t}(w), N_{t}(w)\right]=\Delta\end{cases}
$$

and

$$
\tau(w)=\inf \left\{t>0 ; \xi_{t}(w) \neq \xi_{0}(w) \text { or } \sup _{s \leqq t}\left|N_{s}(w)\right|=\infty\right\},
$$

we have

$$
P_{[x, p, 0]}(\tau \neq \eta)=0, \quad[x, p] \in \mathcal{S}
$$

Also it follows from the definition of Ψ that

$$
P_{[\boldsymbol{x}, \boldsymbol{p}, 0]}\left(J_{t}=2 \text { or } 3\right)=0, \quad[\boldsymbol{x}, \boldsymbol{p}] \in \boldsymbol{S}, t \geqq 0,
$$

and hence we have

$$
\left.P_{[x, p, 0]} \widetilde{(f \cdot \lambda} \cdot \lambda\left(Z_{t}\right)=\widehat{f \cdot \lambda}\left(Z_{t}\right), t<\zeta\right)=P_{[x, p, 0]}(t<\zeta), \quad[\boldsymbol{x}, \boldsymbol{p}] \in \hat{S} .
$$

So, if we disregard J_{t} in $Z_{t}=\left[X_{t}, N_{t}, J_{t}\right]$ and define $P_{[x, p]}$ by

$$
P_{[x, p]}\left(\left[X_{t}, N_{t}\right] \in[B, q]\right)=P_{[x, p, 0]}\left(\left[Z_{t} \in[B, q, J]\right),\right.
$$

then the process $Y=\left\{Y_{t}=\left[X_{t}, N_{t}\right], \zeta, \mathscr{B}_{t}, P_{[\boldsymbol{x}, \boldsymbol{p}]} ;[\boldsymbol{x}, \boldsymbol{p}] \in \hat{\mathbf{S}}\right\}$ satisfies Condition 1 and

$$
T_{t} \widehat{f \cdot \lambda}([x, p])=\widehat{\left.\left(T_{t} \widehat{f \cdot \lambda}\right)\right|_{E} \cdot \lambda([x, p])}, \quad[x, p] \in \hat{\boldsymbol{S}}, \quad f \in \boldsymbol{C}^{*}(E), 0 \leqq \lambda<1
$$

where T_{t} denotes the semi-group on $\boldsymbol{B}(\hat{\mathbf{S}})$ induced by Y.
Q.E.D.

References

[1] E.B. Dynkin: Markov processes. Springer 1965.
[2] -: Markov processes and semi-group of operators. Th. of Prob. \& its appl. Vol. 1 (1956), pp. 22-33.
[3] G.A. Hunt: Markov processes and potentials II. III. Jour. Math., Vol. 2 (1958), pp. 151-213.
[4] N. Ikeda, M. Nagasawa and S. Watanabe: Foundation of branching Markov processes. Seminar on Probability, Vol. 23 (1966), (in Japanese).
[5] -: On branching Markov processes. Proc. Japan Acad. Vol. 41 (1965), pp. 816-821.
[6] : Fundamental equations of branching Markov processes. Proc. Japan Acad. Vol. 42 (1966), pp. 252-257.
[7] : Branching Markov Processes. (to appear).
[8] K. Ito and H.P. McKean, Jr.: Diffusion processes and their sample paths. Springer, 1965.
[9] A. Kolmogoroff, I. Petrovsky and N. Piscounoff: Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. l'Univ. Moscou, Vol. 1, Fasc. 6, pp. 1-25.
[10] J.E. Moyal: Discontinuous Markov processes. Acta. Math., Vol. 98 (1957), pp. 221264.
[11] : The general theory of stochastic population processes. Acta. Math., Vol. 108 (1962), pp. 1-32.
[12] -: Multiplicative population processes. Jour. Appl. Prob. Vol. 1 (1964), pp. 267-283.
[13] M. Nagasawa: Construction of branching Markov processes with age and sign (to appear).
[14] M. Nagasawa and T. Sirao: Probabilistic treatment of blowing up of solutions for a non-linear integral equation (to appear).
[15] H.J. Ryser: Combinatorial Mathematics. John Wiely Sons, 1963.
[16] T. Sirao: A probabilistic treatment of semi-linear parabolic equations. Proc. Japan Acad. Vol. 42 (1966), pp. 885-890.
[17] -: Remarks on the Moyal's construction of Markov processes. (to appear).
[18] A.V. Skorohod: Branching diffusion processes. Th. of Prob. \& its appl. Vol. 9 (1964), pp. 492-497.

Nagoya University

[^0]: 2) We can not regard here $q_{1}(x)=-1$ because $k(x)=\sum_{n \neq 1} q_{n}(x)$.
 3) The one-point compactification of R^{d} was used to apply the general theory and hence we omitted the point ∞ because we are interested in the equation whose variable domain is R^{d}.
[^1]: 4) T_{t} denotes the semi-group induced by $Y_{t}, \widehat{f \cdot 2}$ is a function of special type defined by (2. 1) and $(x, 0) \in \hat{S}$.
 5) U_{t} denotes the semi-group induced by $Z_{t}, \widetilde{f \cdot 2}$ is a function of special type defined by (2.2) and $(x, 0,0) \in \tilde{\boldsymbol{S}}$.
[^2]: 6) In the future discussions, $\sum_{i=1}^{n} p_{i}$ is essential in the role of ($p_{1}, p_{2}, \cdots, p_{n}$) and hence we used here this equivalence relation.
[^3]: 7) In this paper, we regard that inf $\phi=\infty$ where ϕ denotes the empty set.
 8) Two functional σ 's defined for Y and Z are denoted by the same letter because the definitions are identical except for the conditions $t<\tau$ and $t<\eta$, and this notation is convenient for the later use. Also, Y and Z are different Markov processes on the different state space $\hat{\boldsymbol{S}}$ and $\tilde{\boldsymbol{S}}$, and accordingly there arises no danger of confusion when we use the same letter σ.
[^4]: ${ }^{9)}$ cf. [6], Theorem 2.1.

[^5]: ${ }^{10)}$ For any semi-group T_{t} on $\boldsymbol{B}(\mathscr{X})$ induced by a Markov process X_{t} on \mathscr{X}, we denote $E_{x}\left[f\left(X_{t}\right)\right]$ by $T_{t} f(x)$ in this paper even if f is unbounded but $E_{x}\left[\left|f\left(X_{t}\right)\right|\right]$ is finite. $\left(E_{x}\right.$ denotes the integral by the probability measure P_{x} of X_{t}.)

[^6]: ${ }^{11)}$ A right continuous strong Markov process on \mathscr{X} is said to be a Feller process if the corresponding semi-group T_{t} maps $C(\mathscr{X})$ into itself.

[^7]: ${ }^{14)}$ cf. (2.5).

[^8]: 17) cf. Foot-note 10).
[^9]: ${ }^{18)}$ cf. Ryser [15], Th. 4.1 (p. 26)

[^10]: ${ }^{19)}$ Semi-linear equations of this type are discussed in Kolmogoroff-Petrovsky-Piscounoff 3].

[^11]: ${ }^{20)}$ cf. §4.
 ${ }^{21}$) In Lemma 6.1, (b) and (c) in Condition (Q) are not necessary.
 22) " $U_{t} \widetilde{f \cdot 2}$ exists" means that $E_{[x, p, j]}\left[\mid \widetilde{\left.f: 2 \mid\left(Z_{t}\right)\right]<\infty}\right.$. Also the condition " $f(\infty)=0$ " does not have any influence in the sequel, because ∞ is a trap of X_{t}^{\prime} and almost all sample functions of X_{t}^{\prime} with $X_{0}^{\prime}(w) \neq \infty$ do not reach ∞ in any finite time interval.

[^12]: 25) We regard $k_{i}(x) F_{i}(x ; \xi)=k(x) F(x ; \xi)=0$ for ξ \& $[0,1]$.
 ${ }^{26)}$ Assume $K \geqq 1$, if necessary.
[^13]: ${ }^{27)}$ Since $G_{i}(0)=0$, the constant term of $G_{i}(\xi)$ is zero.
 28) $k_{i} F_{i}(0)=k_{i} F\left(\xi_{i}\right)=0$ and $k_{i} F(\xi)>0$ for $0<\xi<\xi_{i}$. So we may consider ξ_{i} instead of 1 in Theorem 6.1.

[^14]: ${ }^{29)}$ cf. M. Nagasawa [13].
 ${ }^{30}$) Moyal's $\chi_{0} \Psi$-condition is stated for non stationary Markov processes. The condition stated here is the one for the stationary case and is strengthened in the part of (7.5). (cf. Moyal [10].)

[^15]: ${ }^{32)}$ cf. [17], Theorem 1.
 ${ }^{33)}$ A right continuous strong Markov process X_{t} on \mathscr{X} is said to be quasi left continuous if, for any monotone non-decreasing sequence $\left\{\tau_{n} ; n \geqq 0\right\}$ of Markov times,

 $$
 P_{x}\left(\lim _{n \rightarrow \infty} X_{\tau_{n}}=X_{\tau}, \tau<\varsigma\right)=P_{x}(\tau<\varsigma), \quad x \in \mathscr{X},
 $$

 holds, where $\tau=\lim _{n \rightarrow \infty} \tau_{n}$ and ς denotes the terminal time of X_{t}.

[^16]: 31) τ_{r} 's are Markov times. cf. Ito-McKean [7], p. 87.
 ${ }^{35)}$ In this section, we do not assume that E is a compact space, because we consider the equation of type (7.1) with initial value $f \in C(E)$ and the assumption of non-compactness does not cause any difficulty in the discussions of this section.
 32) When we consider H_{t} on $C_{0}(E), H_{t}$ may be regarded as the semi-group on $\boldsymbol{C}(E \cup\{\infty\})$ where $E \cup\{\infty\}$ denotes the one-point compactification of E. Then it is known that the convergence of $H_{t} f(x)$ to $f(x)$ at any $x \in E$ implies the strong convergence of $H_{t} f$ to f, i.e. $\left\|H_{t} f-f\right\| \rightarrow 0$ as $t \rightarrow 0$. (For instance, cf. Dynkin [2], Theorem 5.)
[^17]: 37) $\frac{d \varphi_{t}}{d t}, \frac{d \varphi_{t}^{+}}{d t}$ and $\frac{d \varphi_{t}}{d t}$ denote the derivatives of $\varphi_{t}, \varphi_{t}^{+}$and $\varphi_{\bar{t}}$ in the sense of Radon-Nikodym respectively.
[^18]: 38) cf. Ito-McKean [7], pp. 54-55.
[^19]: ${ }^{39)}$ For any function f on a topological space \mathscr{X}, we denote in the sequel $\sup \{|f(x)| ; x \in A \subset \mathscr{X}\}$ by $\|f\|_{A}$.

