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Abstract

Khan et al. have studied the existence of solutions of functional equations f,x e Sx f) Tx and x = F,x e
Sx n Tx under certain nonlinear hybrid contraction and asymptotic regularity conditions, generalizing
many known results on coincidences and fixed points. However, most of their main theorems admit
counter examples. In this paper, we rectify these results and obtain many coincidence and fixed point
theorems in a more general setting.
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1. Introduction

Nadler's multi-valued contraction theorem [10] has led to a good fixed point theory
for multi-valued operators in nonlinear analysis. It has various applications inside and
outside mathematics (see, for instance, [1,19]). Hybrid fixed point theory for nonlinear
single-valued and multi-valued operators is a relatively recent development within the
ambit of multi-valued fixed point theory (see, for instance, [2,3,5,9,11-17]). It
provides techniques for solving functional inclusions and optimization problems (see
[4]). Khan et al. [9] have obtained some interesting coincidence and fixed point
theorems for nonlinear hybrid contractions in general settings. However, their proofs
of the main theorems contain some errors, and the purpose of this paper is to improve
these results under suitable conditions in a more general setting. Our results generalize,
improve and unify number of results in the existing single-valued, multi-valued and
hybrid fixed point theory.
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2. Preliminaries

We generally follow the definitions and notations used in [9]. Given a metric space
(X,d), let (C(X), H), (CB(X), H), (CL(X), H) and (PX(X), H) denote respec-
tively the hyper-spaces of nonempty compact, nonempty closed bounded, nonempty
closed and nonempty proximal subsets of X, where H is the Hausdorff metric induced
by d. Notice that the hyper-space CL{X) contains the other three spaces. Throughout,
D(x, A) will denote the ordinary distance between x e X and A, a nonempty subset
of X. Also, N and No will denote respectively the sets of positive and nonnegative
integers. Thus N0 = NU{0). Further, for/, g : X -+ X and S, T : X -+ CL(X) we
shall use the following notations for brevity.

(2.1) M(Sx, Ty;f, g) := max{D(fx, Sx), D(gy, Ty), D(fx, Ty),

D(gy,Sx),d(fx,gy))

(2.2) M(Sx, TyJ) := M(Sx, Ty;f, g) with/ = g,

(2.3) M(Sx,yJ):=M(Sx,TyJ) with S = T,

(2.4) m(Sx, TyJ, g) := max{D(fx, Sx), D(gy, Ty),

\[D(fx, Ty) + D{gy, Sx)], d(fx, gy)}

(2.5) m(Sx, TyJ) := m(Sx, TyJ,g) with/ = g, and

(2.6) m(Tx,y,f):=m(Sx,TyJ) with S = T.

Recall that (see [6]) mappings / : X -^ X and S : X ^ CL(X) are said
to commute at a point z 6 X if / Sz C Sf z; f and 5 are said to commute on
X if f Sx c Sfx for all x € X. We remark that weak commutativity (see [9,
14]), compatibility (see [3,8]) and weak compatibility (see [12]) of maps / and
5 at a coincidence point z (that is, when f z € Sz) satisfy f Sz = Sf z (see [12,
lemma]. Therefore, weak commutativity, compatibility, weak compatibility and usual
commutativity of two single-valued self-maps on a metric space are equivalent at their
coincidence point. However, as the following example shows, the commutativity of
/ and 5 at their coincidence point z is indeed more general than compatibility and
weak commutativity (weak compatibility) of/ and 5 at z-

EXAMPLE 1. LetX = [0, oo) with the usual metric, f x = 3x andSx = [2+x, oo).
Then/1 e 51 , /SI = [9, oo) c [5, oo) = 5/1 and/51 ^ 5 / 1 .

3. Main results

Unless stated otherwise, let F denote the family of maps 0 from the set K+ of
nonnegative reals to itself such that 0 is upper semi-continuous, nondecreasing and
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4>{t) < r for all r > 0.
First we show that [9, Theorem 3.1] admits a counter example.

EXAMPLE 2. Let X — K+ be endowed with the usual metric. Let/, g, S, T : X -*•
X be such that fx = 2x2, gx = 2x\ Sx = x2 + \ and Tx = JC3 + \. Let / , in
[9, Theorem 3.1] be such that / , = / if i is odd and / , = g if i is even. Evidently,
for any x, y e X, d(Sx, Ty) = \x2 - y3| = \d(fx, gy), that is, [9, (3.2) and (3.3)]
are satisfied with 4>{t) = qt, q = \. Further, 5(X) = T(X) = [\,oo) C X =
f (X) = g(X), that is, [9, (3.1) and (3.5)] hold, since a complete metric space is
always orbitally complete.

To verify [9, (3.4)], construct sequences {xn} and {yn} as considered in [9, Definition
2.1] and in the beginning of the proof of [9, Theorem 3.1]. They are defined as follows.
For some x0 e X, y2n = f^xm-i e Sx2n for every n e N, yln+x = fm+iXm e Tx2n+l

for every n € No.
Accordingly, for x0 = \ in our example, {xn}™=l is given by xn = (\)l/ if n is odd

a n d x n = ( \ ) 1 / 2 if n is e v e n ; a n d {yn} = [fx0, g x u f x 2 , g x 3 , . . . } = {\,\, ; , . . . }
which converges to \. Thus [9, (3.4)] is satisfied for x0 = | . Therefore, all the
hypotheses of [9, Theorem 3.1] are satisfied but/, g, S and T do not have a coincidence
point. Notice, however, that/ (|) = S (±) = { and g (4-1/3) = T (4'l /3) = i, that
is / , 5 have a coincidence point at JC = j and g and T have a (different) coincidence
at x =4~1/3.

The main problem with [9, Theorem 3.1] is in the construction of the sequence {xn}.
Since S(X) U T(X) c fi(X) for each i e N, one cannot choose the xn as described
in [9].

With a view of presenting a correct and more general version of [9, Theorem 3.1 ], we
introduce the following definitions for S, T : Y —> CL(X) and/,, : Y —> X, n e N.
In all that follows, Y is an arbitrary nonempty set.

DEFINITION 1. If for x0 e Y, there exist sequences {xn} in Y and {yn} in X such that

6 SX2n « € N0,

l, « € N,

then Of.(xo) = [yn : n = 1, 2 , . . .} is said to be the orbit for (5, T;ft) at JC0. Further,
0^ (x0) is called regular if

< | / /(5xn_i, T;cn), if n is odd

~ H(Txn-U Sxn), if n is even.

In the case {/„} = {/, g, / , g , . . . } , O/f (JC0) and (5, T\f,) may be denoted by Of,g(x0)
and (5, T;/ , g) respectively.

https://doi.org/10.1017/S1446788700039331 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039331


[4] On general hybrid contractions 247

The above definition with Y = X is the corrected version of [9, Definition 2.1].
The following definitions with Y = X are [9, Definitions 2.2 and 2.3].

DEFINITION 2. If, for x0 € Y, there exist sequences {*„} in Y and {yn} in X such
that every Cauchy sequence of the form O/,(x0) converges in a subset P of X, then
P is called (5, 7',/' ̂ -orbitally complete with respect to xQ, or simply (5, T;fi,x0)-
orbitally complete.

DEFINITION 3. A pair (5, T) is said to be asymptotically regular at x0 € Y if for
any sequence {xn} in Y and each sequence {yn} in X such that vn e Sxn-i U Txn_!,
limn(vn, vn_i) = 0.

In all that follows, C{A, f) stands for the set of coincidence points of the mappings
A:C-+ CL(X) and / : X -+ X, that is C ( A , / ) = { M : / M e AM}.

The following theorem is the corrected version of [9, Theorem 3.1].

THEOREM 1. Let 5, T : Y - • CL{X) andfn : Y - • X (n e N) fee SMC/I

(3.1) S(Y) C /2n_,(K), T(K) c / 2 n (F) , n 6 N,
(3.2) H(Sx, Ty) < <HM(Sx, TyJ^fj^)) for each x,y € y o n d ^ 6 T,

(3.3) 0 ( 0 < qt for each t > 0 and for some fixed q € (0, 1),
(3.4) there exists a point x0 € Y such that the pair (5, T) is asymptotically regular

at x0, and
(3.5) oneofS(Y), T(Y),f2i-dY) orf2i(Y), i € N, is (S, T;fi,xQ)-orbitally com-

plete.

Then:

(la) S and f2j have a coincidence point for j e N;
(lb) T and fij-\ have a coincidence point for j € N.

Further, ifY = X, then

(2a) S and f2j have a common fixed point f2J v, provided f2j (fy v) = f2j v and S
andfij commute at v 6 C(S,f2j),j € N;

(2b) T and fis-\ have a common fixed point f2j-\W, provided f2j-\(fij-\'w) =
fy-\W and T andf2j-\ commute at w 6 C{T,f2j-{),j € N;

(3) 5, T and fn (n € N) have a common fixed point provided (2a) and (2b) both
are true.

PROOF. In view of (3.1) and (3.4), for a point x0 € Y, we can construct sequences
{xn} c Y and {yn} c X such that, for each n e N,

yin-\ = fln-iX2n-l 6 Sx2n-2, V2n = f2nX2n € 7*2n-l,
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n-U Sx2n).

Then it can be easily verified that {>>„} is a Cauchy sequence (see [9, proof of Theorem
3.1], [12,13]).

Now suppose that/2,(F) is orbitally complete, i e N. Then the subsequence {y2n},
being contained in/2,(y), has a limit, say u, in f2i(Y). Let v e /2~'w. Thus there is a
v e Y such that/2,u = u, and this is true for each i e N. Note that the subsequence
{>>2n-i} also converges to u. Putting x — v and y = x2n-\ in (3.2),

D(Sv,y2n) <H(Sv,Tx2n.x)

, Sv), D(f2n_xx2n^x, Txln-i), D(f2nv, Tx2n.x),

2n-i, Sv), d(f2nV, /2n-l^2n-l)})

< 4>(max{D(u, Sv), d{y2n_uy2n), d(u, y2n), D(y2n_u Sv), d(u, y2n_i)}).

Making n -> oo, we obtain D(Sv, u) < 4>(D(u, Sv)), proving u 6 Sv. Thus for each
/ € N, fiv = u e Sv, and this proves (la).

Since S(Y) c f2i-\(Y), there exists aw e Y such that/2,_iiu = u, and this is true
for each i e N, therefore, as previously, for each odd i e N,/,-«; = M e Tw. This
proves (lb).

If we suppose f2i-i(Y) is orbitally complete (/ e N), then analogous argument
establishes (la) and (lb). If T(Y) (respectively S(Y)) is orbitally complete, then
u € T(Y) c f2l(Y) (respectively u e S(Y) c ^ . . ^ F ) ) , i e N and the above
argument establishes (la) and (lb).

To prove (2a), note that Y = X, v e C(S,f2j) and M = /2 ju, 7 e N. From this,
f2j u = u, and the commutativity of S and /2^ (j e N), we derive

« = /?/ « = /2y C/2; U) 6 / 2 j (Sv) C 5(/2; «) = SM

Thus w is a common fixed point of 5 and f2j (J € N). Similar argument yields
u = f2]-\u € Tu (j € N, proving (2b). Now (3) is immediate. •

REMARK 1. Example 2 shows that [9, Theorem 3.2] (in which ft{X) is misprinted
as / (A) , see [9, (3.7)] and [9, Theorem 3.3] are incorrect. The following are the
corrected and substantially improved versions of these results.

THEOREM 2. Let S, T : Y -> CL(X) andfn : Y -* X (n e H) be such that (3.2)
and the following hold.

(3.6) <p(t) < t for each t > 0 and some <p e F,
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(3.7) there exists a point x0 € Y such that the orbit Ofi(x0)for (S, T;/,) is regular,
the pair (S, T) is asymptotically regular at Xo and one of S(Y), T(Y), f2i-i(Y) or
f2i(Y) (i e N) is (5, T;fh x0)-orbitally complete.

Then all the conclusions of Theorem 1 are true.

THEOREM 3. Let S,T : Y -> C(X) and /„ : Y -» X (i e N) be such that the
conditions (3.1), (3.2) and (3.4)-(3.6) hold. Then all the conclusions of Theorem 1
are true.

PROOF. An appropriate blend of the proof of Theorem 1 works for Theorems 2 and
3. See also remarks [9, p. 376]. D

REMARK 2. We now discuss another theorem of Khan et al. [9, Theorem 3.4].
Notice that [9, Theorem 3.4, condition (3.8)] and [9, Theorem 3.1, condition (3.2)] are
the same. Further, [9, Theorem 3.4] is [9, Theorem 3.1] without [9, (3.3) and (3.4)].
So by Example 2, [9, Theorem 3.4] is also incorrect. Even certain special cases of [9,
Theorem 3.4] admit counter examples. For instance, it can be seen using an example
of Totik [18, p. 241] that [9, Theorem 3.4] with/,* = x (i e N), 5, T : X - • X and
0(f) = qt, (j < q < 1) is not true, that is 5 and T do not have a common fixed point.
It seems that the authors' intention in [9, Theorem 3.4] was to present [9, Theorem
3.1] with [9, (3.2)] replaced by the following (*), since [9, (3.4)] is not needed in
such a situation.

(*)
H(Sx, Ty) < <t>(m(Sx, Ty;fhfj)) f o r* , y € X, i,j e N, i ^ j , a n d 0 € T.

However, in view of Example 2, [9, Theorem 3.4] with [9, (3.2)] being replaced by
(*) remains incorrect.

The theorem we want to prove is the following:

THEOREM 4. Let S,T : Y -> CL(X) andfn: Y -+ X be such that (3.1), (3.2)
with M replaced by m, (3.3) and (3.5) hold. Then all the conclusions of Theorem 1
are true.

PROOF. An appropriate blend of the proof of Theorem 1 works. •

THEOREM 4 BIS. Theorem 4 without (3.3) and CL(X) replaced by Px.

REMARK 3. The following example shows that [9, Corollaries 3.5 and 3.6] which
are intended to present important and sharpened versions of special cases of [9,
Theorems 3.1 and 3.3], need some modifications in their conclusions.
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EXAMPLE 3. ([14, Example 2.4]). Let X = [0,1] with the absolute value metric,
and let Sx = Tx = {0, 1}, fx = 1 - x for all x € X. Then Sfx = f Sx for any
x e X, and H(Sx, Sy) = 0 < qd(fx,fy) for each x, y e X and any q e (0, 1).
Now it is easy to see that all the hypotheses of [9, Corollaries 3.5 and 3.6] with 5 = T
are satisfied. Evidently, S and/ have no common fixed point. However, 5 and/ have
a coincidence. It may also be mentioned that this example proves that [9, Theorem
3.7] in its present form is not true.

Now we derive certain corollaries from our theorems, which contain and improve
a number of coincidence and fixed point theorems for single-valued and multi-valued
mappings in metric spaces. Corollaries 2,2 bis and 3,3 bis present corrected, improved
and sharpened versions of [9, Corollaries 3.5 and 3.6] respectively.

COROLLARY l.LetS,T:Y-+CL(X)andf,g:Y->Xbe such that
(3.8) S(Y)^g(Y)andT(Y)Qf(Y),
(3.9) H(Sx, Ty) < qm{Sx, Ty;f, g) for each x,y e Y and some q e (0, 1), and

(3.10) one ofS(Y), T(Y),f(Y) or g{Y) is a complete subspace ofX.

Then

(la*) 5 andf have a coincidence point v in Y,
(lb*) T and g have a coincidence point w in Y.

Further, if Y = X, then

(2a*) S andf have a common fixed point fv provided f v is a fixed point off, and
f and S commute at v,
(2b*) T and g have a common fixed point gw provided gw is a fixed point of g and
T and g commute at w,
(3*) 5, T,f and g have a common fixed point provided (2a*) and (2b*) both are

true.

The above corollary follows from Theorem 1 by noting that (3.9) implies (3.2) and
(3.3), while (3.4) becomes redundant. In view of these facts, the following is a slightly
more general and sharpened version of the above corollary with / = g.

COROLLARY 2. Let S,T : Y - • CL(X) andf : Y - • X be such that (3.4) (with

f = g) and the following hold.

(3.11) S(Y)UT(Y)C.f(Y),
(3.12) H(Sx, Ty) < qM(Sx, Ty; f) for each x, y 6 Y and some q e (0, 1), and
(3.13) one ofS(Y), T(Y) or f (Y) is (S, T\f)-orbitally complete with respect to a
point XQ>.

Then S, T and f have a coincidence point v in Y. Further, if Y = X, then S, T and
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/ have a common fixed point provided f v is a fixed point off, andf commutes with
each ofS and T at v.

COROLLARY 2 BIS. Corollary 2 with Y = X,f continuous, and (3.13) replaced by
X is (S, T\f)-orbitally complete with respect to a point x^.

COROLLARY 3. Corollary 2 without (3.4) and M replaced by m.

COROLLARY 3 BIS. Corollary 2 bis without (3.4) and M replaced by m.

COROLLARY 4. Let T : Y ->• CL{X) and f : Y -» X be such that T(Y) C / (Y)
and H(Tx, Ty) < qm{Tx,y\f) for each x,y e Y and some q € (0, 1). If one
of T(Y) or f (Y) is (T,f)-orbitally complete, then there exists a v € Y such that
f v e Tv. Further, if Y = X, f (fv) = f v and T and f commute at v, then
fveTfv.

PROOF. The proof follows from Corollary 3 when S = T. •

We remark that when all the mappings are single-valued in the above results, then,
as expected, we have a unique common fixed point under relaxed conditions. For
example, we present one such result which may be derived from Theorem 4 bis or
can be proved on the lines of the proof of Theorem 1. Let J be the family of maps 0
from K+ to itself such that <j> is semi-continuous from the right and <t>(t) < t (t > 0),
or nondecreasing and limn 4>"(t) = 0 (t > 0) (refer to Jachymski [7] for an excellent
discussion on the equivalency of these two conditions on </>).

COROLLARY 5. LetS,T,f,g : Y ->• X be such that (3.8), (3.10) and the following
hold:

(3.14)
d{Sx, Ty)

< <fi (max [d(fx, Sx), d{gy, Ty), \ [d(fx, Ty) + d(gy, Sx)], d(fx, gy)})

for all x,y € Y and some <f> € J.

Then:

(i) 5 andf have a coincidence,
(ii) T and g have a coincidence.

Further, if Y = X, Sf u = f Su, u e C(S,f) and Tgv = gTv, v e C(J, g), then
S, T, f and g have a unique common fixed point.
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Our results (theorems and corollaries) extend, generalize, improve and unify a
number of results in the existing single-valued, multi-valued and hybrid fixed point
theory (see for instance, [3,5,7,8,10-15,17] and references thereof). We mention a
few here. [3, Theorem 3.1] is substantially improved by Corollary 3 with Y = X and
/ = the identity mapping on X. Corollary 5 is a substantially improved version of a
major theorem of Jachymski [7, Theorem 3.3], which in turn, improves a theorem of
Jungck (see [8, Theorem 3.1]), Corollary 4 presents a slightly more general version of
the main results of Singh and Mishra [17, Theorem 2 and Corollary 1], which, in turn,
represent an improvement over Pathak's main result [12, Theorem 2], Corollary 2 is
a slight improvement over the main result of Singh et al. [14, Theorem 2.1]. Several
coincidence and fixed point theorems surveyed in [5] may be obtained as special cases
of our results.

Finally, the following example shows that [9, Corollary 4.3] in its present form
(wherein the space X is complete) cannot be true unless one of the mappings in
question is continuous.

EXAMPLE 4. Let X = [—|, | ] with the absolute value metric, and Tx = x/3 for
all* e l ,

Then \Tx - Ty\ < \\fx -fy\ foreachx.y e X and \Tfx - / Tx\ < \Tx -fx\
for all x e X, that is T and / are weakly commuting on X. Therefore, conditions [9,
(4.2) and (4.3)] of the corollary in [9] are satisfied for S = T, g = f, 0(r) < r/3 but
T and / do not have a common fixed point in X. Notice also that all the conditions
of Corollary 5 with Y = X, S = T and g = f are satisfied except (3.8), since T(X)
is not contained in / (X) . Besides Corollary 5 with Y = X (wherein, among other
improvements, the completeness of the space has been replaced by a set of weaker
conditions), several correct versions of [9, Corollary 3.4] exist in the literature (see
for instance, [7, Theorem 3.3] and [8, Theorem 3.1]).
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