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Introduction. The electric capacity of a conductor in the 3-dimensional

euclidean space is defined as the ratio of a positive charge given to the conductor

and the potential on its surface. The notion of capacity was denned mathe-

matically first by N. Wiener [7] and developed by C. de la Vallee Poussin, O.

Frostman and others. For the history we refer to Frostman's thesis [2]

Recently studies were made on different definitions of capacity and related

notions. We refer to M. Ohtsuka [4] and G. Choquet [1], for instance. In

the present paper we shall investigate further some relations among various

kinds of capacity and related notions. A part of the results was announced in

a lecture of the author in 1962.1)

1. Let E and F be locally compact Hausdorff spaces and Φ(xf y) be a lower

semicontinuous function on ExF, satisfying — oo < 0(#5 y) <J co. This function

is called a kernel. As measures we shall consider only non-negative Radon

measures with compact support in E or in F. The potential \φ(x,y)dμ(y)

(w{x,y)dv(x) resp.j of a measure μ (vresp.) will be denoted by Φ{x, μ){Φ{v, y)

resp.) and the double integral \\Φ(x,y)dμ(y)di'{x) = \φ(x, μ)dv(x) by Φ(v,μ).

Let X be any non-empty set in E and μ be a measure in F. We set

V{X, μ) =sup Φ(x, μ) and U(X, μ) =inf Φ(x, μ).
X X

Let Y be any non-empty set in F, and denote by %sγ the class of unit measures

with compact support in Y. We put
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Vx(Y)=wfV(X,μ) and UX{Y)= sup U{X,μ).

Similarly we define ΫY(X) and UY(X) by inf supΦ(y,2/) and sup infΦ(v, 2/)
7 Γ

respectively. B. Fuglede [3] proved the identity VE(K) = UK(E), where K is a

non-empty compact subset of F.

In the special case E=F we set

= inf Φ(/£,^),V(X)= inf ^ ( S ^ ) and U(X)= sup

If the adjoint kernel Φ(a;, y)=Φ(y, x) is considered, the corresponding quanti-

ties will be denoted by ^ ( X ) , V(.X) and U(X). We shall establish

THEOREM 1. Suppose E=F and let K be a non-empty compact set in E. Then

Wt(K) = Wi(K) ^ V(K) = V(K) ^

and these relations can not be improved in general.

VE{K)=UK{E)

ΫE(K)=UK(E)

U(K)=U(K) ,

Proof. The equalities VE(K)=UK(E) and VE(K)=UK(E) are special cases

of the above quoted identity due to Fuglede. The equalities VK(K)=UK(K)

and VK(K) =UK{K) are further special cases. The equalities V(K)=V(K) and

U(K)=U(K) were found by Ohtsuka [5]; cf. [6] too. It is evident that

Wt(K) = Wi(K). Thus all equalities are justified.

The inequality W^K) ^ V(K) follows from

I < SUp Φ(x, μ)
x<=Sμ

which is valid for any μ^^κ. The inequalities V(K) ^ VK(K) ^ VE{K) and

UK{K) < U{K) are clear.

We shall give examples in which the inequalities are strict. Consider

first the space E consisting of two points xx and x2. If the kernel Φ is given

by the matrix I J_ A then Wt{K) = 7/8 and V(K) = 1 for K=E. If we consider

the symmetric kernel given by ( | ^ , V(K) = 1 but VK(K) = 3/2. If # consists

of one point x1 and Φ is given by (rj f) , then £7(ϋQ=VJΓ(χ) = l but V̂ (ϋQ = 2.
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If K consists of two points and Φ is given by ί i 2)5 then VE{K) =VK[K) — 1 but

U(K) = 2. Our proof will be completed if we can find a kernel for which

VK(K) <ΫK{K). This is possible, because VK{K) = 1 but VK(K) = 2 for K consist-

/I 2\
ing of two points and Φ=( j o)

2. Suppose still £ = F . We define Dn(X) by

1 n
— / _ Ί x m i 2-J ^(cCί, cCj ) .

This increases as n->oo. In fact, if we exclude the terms containing xk and

denote the remaining sum by Σl^k\ then

We set

It is a known result that D(K)=Wi(K); see, for instance, Choquet [1], In case

K is a compact set in Ez and 0 is Newtonian, l/D(K) is called the transfmite

diameter of K.

We come back to the general case where E and F may not be the same.

Consider two non-empty sets X and Y in E and F respectively. We set

ni?Λ(X,F)=suρ inf Σ Φ(x9yi) .

We shall assume RX(X,Y) >—oo and show that lim Rn(X,Y) exists. Choose
n->oo

^ ε F such thatinf Φ(a;, i/i) >~oo. Then nRn(X,Y) ^inΐnΦ(x,y1) > — oo. If

2/i, 5 2/̂  57l5 , Vm^Y, then

ΣΦ(*,Vί)+ΣΦ(*,7/)l

ί—l y=i J

^ inf Σ (̂ίK, Vi) + inf Σ * ( * , Vj) ,

from which it follows that

X, Y) .
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On the other hand,

nkRn(X, Y) = k sup inf Σ3 Φ(x,
7 J i l

^ sup
Vi,

inf h Φ(x, Vj) = nkRnk(X, Y).

Therefore

(nk+tn)Rnk+m(X, Y) ^ nkRnk(X, Y)+mRn(X, Y) ^

and hence

(i) * — ( * n ̂  g

n(X, Y)+mRJX, Y)

Given ε, 0 < ε < 1, we choose nQ such that

ϊϊm Rn(X,Y)-ε if ϊϊϊn Rn(X9 Y) < oo,

1/ε if ίίrn i?n(X,r) = 00 .

Next we choose ^0 such that, for any k ̂  kQ and every m (0 < \

holds that

1 —ε and

^ ] ^ 0 — 1), it

njc+m

In case lim i?rι(X,F)=oo5 (1) yields
W»oo

for any k^k0 and every m, 0 <£ w < w0— 1. It follows that lim i?n(X, Y) = °o.

In case lim Rn(X> Y) < oo? we choose mA (0 < m f c < w0—1) such that
W-»oo

ί lim Rn{X, Y) + ε if lim Λ»(X, Y) > -oo ,
W->oo W-> oo

(2) i ? n o i + m , ( ^ F ) ^

l-l/β if KmΛ.(X,r) = -oo .

It holds on account of (1) that

lim Rn,k+mk(X, Y) ^ Rno{X, Y) ^ T ί i Rn(X, Y)-ε .
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This and (2) yield lim Rn(X, Y) ^Tϊm Rn(X, Y). Thus lim Rn(X, Y) exists. We

shall denote this limit by R(Xy Y).

Remark. There is an example in which lim Rn(X9Y) does not exist. Take
n-±oo

the #-axis as X=E and {1, 2, } as Y=F. We define Φ(x, n) by (— l)nx.

Then Rn(X, Y) = -co if n is odd and Rn(X9 Y)=0 if n is even.

Let us establish

THEOREM 2. Let K be a non-empty compact set in E, and Y be any non-empty set

in F. Then R(K, Y) exists and

R(K,Y) = UK{Y) .

Proof. First we note that R^K.Y) = sup inf Φ(x9 y) > — oo5 whence
2/eY" XBK

R(K, Y) =lim Rn{K, Y) exists. For each n
n-*oo

Rn{K, Y) = - L sup inf Σ Φ{x, yt) ̂  UK{Y) ,
n 2/i, j n ε 7 αeiΓ i = l

so that i?(/i? 7) < UK(Y). To prove the inverse inequality take μ e ^ F . Given

ε > 0 , we can find a continuous function Φε(x,y) on KxSM such that

Φε(x,y) ^Φ{x,y) on KxS^ and

min Φe(#5 i")
αeϋΓ

There exist a finite subdivision 5^= U Yι into mutually disjoint Borel sets Yl9

Yk and points yxeFl5 , y^Yjc such that

whenever x^K and y^Yt for each i. We have

ι)μ(Yi)—Φe(x, μ) ^i!il\ ΦA%, Vi)— $e(#> V) dμ(y)<ε

on K and hence

x<=K

We approximate each μ(Yi) by a non-negative rational number rt such that

= l and
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X(=K i

Set rt-Pilq with integers pt ^ 0 and g > 0, and consider

Its minimum on K is not greater than Rq(K> Y). Thus

min Φ(xy μ) ^ Rq(K, F)+3ε.

Since we can take q arbitrarily large, min Φ(x, μ) < R(K, F)-f-3ε, whence
x(=K

minΦ(x> μ) ^R(K,Y). Because of the arbitrariness of μ e ^ Γ , we have

UK(Y) < R(Ky Y)y which gives the equality.

3. Finally we prove

THEOREM 3. Let X be a non-empty set in E and L be a non-empty compact set in

F. In order that there be μ^^/L such that Φ[x, μ) = 00 for every x^X, it is necessary

and sufficient that Uχ{L) = co.

Proof. Suppose that there is a measure μ^^L such that Φ(x,μ) = oo for

every x<=X. Then

UX(L)= sup inf Φ(x,μ)=™.

Conversely assume Ux(L) = oo. For each k there is μk^^/L such that

(χ, μk) > T on X. Naturally fl 2 " ^ f c e ^ L and

oo for every

Using T h e o r e m 2 we obta in the following generalization of the so-called

Evans-Selberg's theorem.

COROLLARY. Let K and L be non-empty compact sets in E and F respectively.

In order that there be / i £ ^ L such that Φ(x,ju)=oo for every x^K, it is necessary and

sufficient that R(K,L) = °o.
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