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AN APPLICATION OF THE MORSE THEORY
TO FOLIATED MANIFOLDS

KAZUHIKO FUKUI

In [5], R. Thom has started the study of the foliated structures by
using the Morse theory. Recently K. Yamato [7] has studied the
topological properties of leaves of a codimension one foliated manifold
by investigating the “critical points” of variation equation of the given
one-form.

In this note, using their methods we shall show that a codimension
k foliation on a closed manifold is a ‘“bundle foliation” under certain
conditions (Theorem I), and give some topological properties of those
leaves (Theorem II, III). By using Theorem I, we shall show the
Stability Theorem of Reeb [3]. Furthermore, we shall show that bundle
foliations satisfying some conditions, are stable under a small perturba-
tion (Theorem IV). All manifolds, foliations and mappings considered
here, are smooth (i.e., differentiable of class C*).

The author is grateful to Professors N. Shimada, M. Adachi, H.
Imanishi and Mr. T. Matumoto for their kind advices.

§ 1. Definitions and statement of the results

Let V* be a closed n-manifold, #* (0 < k <mn) a codimension k foli-
ation on V* and {U;, i = 1,2, ---,4,} a distinguished neighborhood cover-
ing of V*. The local coordinate of a distinguished neighborhood is
Wy« vy Ugy Xy, + -+, Z,_p) such that each plate is defined by u; = constant
for 1<t < k. At first we take a smooth function f on V*, and for
each distinguished neighborhood U,, we define a mapping F; of U, into
RE+! by

Fi(uu sy Uy Xy "‘9xn—k) = (uu "’yukvf(un sy Ugy Xy "‘rxn—k)) .

Then, we define a subset I'(f) of V" as follows: I'(f) N U; = {(wy, - - -, U,
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Xy ooy By_p) € U;y corank (F)) =1 at (wy, - -+, Uy, &4y -+, X, p)}.  This defi-
nition is well-defined.

PROPOSITION A (Thom [5]). Let f:V"— R be a smooth function.
Then there exists a smooth function g approximating f such that I'(g)
is a closed k-manifold of V™.

Proof. We have only to approximate f in each distinguished
neighborhood U, in order that I'(f) N U; is a k-manifold. Then using
Thom’s notation, we have I'(f) N U; = S,(F;). Hence the proposition
follows from Thom [6].

For pel'(f) N U, let (uy, - -+, %, 21, - -+, %,_;) be a local coordinate
around p such that wu(p) =0,z;(p) =0. We can assume that f is
described as follows:

JS=J ) =u + 2 a2 + Tf CUTy + + -
2% 8,

where (a;,;) is a symmetric (n — k)-matrix. Then the point p is said to
be of type 2 (0 <2< n — k) if the matrix (a;;) is non-singular and its
signature is 1 (i.e., the number of negative eigenvalues of (a; ;) is equal
to 1). Let I',(f) denote the set of points of type 2. Next for each U,,
consider F|I'(f) N U,;: I'(f) N U; — R**'. Then we define S,(I"(f)) N U,
to be S,(F, () NU). S,(I'(f) N U, is the set of points where the
above matrix (a; ;) is singular. At peS,(I'(f)) N U,;, we can describe f
“generically” as follows:

n—k-1
a

f~f(p>=u,—§x3+

X5 4+ X+ Wy + D CUT, + -
8,¢

J=1+1

(cf. [5]). Note that S,(I"'(f)) is a (kK — 1)-dimensional submanifold of I"(f)
and I'(f) = I'(f) U T(NH U -« U (f) USIT)).

THEOREM I. Let a foliated manifold (V*, F*) (n — k = 2) be given.
Suppose that there exists a smooth function f:V"™— R such that I',(f)
= ¢. Then V™ is the total space of a fiber bundle over I'(f) such that
1) the fiber is a connected, simply-connected, closed (n — k)-manifold,
and 2) F* is a foliation such that each leaf is a fiber.

For &k = 0, this is only a simple example of the ordinary Morse
theory. The proof of this theorem for % 2 0 will be given in §3.
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THEOREM II. Let a foliated manifold (V*, F*) (n — k = 2) be given.
Suppose that there exists a smooth function f:V"™— R such that I';(f)
=¢ for 1<i1< k. Then w**L)+0 for any leaf L if and only if
[I'(N), #0 in H(V": Z,), where w™*(L) is the (n — k)-th Stiefel-Whitney
class of L and [I'(f)], is @ mod 2 homology class of I'(f).

In §4, we shall give the proof of Theorem II, and furthermore
obtain the orientable case of Theorem II (Theorem III).

Let FOLF (V") denote the space of codimension %k foliations on V*
with C~-topology as usual. By definition #* is said to be stable under
a small perturbation if there exists a small neighborhood N(F*) of #*
such that for any '#F*e N(FF¥),F* is integrably homotopic to '#*.
Remark that I'(f) is an invariant set modulo isotopy under a small per-
turbation of %% Then we have the following corollary.

COROLLARY 1. Under the assumption of Theorem 1, F* is stable
under a small perturbation.

Furthermore, &#* is said to be stable along a compact leaf L if
there exist an open neighborhood U of L and a small neighborhood N(%¥#)
of & such that for %’ ¢ N(¥), there are a neighborhood W of L, in U,
and a homeomorphism #: W — U satisfying M(F | W) = F'|(W).

COROLLARY 2. Let (V*,%*) (n —k =6) be a (compact or mnon-
compact) codimension k foliated manifold without boundary, and L o
compact, simply-connected leaf. Then F 1is stable along L.

Proof. By Reeb’s argument [3], pp. 130-131, there exists an open
neighborhood U of L which is diffeomorphic to the product L X int D¥,
where D* is a k-disk. We define a smooth function f: U = L x int D*
— R by f(y,2) = g(y), where g: L — R is a nice function without singular
points of index 1. Let p, (resp. v, ) € L be a singular point of index
0 (resp. n — k). Thus we have I'(f, %) = p, X int D%, I',(f, F) = ¢ and
L o(f,F) =9, xintD¥ in U. Next, we choose a sufficiently small
neighborhood N(%#) of &#. Since U is open, & |U is a codimension k
foliation on U for any &#. Since ['(f) is an invariant set modulo isotopy
under a small perturbation, we may see that I'y(f, %) = I'(f, %), [.(f, F")
=¢ and I',_(f,F) =TI,(f,%). We discuss about f|L}, .o; Lyxo — R,
where L, ., is a leaf of #’ which contains p, X 0. Since I'\(f, F') =
Lo vl F)=¢, f|L,,x has not singular points of index 1 and also
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n — k — 1. Furthermore L, N I',_x(f, #') % ¢ because of compactness
of L. So f|L),x has exactly one singular point of index 0 and also
n — k. This function satisfies the “completeness” condition of section 2.
Hence by Proposition B (see section 2) we see that L, ,, is compact
and simply-connected. A natural projection L X int D* — L induces a
diffeomorphism ¢: L} «,— L. The rest of proof is easy.

COROLLARY 3 (The Stability Theorem of Reeb [3:BII, 21]). Let
(V*, F*% (n — k = 6) be a codimension k foliated manifold and L** a
compact leaf with a finite fundamental group. Given an open neighbor-
hood U of L, there exist neighborhoods W of L, and N(F) of F such
that if ' € N(¥), then every leaf of F’' meeting W is compact and has
a finite fundamental group and is contained in U.

Proof. Take a neighborhood W, of L which is contractible to L.
Let p: W, — W, be a universal covering map and & = p~(&F) is a codi-
mension k foliation on W,. For each leaf L’ of & in W,p (L") is a
union of leaves of & in Wl. In particular, p~'(L) = L is a compact,
simply-connected leaf of 4. Thus there exists an open neighborhood
U, (=L x int D*) of L, in Wl, satisfying p(U,) € U. Then we may prove
this corollary by the same discussions used for the corollary 2.

THEOREM IV. Let V* be a total space of L™ *-bundle over a closed
k-manifold M* such that L™ * is a closed, connected, simply-connected
(n — k)-manifold (n — k = 6), and the universal covering space of M* is
contractible. Then the foliation F* such that each leaf is a fiber, is
stable under a small perturbation.

Remark. When L»* is a closed, connected (n — k)-manifold (n — &
= 6) with a finite fundamental group, a foliation '#*%, near to F*, is a
foliation induced from a certain fiber bundle. I don’t know whether
F* is integrably homotopic to '#*, but it seems true.

The proof of this theorem will be given in §5. Finally, we may
give some examples by using Corollary 1, 2 and Theorem IV.

EXAMPLES. 1) V*» = L"* x M*, where L is a closed, connected
(n — k)-manifold (n — k = 6) with a finite fundamental group and M* is
a closed k-manifold. Then the foliation #* such that each leaf is L X
{m}, m e M, is stable under a small perturbation.

2) Let V™ be a total space of S* *-bundle over a closed manifold
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M* with SO (n — k) as structural group (n — k = 2). Then the foliation
such that each leaf is a fiber, is stable under a small perturbation.

8) Let (V") (n =T be a closed, transversally orientable codi-
mension one foliated manifold. Suppose that there exists a compact leaf
with a finite fundamental group. Then %' is stable under a small
perturbation.

4) Let V™ be a total space of L™ *-bundle over (S)* or (SH* % x
(M?»*, where L™ * is a closed, connected, simply-connected (n — k)-mani-
fold (n — k = 6) and M? is a closed 2-manifold which is not diffeomorphic
to a two dimensional sphere and a two dimensional projective space.
Then the foliation such that each leaf is a fiber, is stable under a small
perturbation.

Proof. 2) is obtained by finding a function on V satisfying the
assumption of Corollary 1, and 4) is an immediate consequence of Theorem
IV. For 1), consider L x M, where L is a universal covering space of
L. By using the same way as in the proof of Corollary 2, the foliation
Z such that each leaf is L x {m}, me M, is stable under a small per-
turbation. Hence #* is so. 3) is a special case of the above Remark.
The proof will be given in §5.

§2. Morse theory on a non-compact manifold

The purpose of this section is to show the following Proposition B
which plays an essential role in the proof of Theorem I. Our definition
and argument in this section are based on Yamato [7]. Let M™ be a
connected, paracompact, complete, Riemannian m-manifold without bound-
ary, and f: M™— R a bounded smooth function such that all of its
singular points are of Morse type. Denote by | || the norm of tangent
vectors or covectors of M. f is said to be “complete” if the gradient
vector field of f (denoted by grad f) is complete and if there exist two
families {£;}, 7€ 1, {E’i}, iel of open sets of M satisfying the following
conditions: 1) for each singular point p of f, there is eI such that p ¢ E,,
2) E,c E, for each i, and E, N E’j = ¢ if 4 7, 3) there exist three
positive constants a,, b,, ¢, such that (a) ||(gradf),| > a,, for zeM —
User By (b) dis (B;, M — E)) > b, for each i, and (¢) diam (&,) < ¢,, for
each 1.

PROPOSITION B. Let f: M™— R be a bounded, “complete”, smooth
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function such that all of its singular points are of Morse type. If f has
no singular point of index 1, M™ is compact and simply connected. In
particular, f has exactly one singular point of index 0.

The proof of Proposition B will be preceded by some lemmas. Let
{¥.; t € R} be the one-parameter group of transformations generated by
grad f.

LEMMA 1. There exist positive constants d,h such that for xe M
and = > 0, if dis (x,y.(x)) > d, then

J@ @) — f(@) > k.
Proof. It follows by putting d = max (b,, ¢,), h = a,b, and noting

o) — 7 @) = ||| @rad Ny, dt

and

[[1erad 12y, 1t = dis @, 4@ .

LEMMA 2. Let p be a non-singular point of f. Then lim,.. (D)
exists and is a singular point of f.

Proof. By the boundedness of f and Lemma 1, we can easily see
that U,z ¥:(p) is bounded in M. Since M is complete, there is an
infinite sequence ¢, <¢, < ... <¢,<-.-- — oo such that lim,.. v, (»)
exists in M. The rest of proof is easy.

LEMMA 3. f has at least one singular point of index 0 and also m.

Proof. Suppose that f has no singular point of index m. Let p,
be a singular point of index 2, (xm), and E;, an open set containing p,
in the above definition. Then there exists a point z, e E;, such that
P (x) (—oo <t < oo) is a trajectory issued from p,, By Lemma 1,2,
lim,_. v,(x) = p, is a singular point of index 4, (%m) and the inequality
Sfdim,_., ¥, () — f(») > h holds. Similarly, there exists a point z,e E,,
such that ¥, (x,) (—oo <t < o) is a trajectory issued from p,, and
lim,_. ¥, (x,) exists and the inequality f(lim,., ¥.(2,) — f(p,) > k holds.
After iterating this process g¢-times, we get the inequality f(lim,... ¥.(x,))
— f(»y > h and hence the inequality f(p,.,) — f(®) > q-h. This process
can be continued infinitely because of the absence of a singular point of
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index m. This contradicts the boundedness of f. Hence f has at least
one singular point of index m. It is similar for the case of index 0.

LEMMA 4. Suppose that there is a non-singular, compact, connected
submanifold J of f~'(v) for some r. Let §, be a positive number satisfy-
ing the following condition: for any 6 (0,8, and any xcJ, there exists
a positive number =(x,5) such that f(V., »@) — f(x) =5. Let S be the
subset of J consisting of those points x such that for any ¢, the inequality
F@r@) — f(@) <4d, holds. If S x ¢, then S(J) = {lim,_., ¥, (2); xe S} is
a finite set.

Proof. By the boundedness of f and Lemma 1, we can see that
the set S)(J) is bounded in M. Since every element of S,(J) is a singular
point of Morse type by Lemma 2, S,(J) must be a finite set.

LEMMA 5. Under the same assumption as in Lemma 4, if S x ¢,
and if S(J) contains no singular point of index 1, then the set J = Sy(J)
U Wy xed — S) is a compact, connected singular submanifold of
fir + 6,), where (x) ts a positive function satisfying the equality

f(‘l"r(x)(x)) - f(x) = 0o.

Proof. Using the trajectories issued from J, it is easily verified
that J is a compact, connected, singular manifold. Sinece J has no
singular point of index 1 by the assumption, J is a connected component
of f~Y(r + 4.

Remark. If W™ is a compact, connected m-dimensional submanifold
of M™ with J as the boundary, then there exists a compact, connected
m-dimensional submanifold W™ of M such that Int (W™) > W™ and 6™
is a connected component of f~'(r + §, + 5 for some » > 0. In particular
we may suppose y > h, where h is a positive constant in Lemma 1.

Proof of Proposition B. By Lemma 3, f has at least one singular
point of index 0. Let p be such a point and suppose f(p) =0. For a
sufficiently small ¢ > 0, a connected component of fF~!([0,¢]) which con-
tains p, is a m-disk D™. Since the boundary of D™ is an (m — 1)-sphere,
there exists a compact, connected submanifold W7 (> D™) of M™ such
that fGW?™ > h, by Lemma 4,5 and Remark. The boundary of W» is
a compact, connected, non-singular level submanifold of M. Again by
the use of Lemma 4,5 and Remark, there exists a compact, connected
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submanifold W2 (D W) of M™ such that f(@W7) > 2h. After iterating
this process ¢-times, we obtain a compact, connected submanifold
Wz (D W) of M™ such that f@W?T) > q-h. But by the boundedness
of f, this process must finish at finite steps, i.e., there is a positive
integer ¢, such that M — Int D™ = W7. Hence M™ is compact. Since
M has no 1-handle, it is simply connected. In particular, the number
of the singular points of index 0 is equal to one.

§3. Proof of Theorem 1

In order to prove Theorem I, we prepare the following lemma.

LEMMA 6 (Under the same assumption as in Theorem I). Let N be
a sufficiently small neighborhood of S, (I'(f)) in ['(f). Then for any leaf
L such that N N L x ¢, there exist a mneighborhood A of N N L in L
and o modified function g:L — R such that 1) g|L — A = (f|L)|L — A,
where f|L is the restricted function to L of f, 2) g has no singular
point in A, and 3) ||grad g|| > a, on A, where a, is & positive constant.

Proof. Since S,(I'(f)) is compact, there is a finite number of dis-
tinguished neighborhoods U;, i =1, .--,4, such that (=, U, D S,(I"(f))
and the norm of w-components in its local coordinate is small. In U,
which contains p e S,(I'(f)), we may assume that f is described as
follows:

n—k-1

2
f—7rw =u — §x§ + j;ﬂ@- + Xy A+ Uy Zﬁ Cilgy + - - -

Then for any leaf L such that L N U; x ¢, f|(component of L N U,) is
the restricted function to the plate, u, = constant for 1 <17 < k, of the
above function. Therefore, by Milnor’s method [1] pp. 48-66, f|L is
modified in U; to ¢’ such that 1) (f|L)|L — U; = ¢’|L — U,, 2) ¢’ has no
singular point in L N U,, and 3) ||grad ¢’|| > a, on L N U,. Performing
the same process in each small distinguished neighborhood U, we produce
a modified function g satisfying the required properties. Hence we have
only to put N = (U, U) N I'(f) and A = (U, U, N L.

Now we are in a position to prove Theorem I. By Lemma 6, for any
leaf L of #%*, all singular points of f|L or the modified function g are
of Morse type. Let T(I'(f)) C T(I( /) be tubular neighborhoods of I"(f)
in V such that dis(T'(I'(f),V — TI( N > b, and diam (D,) < ¢, for
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each x e I'(f), where D, is a fiber of T({'(f)) over . We can regard
as D, C L, for xeI'(f) — N, where L, is a leaf which contains z.
Putting Use; B = L 0 (T GNIT() — N), User By = L 0 (T@UD T
— N), we see that f|L or ¢ is “complete”. Since f|L or ¢ is bounded,
and has no singular point of index 1, f|L or g satisfies the assumption
of Proposition B. Therefore, each leaf of &#* has exactly one singular
point of index 0. Hence every leaf of F* intersects I')(f) with exactly
one point. We define a mapping z: V — I'y(f) by

(@) =Iy(f) N L, for any zeV .

This implies that I'\(f) can be identified with the leaf space V/F*. It
is clear that z is a submersion. Since V is compact, z is a fiber mapping.

§ 4. Some topological properties of leaves in Theorem I

Let (V*, #%) be a codimension % foliated manifold as in §1, and f
be a smooth mapping of V” into R?. As in §1, we can define a subset
S,.(f,p; F*% of V", but in this section, we give the definition in another
way. Let ¢: V* — R™ be an imbedding and ¢g: V* — R™*? = R™ X R? be
an imbedding defined by gw) = (¢(v), f(v)) for ve V*. The Grassmann
manifold of all (n — k)-dimensional vector subspaces of the space R™*?
we denote by Guip-nik.n-x- Then we define a mapping g of V* into
Gurspnit,nr DY §) = T,, where T, is the element of G,,, ,_, . . Parallel
to the tangent vector space of a leaf L, at g(v). Let F, denote the set
XeGunipnitnr; dim(X NR™*X 0 =n—Fk—p+ 7). This F, is a set
of generic points of Schubert variety of type

m+p—n+k—r,---,m+p—n+k—r,m+p—n+k -, m+p—n+k

~

~
n—k—=p+7r p

(cf. [2]). Then we define a subset S,(f,p; F*) of V to be g-'(¥,). The
following proposition is easily obtained by t-regularity theorem.

T

PropPOSITION C. Let f: V™ — R? be a smooth mapping. Then there
exists a smooth mapping g approximating f such that S,(g9,p; F*) is a
regular submanifold of V™.

Remark. S,(f,1; F%) is equal to I'(f) defined in §1. We can easily
see that S,(f,p; #*) is a closed submanifold of V* if n > 2p + 2k — 2
(cf. [6]).

Let €: R"* - KE(&) — V* be a completely integrable (n — k)-plane
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bundle which defines #*. Then by the usual argument, we have the
following proposition.

- PROPOSITION D. The cohomology class dual to the mod 2 homology
class of S\(f,p; F*) A<p<n—k) is the (n — k — p + 1)-th Stiefel-
Whitney class Wr-*-2*Y(&) of &.

Proof of Theorem II. By Theorem I, V* is the total space of a
fiber bundle over I'y(f). Furthermore from the assumption, the fiber is
a k-connected, closed (n — k)-manifold. Therefore by Proposition D, we
have only to show the following lemma.

LEMMA 7. Let L** ‘5 E»-", M* be a smooth fiber bundle and
suppose that L is k-connected. Then *:H"*E;Z,) — H"*(L;Z,) is
isomorphic.

Proof. At first, note that H**(L; Z,) = Z,, H**(E ; Z,) = H(FE ; Z,).
Since L is k-connected, z, : zy(E) — n(M) is isomorphic for ¢ < k. There-
fore, zn,: H(E; Z,) — H(M; Z,) is so for ¢ < k. In particular H(E; Z,)
~H.M; Z,) = Z,, Next we shall use the cohomology spectral sequence
for the fiber bundle. Since L is k-connected, we can easily see that
&:H"F; Z,) — H**(L; Z,) is epimorphic.

Finally we consider the orientable case. Let V® be an oriented,
closed n-manifold and &#* a transversally orientable codimension k folia-
tion on V*. At first we orient I'(f) as follows. Let peI'(f) and U be
a distinguished neighborhood at p, whose local coordinate is (u,, - - -, uz,
Zy - -+,%, ). The orientation of V* at p is given by

{(8 R A N )}
au,’ ’Buk’ ax,’ ’axn_k o)’

where { } is an equivalence class of the basis ( ). For pel',(f), we
can suppose that T(I',(f)), is spanned by (d/du,, ---,d/0us),, Wwhere
T(I' (1)), is the tangent vector space of I',(f) at p. Then we define the
orientation 7(p) of T'(f), at pel'(f) — S,(I'(f)) such that 5() =
(—DY@/ouy, - - -,8/0uz),} for peI'y(f). The orientation 5(p) of T('(f)),
at p e S;(I'(f)) is naturally determined. This definition is well-defined.
In the following Theorem, we shall suppose that I'(f) is oriented by 7.

THEOREM III. Let (V*, %% (n — k = 2) be a transversally orientable
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codimension k foliated manifold. Suppose that there exists a smooth
function f:V"™— R such that I'(f) =¢ for 1<i< k. Then [['(f)] =
XN in H(V; Z) for any leaf L, where X(L) is the Euler charac-
teristic of L and [I'(f)] is the integral homology class of I'(f) with the
above orientation.

Proof. Let n: V™ — I'(f) be a fiber map. I'(f) is already oriented
as above. As in the proof of Theorem II, we see that H,(V;Z2) = Z
and [I'(f)] is its generator. Denote by x, the restriction of = to I'(f).
Let bel'(f). We may assume that the map =,: I'(f) — [(f) is trans-
versal to b. Let m, (or m_) be the number of point p in z7(b) such
that =, (5(p)) is equal to 7(b) (or x,,(»(p)) is not equal to 5(0)). We define
degrz, to be m if z, (I'(ND =m-['(N], where r,:H.I(f);Z) —
H,(I'(f); Z). Note that degr, =m, — m_.

On the other hand, the Euler characteristic of leaf z~(b) is equal
to > 17=F (—1)%¢;, where c¢; is the number of singular points of index ¢ of
flz=%(b). It is easily checked that m, = >, even Co» M_ = X ;. 0aa C;- There-
fore, we obtain [I'(f)] = (deg z)[I ()] = (m, — mI[I'(N] = G2k (—)iey)
[L(N] = X(L)-[T(].

§5. Proof of Theorem IV

Let M be a universal covering space of M and ¢ its projection. V
is a total space of a fiber bundle induced by ¢q from the fiber bundle
7:V —-M. Thus we have a commutative diagram:

L;—av-—ﬁﬂ

[+ b b

Le——V —M
I3 T

Since M is contractible, there exists a diffeomorphism d of L x M onto
V such that a following diagram commutes:

LXM-—M
pr
id iid’
\% —_—)M
T

where pr denotes a projection. Thus we have the following diagram:
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LxM—M

pr
lpod lq

V —M
T

Now, we introduce a metric on M and then introduce a “bundle-
like metric” on V (see [4] for a definition of a bundle-like metric).
Furthermore, we consider a metric induced by pod (resp. ¢) as a metric
on L x M (resp. M). Then the metric on L X M is also a bundle-like
metric for pr.

Next, we define a topology on FOL* (V") as follows. Any % ¢
FOL® (V") (We omit k from %*) corresponds to a section f,:V"*—
E(t,_x,) which defines &, where E(y,.;,) is a total space of a bundle
associated with the tangent bundle of V* with Grassmann manifold
Go-i,x as fiber. Then we define an e-neighborhood of %, N(F,¢), to be
the set {#' e FOL* (V"); | f, — fs | < e}, where | || denotes a usual norm
in the space of sections of 7, ;.. It is easy to show that &%’ belongs
to N(ZF,¢) if and only if £’ belongs to N(,¢), where £ (resp. &) is
a foliation induced by pod from % (resp. #’). We define a smooth
function f:L X MR by f(y,2) = 9(y), where g: L — R is a Morse
function without singular points of index 1. Then for any £’ e N(Z,e)
(¢ is sufficiently small), f|L/ satisfies all conditions of Proposition B for
any leaf L’ of %#’. Therefore, we have the following commutative
diagram:

LXM—.,," M

T
lpod lq'
H

Vo —VF

where #' is a fiber map, V/#’ is a closed manifold, ¢’ is a universal
covering map and M is considered as * x M ,*€ L, since we have I'(f)
=% X M. Then we may easily check that |pr — #’'|| < Ne for some
integer N > 0. Let 6 be a small positive number. Then we may choose
open neighborhoods U; D W,, i=1,.-.,4, in M, such that 1) U, (resp.
W) is an open ball of radius 4, (resp. 24) centered at z;,, 2) i, W, =
M, and 3) = is trivial on U, for each ¢. We construct a smooth isotopy
of V inductively. Let U,(D> W, be a connected component of ¢-*(U,)
(D¢ '(Wy)). By putting ¢ < /8N, we may check that (ﬁ’)“(Wl) CcLx ﬁl.
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Thus there exists a smooth isotopy h,(0 <t <1) of L x M such that
1) h, = identity, 2) k,|L x (M — U,) = identity, 3) h, preserves M(=x X M)
pointwise, and 4) h‘l(ﬁ')‘l(W,) is a bundle map. Since pod|L X U'l is
diffeomorphic, the composition (pod)oh,oc(pod)~! defines an isotopy ¢, of
Vv, ie.,-

(Pod)oho(pod)'(2), for ze (pod) (L x U) = z~'(U) ,
2, otherwise.

9.(2) = {

Furthermore, this isotopy g, induces an isotopy of L X M. Next, we
construct an isotopy on 77U, and so on. Thus we may define an
isotopy of V, isotopic to the identity, which transforms %’ to #. Hence
ZF 1is integrably homotopic to #’. Thus we complete the proof.

Proof of Example 3). We may easily see that V" is a total space
of L*'-bundle over S* by Reeb [3]. By the above argument, we have
two commutative diagrams:

LXR—I;’R LXR_E—,’R
lp"d lq, lp"d lq’.
V.S V. s

Since ||pr — #’|| < Ne for some integer N > 0, there exists a diffeomorphism
of I X R, isotopic to the identity, which transforms £’ to & and preserves
* X R, *e L, pointwise. Let [0,s) (resp. [0,s)) is a periodic interval
for ¢ (resp. ¢’). We may suppose that |s, — s,] < Ne. Then we define
o:[0,8) — [0,5) as follows:

t, for ¢t near to 0,
t+ (s, — sy, for t near to s, ,

o) = {

and
e — id|| < Ke , for some K > 0.

So we define a diffeomorphism ¢: S'— S8' by ¢o(s) = §/o o g '(s), where g
(resp. @) is a restricted function to [0,s) (resp. [0,s)). Since poq is
sufficiently near to q’,por is sufficiently near =’ in the C~-topology of
the space of submersions of V* to S'. Therefore, there exists a smooth
homotopy #,: V-8 (0<t<1) such that for each ¢,n, is a submer-
sion and z, = gpox, 7, = #’. This homotopy gives an integrable homotopy
of # and #.
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