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HIGHER RECIPROCITY LAW, MODULAR FORMS OF

WEIGHT 1 AND ELLIPTIC CURVES

MASAO KOIKE

§ 0. Introduction

In this paper, we study higher reciprocity law of irreducible poly-

nomials f(x) over Q of degree 3, especially, its close connection with

elliptic curves rational over Q and cusp forms of weight 1. These topics

were already studied separately in a special example by Chowla-Cowles

[1] and Hiramatsu [2]. Here we bring these objects into unity.

Let

^ 0 = the set of number fields K over Q such that

( 1 ) if is a Galois extension over Q with Gal (K/Q) ^ S3, the

symmetric group of degree 3,

( 2 ) K contains an imaginary quadratic field k .

For any K in # 0, we can associate three other objects: (1) f(x): irreduci-

ble polynomials over Q of degree 3, (2) F(τ): cusp forms of weight 1, (3)

E: elliptic curves rational over Q;

let

#! = the set of all irreducible polynomials f(x) over Q of degree 3

whose splitting field Kf over Q belongs to ^ 0 .

tf2 = the set of all normalized cusp forms F(τ) of weight 1 on ΓQ(N)

whose Mellin transform is L-function with an ideal character

X of degree 3 of imaginary quadratic field k and the abelian

extension KF over k which corresponds to the kernel of X

belongs to ^ 0 .

^ 3 = the set of all elliptic curves E rational over Q such that the

field E2 generated by coordinates of 2-division points on E

belongs to ^ 0 .
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Therefore we can define maps <pt: ̂  -> ^ 0 (ί = 1, 2, 3) as follows;

For any K in tf0, let /(*) 6 pΓ1^), JP(Γ) e ^ ( i f ) and E e φi\K). Then our
theorems give

( I ) the relation between the higher reciprocity law of f(x) and
Fourier coefficients of F(τ), which is called the arithmetic con-
gruence relation.

(II) the relation between the higher reciprocity law of f(x) and
L-function of E.

(III) congruences modulo 2 between F(τ) and L-function of E.

These results are a generalization of an example given in [1] and [2].
The author would like to express his hearty thanks to Prof. Hira-

matsu for giving him a lecture on this subject and invaluable conversation.

§ 1. Proof of (I)

Hereafter we fix K in #0. Let f(x) = ax3 + bx2 + ex + d be an ele-
ment in φϊ\K). Let M be the product of all primes which appear in
a, 6, c and d.

For any prime p, pJ(M, put fp(x) = f(x)moάp. Then fp(x) is a poly-
nomial over Fp, the finite field with p elements, of degree 3. We define
Spl {f(x)} to be the set of primes such that the polynomial fp(x) factors
into a product of distinct linear polynomials over Fp. By the higher
reciprocity law for f(x), we mean a rule to determine the set Spl {f(x)} up
to finite set of primes.

Let F(τ) = Σn=iθ>(ri)e[nτ], e[τ] = exp (2ττV — lτ), be a normalized cusp
form of weight 1 in φ;\K). Let 1 be the non-trivial ideal character of
k corresponding to the abelian extension K over k. Let — D and f denote
the discriminant of k and the conductor of X. Then

L(s,X) = j^a(n)n-s

71 = 1

and F(τ) is a cusp form of weight 1 on ^(BiVf) with the character (— Z)/*)
where iVf denotes the norm of f on k over Q. Let p denote the complex
conjugation. From the assumption, it follows that X(a)p = X(ap) for any
integral ideal α of k.
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THEOREM 1 (arithmetic congruence relation). Let p be any prime such

that p)(M'D-N\. Then we have

%{aeFp \fp(a) = 0} = a(pf -

Proof, The proof is similar to that of Theorem 2 in [2], Let p be a

prime as above. It is easily seen that

a(p) = 0 φ=> ( - Dip) = - 1,

the splitting field of fp(x) over Fp is a quadratic ex-

tension over Fp,

fp(x) has exactly 1 linear factor over Fp.

Now we assume that (— D/p) = 1. Then p decomposes into a product of

two prime ideals p and p' where p' is the conjugate of p. It is clear that

a(p) = 2

p splits completely in K,

• /p(x) has exactly 3 distinct linear factors over Ep.

And also it is clear that

a(p) — — 1 <=Φ %(|)) = ω, a non-trivial cube root of unity,

^ remains prime in K.

the splitting field of fp(x) over F p is a cubic exten-

sion over Fp,

> fp(x) has no linear factor over Fp.

Summarizing these results, we obtain a proof of Theorem 1. Q.E.D.

COROLLARY 1. Spl {f(x)} coincides with the set

{p: prime]pJ(M'DN\, a(p) = 2}

up to finite set of primes.

Proof. This is obvious from Theorem 1. Q.E.D.

§ 2. Proof of (II)

Let E be an elliptic curve rational over Q in φΐ\K), which is defined

by y2 = f(x) where f(x) is a polynomial of degree 3 over Q; f(x) = αx3 +

bx2 + ex + d, α, b,c,de Q. Let N denote the conductor of E over Q. Let

E2 denote the field generated by the coordinates of 2-division points on E
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over Q. Then E2 coincides with the splitting field of f(x) over Q. Let p

be an odd prime such that pJ(N, and let Ep denote the reduction modulo

p of E which is an elliptic curve over Fp. Let Np = NP(E) denote the

number of Fp-rational points of Ep. Further we assume that p is prime

to MDN\ as in Section 1, and put fp(x) — f(x)moάp. Then we can prove

LEMMA 1. With the notation as above, we have

( * ) Np-l = ${aeFp\fp(a) = 0} (mod 2) .

Proof. The proof was given in a special case in [1], but for the com-

pleteness of the paper, we give here the proof in detail. It is known

that the number of solutions of y2 ~ f(x) (moάp) in F2

P is equal to Np — 1.

We notice that the right hand side of (*) is odd if and only if fp(x) has

at least one linear factor over Fp. And, it is clear that fp(x) has a linear

factor if and only if the number of solutions of y2 = f(x) (modp) is odd.

Q.E.D.

THEOREM 2. With the notation as above, we have the following equiva-

lences :

( 1 ) fp(x) has exactly one linear factor over Fp if and only if Np — 1

is odd and (— D/p) = — 1.

(2) fp{x) is irreducible over Fp if and only if Np — 1 is even and

( - Dip) = 1.

( 3) fp{x) has three distinct linear factors over Fp if and only if Np — 1

is odd and (— D/p) = 1.

Proof (2) is obvious from Lemma 1. (1) is already proved in the

proof of Theorem 1. Hence (3) is also proved. Q.E.D.

Remark 1. The Galois group of E2 over Q is isomorphic to S3 if and

only if E has no Q-rational points of order 2 and the discriminant of E

is not square.

Remark 2. We should remark that, in the proofs of Lemma 1 and

Theorem 2, we need not use the condition that Kf(= E2) contains an

imaginary quadratic field. This condition is needed only for assuring the

existence of cusp forms of weight 1.

Remark 3. Let E, Ef be in φς\K). Let N and N' denote the con-

ductors of E and E\ Let p be any odd prime such that pJ(NN\ Then

Lemma 1 shows that, for almost all p,
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NP(E) ΈE NP(E') (mod 2).

§3. Proof of (III)

Let E be in φϊι(K) and F(τ) = Σln=ia(n)e[nτ] in <fζ\K). We use same

notation as in Section 1 and Section 2. Combining Theorem 1 and Theo-

rem 2, we obtain

THEOREM 3. Let p be any odd prime such that pJ(NMDN\. Then we

have

Np(E) = a(p) (mod 2) .

For elliptic curves rational over Q, there is a famous Taniyama-Weil

conjecture. If we assume this conjecture, for the elliptic curve E in

Section 2, there exists the normalized cusp form G(τ) = Σ%-iC(ri)e[nτ] of

weight 2 on Γ0(N) such that

NP(E) = 1 + p — c(p), for any prime p,p)(N.

Hence, we get

COROLLARY. With the above assumption, we get the congruence mod 2

between F(τ) and G(τ):

(mod 2)

for any odd prime p, such that p\NMDN\.

Remark. In a special example treated in [1], this type of congruences

mod 2 means that

?(r)2?(llr)2 = η(2z)η{22τ) (mod 2) ,

which follows easily from the fact, (1 — xf = 1 — x2 (mod 2).

§4.

Let F(τ) = Y^n^ι^{n)e[nτ\ be an element in # 2 We assume that there

exists a cusp form H(τ) = ̂ Σlζ=ιb{ή)e[nτ\ of weight 2 satisfying

( 1 ) H(τ) is a normalized primitive cusp form,

( 2 ) b(ή)eZ for all n ^ 1,

( 3 ) For almost all primes p, a(p) = b(p) (mod 2).

By the assumptions (1) and (2), there exists an elliptic curve E defined

over Q associated with H(τ) as in Section 3.
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THEOREM 4. Under the above assumption, we have

KF = E2.

Namely, E belongs to ^ 3 and φs(E) =

Proof. We denote the defining equation of E by y2 = g(x) where g(x)

is a polynomial over Q of degree 3. For any good prime p for E, let JVP

denote the number of F^-rational points of the reduction mod/? of E. Then

the assumption (3) shows that

Np ΞΞ a(p) (mod 2), for almost all odd, good primes .

Put Ti = {p: good prime |α(p) = 2}, T2 = {p: good prime \a(p) = 0}, and

2̂3 = {P- good prime |α(p) = — 1}. Applying Tchebotarev density theorem

to KF, we know that the densities of Tu T2 and T3 are 1/6, 1/2 and 1/3

respectively. The above congruence shows that T% = {p: prime | iVp is odd}

up to finite set of primes.

If g(x) is reducible over Q, Np is even for any good prime; this con-

tradicts the above result. Hence g(x) is irreducible over Q. We assume

that the splitting field Kg of g(x) is abelian over Q. Then the densities

of sets of primes Ux = {p: prime | gp(x) is a product of linear factors over

Fp} and U2 = {p: prime | gp(x) is irreducible over Fp} are 1/3 and 2/3 respec-

tively; this contradicts the above result. Hence [Kg: Q] — 6. Let h! denote

the quadratic field contained in Kg. We assume that k Φ k', Let (k/p)

denote the Kronecker symbol. Then (k/p) — — 1 induces a(p) = 0, hence

Np is even. Also (k'/p) = — 1 induces that Np is even. Since k Φ k', the

density of the set of primes {p: prime \(k/p) = - 1 or (k'/p) = — 1} is 3/4;

this contradicts the above result. Hence Kg ZD k. Since Kf/k and Kg/k

are abelian extensions and the decomposition rule of primes of k in Kf

and Kg coincides to each other, we get Kf = Kg. Q.E.D.
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