K. Harada Nagoya Math. J. Vol. 33 (1968), 117-127

A CHARACTERIZATION OF THE ZASSENHAUS GROUPS

KOICHIRO HARADA

Introduction

A doubly transitive permutation group \mathfrak{G} on the set of symbols Ω is called a Zassenhaus group if \mathfrak{G} satisfies the following condition: the identity is the only element leaving three distinct symbols fixed.

The Zassenhaus groups were classified by H. Zassenhaus [14], W. Feit [3], N. Ito [7], and M. Suzuki [9]. There have been several characterizations of the Zassenhaus groups. Namely M. Suzuki [10] has proved that if a non abelian simple group \mathfrak{G} has a non-trivial partition then \mathfrak{G} is isomorphic with one of the groups PSL(2,q) or $Sz(2^n)$. Since each of the groups PSL(2,q), $Sz(2^n)$ has a non-trivial partition, a theorem of Suzuki characterizes them.

In this paper we shall characterize the Zassenhaus groups as permutation groups by a property of the centralizer of their involutions.

Let \mathfrak{G} be a finite permutation group on a set of n symbols $\Omega = \{1, 2, \dots, n\}$. For every $i(0 \le i \le n)$, we define a subset \mathfrak{G}_i of \mathfrak{G} in the following way:

 $\mathbb{G}_i = \{G \in \mathfrak{G} \mid G \text{ leaves exactly } i \text{ distinct symbols fixed} \}.$

Clearly each \mathbb{G}_i is a union of some conjugate classes of \mathfrak{G} . In particular $\mathbb{G}_n = \{1\}$. A subset \mathbb{G}_i may be empty for some *i*. We shall set a following condition:

 (c_i) there exists an involution $I^{(i)} \in \mathbb{G}_i$ such that the centralizer $\mathbb{G}_{\mathfrak{G}}(I^{(i)})$ of $I^{(i)}$ in \mathfrak{G} is contained in $\mathfrak{G}_i \cup \{1\}$.

It is easy to see that every conjugate element J of $I^{(i)}$ has the same property as $I^{(i)}$. As a matter of fact, the linear fractional groups PSL(2,q)and Suzuki's simple groups $Sz(2^m)$ satisfy one of the conditions (c_0) , (c_1) or

Received Nov. 14, 1967.

 (c_2) . More strongly the above mentioned simple groups satisfy the following condition (a_i) for i = 0, 1 and 2:

 (a_i) for every element A of \mathfrak{C}_i , the centralizer $\mathfrak{C}_{\mathfrak{G}}(A)$ is contained in $\mathfrak{C}_i \cup \{1\}$.

Other than PSL (2, q) and $\mathbf{Sz}(2^m)$, the Mathieu group \mathfrak{M}_{22} of degree 22 satisfies the condition (a_1) . If we consider the Mathieu group \mathfrak{M}_{11} as a permutation group of degree 12, then \mathfrak{M}_{11} satisfies (a_2) . It is interesting to investigate the structure of \mathfrak{G} satisfying the condition (a_i) for some *i*. It seems, however, difficult to treat.

Now we state our result.

THEOREM. Let \mathfrak{G} be a doubly transitive permutation group on Ω . Let us assume that \mathfrak{G} satisfies the condition (c_i) for some *i*. Then \mathfrak{G} is isomorphic with one of the groups PSL(2,q) or $Sz(2^m)$, or \mathfrak{G} has a regular normal subgroup.

Remark. There exists a non solvable exactly doubly transitive group satisfying (c_1) (see Zassenhaus [15]). Therefore the last statement of the theorem is necessary even if we assume that G is non solvable.

The proof of the above theorem is divided into two cases;

```
case (1): i = 0 or 1,
case (2): i \ge 2.
```

In case (1) our aim is to prove that the stabilizer \mathfrak{H} of a symbol 1 has a normal subgroup \mathfrak{L} which is regular on $\mathfrak{Q} - \{1\}$. After it is proved, the elementary argument shows that \mathfrak{G} is a Zassenhaus group. In case (2) we shall apply an interesting work of N. Iwahori [8] who has investigated the structure of groups of positive type. In later section we shall recall his definitions and results. Using a result of N. Iwahori we shall prove that a Sylow 2-subgroup \mathfrak{S} of \mathfrak{G} is a dihedral group and the centralizer $\mathfrak{C}_{\mathfrak{G}}(I)$ of a central involution I of \mathfrak{S} has an abelian normal 2-complement. By a theorem of D. Gorenstein-J. Walter [6], we can easily prove our theorem.

Our notation is mostly standard. Denote by (\mathfrak{G}, Ω) a permutation group on a set Ω of n symbols $\{1, 2, \dots, n\}$. If a subgroup \mathfrak{A} of \mathfrak{G} acts on a subset Δ of Ω , we denote a permutation group induced by \mathfrak{A} on Δ by $(\mathfrak{A}^{\mathfrak{a}}, \Delta)$ or simply by $\mathfrak{A}^{\mathfrak{a}}$. $\mathfrak{A}^{\mathfrak{a}}$ is a homomorphic image of \mathfrak{A} . The normalizer or the centralizer of a subset \mathfrak{X} of \mathfrak{G} is denoted by $\mathfrak{N}_{\mathfrak{G}}(\mathfrak{X})$ or $\mathfrak{C}_{\mathfrak{G}}(\mathfrak{X})$ respect-

118

ZASSENHAUS GROUPS

ively, or simply by $\mathfrak{N}(\mathfrak{X})$, $\mathfrak{C}(\mathfrak{X})$ if no confusion seems to occur. The image of a symbol j by the action of an element G of \mathfrak{G} is denoted by $j^{\mathfrak{a}}$. $|\mathfrak{M}|$ is the cardinality of a certain set \mathfrak{M} . All groups considered are finite.

Proof of Theorem

1. Preliminary Lemmas

First we shall prove two lemmas.

LEMMA 1. Let \mathfrak{G} be a permutation group satisfying the condition (c_i) for some *i*. If all the involutions of \mathfrak{G} are contained in a single conjugate class, then involutions are only elements which have transpositions in their cycle decompositions.

Proof. Let A be an element of \mathfrak{G} whose cycle decomposition contains a transposition:

$$A=(a,b)\cdot\cdot\cdot\cdot$$

Then A is a 2-singular element. Therefore A is commutative with a certain involution I which is conjugate to $I^{(i)}$ by assumption. If A^2 is not the identity element of \mathfrak{G} , then A^2 is commutative with I and A^2 leaves at least i + 2 symbols invariant. This is impossible. This follows the lemma.

LEMMA 2. Let \mathfrak{G} be a doubly transitive permutation group satisfying the condition (c_i) for some *i*. If all the involutions of \mathfrak{G} are contained in a single conjugate class, then the order of the centralizer $\mathfrak{C}_{\mathfrak{G}}(I)$ of any involution I is equal to n-i.

Proof. Let $\beta(G)$ denote the number of transpositions in the cycle decomposition of an element G of \mathfrak{G} . Then by a theorem of G. Frobenius [5] we get a following equality:

$$\sum_{G \in \mathfrak{G}} \beta(G) = \|\mathfrak{G}\|/2.$$

By Lemma 1, $\beta(G) > 0$ if and only if G is an involution of \mathfrak{G} . Hence

$$\beta(I) \cdot |\mathfrak{G}| / |\mathfrak{G}(I)| = |\mathfrak{G}|/2.$$

On the other hand, since an involution I has n - i/2 transpositions we get easily

$$|\mathfrak{C}(I)| = n - i.$$

2. Case (1): i = 0 or i = 1.

Let \mathfrak{G} be a non-solvable doubly transitive group on \mathfrak{Q} satisfying the condition (c_i) for i = 0 or i = 1. Assume that \mathfrak{G} has no regular normal subgroup. Denote by \mathfrak{F} the stabilizer of the symbol 1 and by \mathfrak{R} the stabilizer of the symbols 1 and 2. Let J be an involution of \mathfrak{G} which is conjugate to $I^{(i)}$ where i = 0 or 1. By the double transitivity of \mathfrak{G} we can choose J such that a cyclic decomposition of J is $(12) \cdots J$ is contained in the normalizer $\mathfrak{N}_{\mathfrak{G}}(\mathfrak{K})$ of \mathfrak{K} in \mathfrak{G} . Therefore J induces an automorphism of order 2 on \mathfrak{K} . By the condition (c_0) or (c_1) , J has no fixed element in \mathfrak{K} . Hence \mathfrak{K} is an abelian group of odd order. J inverts every element of \mathfrak{K} .

LEMMA 3. If i = 0 or 1, then all the involutions of \mathfrak{G} are contained in a single conjugate class.

Proof. Let J_1 and J_2 be two involutions of \mathfrak{G} . By the double transitivity of \mathfrak{G} , there exists an element A such that

$$J_1 = (ab) \cdot \cdots \cdot J_2^A = (ab) \cdot \cdots \cdot J_2^A$$

Hence the element $B = J_1 J_2^A$ is contained in a suitable conjugate subgroup \mathbb{R}^q of \mathbb{R} . Therefore the order of B is odd. This implies J_1 and J_2^A are conjugate to each other in \mathbb{R}^q . Thus we have proved our lemma.

If i = 1, then by Lemma 3 every involution has the same property as $I^{(1)}$. Therefore we can choose an involution I which is conjugate to $I^{(1)}$ and leaves the symbol 1 fixed.

LEMMA 4. If i = 1, then $\mathfrak{H} = \mathfrak{C}_{\mathfrak{G}}(I)\mathfrak{R}$. Furthermore, every involution of \mathfrak{H} is written in a form I^{κ} where K is an element of \mathfrak{R} .

Proof. Let I_1 and I_2 be two involutions of \mathfrak{H} . Then by Lemma 3 $I_1^{\mathfrak{c}} = I_2$, $G \in \mathfrak{G}$. Therefore $1^{\mathfrak{c}-1}I_1^{\mathfrak{c}} = 1^{\mathfrak{l}_2} = 1$. Hence I_1 leaves the symbol $1^{\mathfrak{c}-1}$ fixed. Since $I_1 \in \mathfrak{C}_1$, $1^{\mathfrak{c}-1} = 1$. Hence $G \in \mathfrak{H}$. In particular $\mathfrak{C}_{\mathfrak{G}}(I) \subset \mathfrak{H}$. By Lemma 2 and Lemma 3, we have $|\mathfrak{C}(I)| = n-1$. Since the order of \mathfrak{H} is $(n-1) \cdot |\mathfrak{K}|$ and $\mathfrak{C}(I) \cap \mathfrak{K} = \{1\}$ by the condition (c_1) , we conclude $\mathfrak{H} = \mathfrak{C}(I) \cdot \mathfrak{K}$. Thus we have proved our lemma.

LEMMA 5. If i = 0 or 1, then $[\mathfrak{N}_{\mathfrak{G}}(\mathfrak{R}): \mathfrak{R}] = 2$.

120

Proof. Let Δ be a set of symbols of Ω which are left fixed individually by every element of \Re . By a theorem of Witt [13], $\Re(\Re)/\Re$ is considered as a doubly transitive permutation group on Δ . We can easily prove that this permutation group is exactly doubly transitive. Therefore we can conclude that $|\mathcal{A}| = q^s$ where q is a prime number. Assume q = 2. Then a Sylow 2-subgroup of $\mathfrak{N}(\mathfrak{R})$ is an elementary abelian 2-group of order 2^s . Since every involution of $\mathfrak{N}(\mathfrak{R})$ inverts every element of \mathfrak{R} , we conclude This implies $[\mathfrak{N}(\mathfrak{R}): \mathfrak{R}] = 2$. Next assume that q is odd. s = 1.Since $|\mathfrak{H} \cap \mathfrak{N}(\mathfrak{K})/\mathfrak{K}| = q^s - 1$. There exists an involution I_1 of \mathfrak{H} which acts on \mathfrak{K} . Clearly i = 1 and n = odd in this case. Since \Re is an abelian group, all the involutions of \mathfrak{H} act on \mathfrak{R} by Lemma 4. Therefore if a Sylow 2subgroup of \mathfrak{H} has at least two involutions, then there exists an involution I_2 which acts trivially on \Re , which is impossible by the condition (c_1) . Thus a Sylow 2-subgroup of \mathfrak{H} has only one involution. Since *n* is odd, a Sylow 2-subgroup of \mathfrak{G} is isomorphic to that of \mathfrak{H} and has only one involu-Hence a Sylow 2-subgroup of S is either cyclic or generalized tion. quaternion group. Therefore & has a regular normal subgroup (Burnside [2], Brauer-Suzuki [1], Feit-Thompson [4]). This is impossible. Thus we have proved our lemma.

LEMMA 6. If i = 0 or 1, then \Re has a normal complement \Re in \Re . Namely $\mathfrak{H} = \mathfrak{L} \cdot \mathfrak{K}, \ \mathfrak{L} \cap \mathfrak{K} = 1$.

Proof. By Burnside's splitting theorem, it suffices to show that $\mathfrak{N}_{\mathfrak{H}}(\mathfrak{R}_p) =$ $\mathfrak{C}_{\mathfrak{H}}(\mathfrak{R}_p) = \mathfrak{R}$ for every Sylow *p*-subgroup \mathfrak{R}_p of \mathfrak{R} . For, if so, \mathfrak{R}_p is a Sylow *p*-subgroup of \mathfrak{H} and it has a normal complement \mathfrak{L}_p in \mathfrak{H} . Put $\bigcap_{p \mid |\mathfrak{K}|} \mathfrak{L}_p = \mathfrak{L}$. Clearly \mathfrak{L} is a normal complement of \mathfrak{R} in \mathfrak{H} . Let \mathcal{A} be a set of symbols of Ω which are left fixed individually by every element of \Re_p . Let us By a theorem of Witt $\mathfrak{N}_{\mathfrak{G}}(\mathfrak{R}_p)^{\mathcal{A}}$ is a doubly transitive assume that $|\mathcal{A}| \geq 3$. Since $\mathbb{C}_{\mathfrak{G}}(\mathfrak{R}_p)$ contains \mathfrak{R} and \mathfrak{R} leaves just two symbols 1, 2 group on *1*. invariant by Lemma 5, $\mathbb{C}(\mathfrak{R}_p)^d$ is a non-trivial normal subgroup of $\mathfrak{N}(\mathfrak{R}_p)^d$ of odd order. By the double transitivity of $\mathfrak{N}(\mathfrak{R}_n)^d$, $\mathfrak{C}(\mathfrak{R}_n)^d$ is transitive. Hence $|\mathcal{A}|$ is odd. Since $\mathcal{A}^J = \mathcal{A}$, an involution J keeps at least one symbol unchanged. Hence n = odd and i = 1. The order of the group $\mathfrak{H}(\mathfrak{R}_n)$ is divisible by $|\mathcal{A}| - 1$. Therefore \mathfrak{H} has an involution which acts on \mathfrak{R}_p . Hence all the involutions of \mathfrak{H} act on \mathfrak{R}_p by Lemma 4. This implies that a Sylow 2-subgroup of S has only one involution. Hence S has a regular normal subgroup. This is not the case. Hence $|\mathcal{A}| = 2$. Hence $\mathfrak{N}(\mathfrak{R}_p) = \langle J, \mathfrak{R} \rangle$. Therefore $\mathfrak{N}_{\mathfrak{H}}(\mathfrak{R}_p) = \mathfrak{C}_{\mathfrak{H}}(\mathfrak{R}_p) = \mathfrak{R}$. This yields our lemma.

PROPOSITION 1. Let S be a doubly transitive permutation group satisfying the condition (c_i) for i = 0 or 1. Then S is isomorphic with one of the groups PSL(2,q) or $Sz(2^m)$, or S has a regular normal subgroup.

Proof. Assume that \mathfrak{G} has no regular normal subgroup. By Lemma 6, \mathfrak{F} has a normal subgroup \mathfrak{L} of order n-1 which is regular on $\mathfrak{Q} - \{1\}$. Therefore \mathfrak{G} admits a decomposition:

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} J\mathfrak{L}.$$

Every element of $\mathfrak{G} - \mathfrak{H}$ is uniquely expressed in a form L'KIL where $L', L \in \mathfrak{A}, K \in \mathfrak{R}$. Next we shall show that \mathfrak{R} is a T.I. set in \mathfrak{G} . Since \mathfrak{R} is an abelian subgroup, it suffices to show that the centralizer of any non-identity element of \Re is equal to \Re . Let an element $K_1 \in \Re$ is commutative with an element of $\mathfrak{G} - \mathfrak{H}$. Assume $K_1L'K/L = L'K/LK_1$ where $K_1, K \in \Re, L', L \in \Omega.$ Then $L'^{K_1-1}K_1K/L = L'KK_1^{-1}/L^{K_1}$. By the uniqueness of expression of an element of $\mathfrak{G} - \mathfrak{H}$ we get $K_1 K = K K_1^{-1}$. This implies $K_1 = 1$, since \Re is an abelian group of odd order. If K_1 is commutative with an element L of \mathfrak{L} , then K_1^J is commutative with $L^J \in \mathfrak{G} - \mathfrak{H}$. This is impossible by the above fact. Therefore R is a T.I. set in S. Let us assume that an element $A \neq 1$ of \Re keeps at least three distinct symbols, say 1, 2, 3, unchanged. Then $A \in \Re \cap \Re^H$ where $1^H = 1, 2^H = 3$. Therefore $\Re = \Re^{H}$ and \Re keeps 1, 2, 3 invariant. By Lemma 3, this is impossible. Therefore & is a Zassenhaus group. Since & has only one class of involutions and the order of any involution of \mathfrak{G} is $|\mathfrak{Q}|$ or $|\mathfrak{Q}| - 1$, we get easily our proposition.

3. Case (2): $i \ge 2$.

First we shall recall a result of N. Iwahori [8].

Let \mathfrak{G} be a permutation group on \mathfrak{M} . We call \mathfrak{M} a \mathfrak{G} -space. Define a subset $\mathfrak{M}_G(G \in \mathfrak{G})$ of \mathfrak{M} as follows.

$$\mathfrak{M}_{G} = \{m \in \mathfrak{M} \mid m^{G} = m\}.$$

DEFINITION 1. A permutation groups \mathfrak{G} on \mathfrak{M} is of type k if the following two conditions are satisfied;

(i) $|\mathfrak{M}_G| = k$, for every non identity element $G \in \mathfrak{G}$,

(ii) $\bigcap_{G=M} \mathfrak{M}_G = \phi$, where ϕ denotes the empty set.

N. Iwahori's main result is the following theorem.

THEOREM. If \mathfrak{G} admits a \mathfrak{G} -space \mathfrak{M} of type 2, then \mathfrak{G} is isomorphic to one of the following groups:

- (i) A_4 : the alternating group of degree 4,
- (ii) S_4 : the symmetric group of degree 4,
- (iii) \mathfrak{A}_5 : the alternating group of degree 5 or
- (iv) a generalized dihedral group with dihedral Sylow 2-subgroups.

Here a generalized dihedral group is defined as follows. Let \mathfrak{A} be an abelian group and τ be an automorphism of \mathfrak{A} such that if $A \in \mathfrak{A}$, then $A^{\mathfrak{r}} = A^{-1}$, where $A^{\mathfrak{r}}$ denotes the image of A by τ . Under these conditions, holomorph of \mathfrak{A} by τ is called a generalized dihedral group.

In order to prove his theorem, N. Iwahori has proved several lemmas. We shall quote one of them here.

LEMMA 7 (Lemma 1. 3 in [8]). Let \mathfrak{G} be a finite group and \mathfrak{M} a \mathfrak{G} -space of type k > 0. Let A and B be elements in $\mathfrak{G} - \{1\}$ of orders a and b respectively. Assume that

- (i) AB = BA, and
- (ii) $a \neq b$ or $a = b \neq prime$.

Then $\mathfrak{M}_A = \mathfrak{M}_B$.

Now we shall apply his argument to our case. Let \mathfrak{G} be a non solvable doubly transitive group on \mathfrak{Q} satisfying the condition (c_i) for $i \geq 2$. As in section 2, let us denote the stabilizer of the symbol 1 by \mathfrak{F} and the stabilizer of two symbols 1 and 2 by \mathfrak{R} . J is an involution of \mathfrak{G} which is conjugate to $I^{(i)}$. We can choose J such that a cyclic decomposition of J is $(12) \cdots$. In the rest of this paper we shall use the notation I instead of $I^{(i)}$.

LEMMA 8. The centralizer $\mathfrak{C}(I)$ of I admits a $\mathfrak{C}(I)$ -space of positive type.

Proof. We may assume that I leaves i symbols, say $1, 2, \dots, i$ invariant. If $\mathfrak{C}(I)$ does not admit a $\mathfrak{C}(I)$ -space of positive type, then by the condition (c_i) every element $A \neq 1$ of $\mathfrak{C}(I)$ leaves just i symbols $1, 2, \dots, i$ invariant. KOICHIRO HARADA

Clearly every conjugate subgroup of $\mathfrak{C}(I)$ does not also admit a $\mathfrak{C}(I)$ -space of positive type. Therefore if $\mathfrak{C}(I^c) \cap \mathfrak{C}(I) > \{1\}$ then every element of $\mathfrak{C}(I^c)$ leaves just *i* symbols 1, 2, \cdots , *i*, invariant. Let \mathfrak{R}_2 be a Sylow 2-subgroup of \mathfrak{R} which is non-trivial by the condition (c_i) $(i \ge 2)$. Since *J* acts on \mathfrak{R} , we may assume $\mathfrak{R}_2^J = \mathfrak{R}_2$. Put $\mathfrak{S} = \langle J, \mathfrak{R}_2 \rangle$. Then there exists an involution I_1 of \mathfrak{R}_2 which is conjugate to *I* and $\mathfrak{C}(J) \cap \mathfrak{C}(I_1) \supset \mathfrak{Z}(\mathfrak{S}) > \{1\}$. Thus every element of $\mathfrak{C}(J)$ leaves 1, 2, invariant. In particular *J* leaves 1, 2 invariant. This is impossible, since *J* has a cyclic decomposition $(12) \cdots$. Thus we have proved our lemma.

LEMMA 9. $\mathbb{C}(I)$ is an elementary abelian 2-group or a generalized dihedral group.

Proof. Since $\mathbb{C}(I)$ admits a $\mathbb{C}(I)$ -space of positive type, we may apply Lemma 7. Assume that $\mathbb{C}(I)$ is not an elementary abelian 2-group. Let \mathfrak{N} be a (normal) subgroup of $\mathbb{C}(I)$ which is generated by all non-involutions of $\mathbb{C}(I)$. By Lemma 7, every element of \mathfrak{N} leaves $1, 2, \dots i$ fixed. This implies that \mathfrak{N} is a proper subgroup of $\mathbb{C}(I)$. If A is an element of $\mathbb{C}(I)-\mathfrak{N}$, then $A^2 = 1$. Therefore $(AN)^2 = 1$ for $N \in \mathfrak{N}$. Hence $A^{-1}NA = N^{-1}$. Hence \mathfrak{N} is an abelian subgroup of $\mathbb{C}(I)$. If B is another element of $\mathbb{C}(I) - \mathfrak{N}$, then $B^2 = 1$ and the element AB centralizes \mathfrak{N} . Hence $A \equiv B \pmod{\mathfrak{N}}$. This implies that $[\mathbb{C}(I): \mathfrak{N}] = 2$. This follows our lemma.

LEMMA 10. If $\mathfrak{C}(I)$ is not an elementary abelian 2-group, then $\mathfrak{C}(I)$ admits a $\mathfrak{C}(I)$ -space of type 2.

Proof. Let Γ be a subset of $\{1, 2, \dots, i\}$ consisting of elements left fixed by every element of $\mathbb{C}(I)$. Put $\Delta = \{1, 2, \dots, i\} - \Gamma$. Since $\mathbb{C}(I)$ admits a $\mathbb{C}(I)$ -space of positive type, we have $|\Delta| = k \ge 1$. Let r be the number of orbits of $\mathbb{C}(I)$ on $\Omega - \Gamma = \mathfrak{M}$. Then

$$r|\mathfrak{C}(I)| = |\mathfrak{M}| + k(|\mathfrak{C}(I)| - 1)$$

(Wielandt [13] p. 8 Ex. 3. 10). Hence

$$|\mathbb{C}(I)| = \frac{|\mathfrak{M}| - k}{r - k} = \frac{n - (i - k) - k}{r - k} = \frac{n - i}{r - k} \leq n - i.$$

On the other hand, using a equality of Frobenius $\sum_{G \in \mathfrak{G}} \beta(G) = |\mathfrak{G}|/2$ we get

$$\frac{n-i}{2} \cdot \frac{|\mathfrak{G}|}{|\mathfrak{G}(I)|} \leq |\mathfrak{G}|/2.$$

Hence $|\mathfrak{C}(I)| \ge n - i$. Hence $|\mathfrak{C}(I)| = n - i$, r = k + 1 and $|\mathfrak{M}| = |\mathfrak{C}(I)| + k$. Since $\mathfrak{C}(I)$ has a normal subgroup \mathfrak{N} of index 2 which leaves all the symbols of \varDelta fixed, \varDelta decomposes into k/2 orbits of $\mathfrak{C}(I)$. Since by the condition (c_i) any element of \mathfrak{N} has no fixed symbols on $\mathfrak{M} - \varDelta$ each of the remaining orbits of $\mathfrak{C}(I)$ of $\mathfrak{M} - \varDelta$ has length at least $|\mathfrak{C}(I)|/2$ hence exactly $|\mathfrak{C}(I)|/2$. Therefore we have the following equality.

$$\frac{k}{2} + 2 = r = k + 1.$$

Hence k = 2. Thus we have proved our lemma.

LEMMA 11. All the involutions of S are contained in a single conjugate class.

Proof. In the proof of Lemma 10, we have proved the equality $|\mathfrak{C}(I)| = n - i$. This relation also holds when $\mathfrak{C}(I)$ is an elementary abelian 2-group, because in proving the equality $|\mathfrak{C}(I)| = n - i$ we have used only the fact that $|\mathfrak{C}(I)|$ admits a $\mathfrak{C}(I)$ -space of positive type. Using a equality $\sum \beta(G) = \frac{1}{2} |\mathfrak{G}|$, we can easily prove that there exists no involution which is not conjugate to I.

PROPOSITION 2. Let \mathfrak{G} be a doubly transitive permutation group satisfying the condition (c_i) for $i \ge 2$. Then i = 2 and \mathfrak{G} is isomorphic to one of the groups PSL(2,q) where q is a power of a certain odd prime, or \mathfrak{G} has a regular normal subgroup.

Proof. If $\mathfrak{C}(I)$ is an elementary abelian 2-group, then by Lemma 11, \mathfrak{G} is a (CIT)-group (Suzuki [11]). If \mathfrak{G} has a non trivial solvable normal subgroup, then \mathfrak{G} has a regular normal subgroup \mathfrak{R} . Assume that \mathfrak{G} has no regular normal subgroup. By Theorem 5 of Suzuki [11] and the main theorem of Suzuki [9], \mathfrak{G} is isomorphic to one of the following groups: $\mathrm{LF}(2, 2^{\alpha})$, $Sz(2^{\beta})$, PSL (2, q), PSL (3, 4) or $M_{\mathfrak{g}}$ (This is a group of order $\mathfrak{g} \cdot \mathfrak{s} \cdot 7 = 720$, which is the projective group of one variable over the near-filed of 9 elements; Zassenhaus [14]). Since \mathfrak{G} is a (CIT) group, in the above mentioned groups only PSL (2, 2^{α}) has elementary abelian 2-Sylow subgroups. If PSL (2, 4) = PSL (2, 5) is considered as permutation group of degree 6, PSL (2, 5) satisfies the condition (c_2). If $2^{\alpha} > 4$, the group PSL (2, 2^{α}) does not satisfy the condition (c_i) for $i \ge 2$. Therefore $\mathfrak{G} \cong PSL(2,5)$. Next let us assume that $\mathfrak{C}(I)$ is not an elementary abelian 2-group. By Lemma 10 and by a theorem of N. Iwahori, $\mathbb{C}(I)$ is a generalized dihedral group with dihedral Sylow 2-subgroups. Since I is a central involution of a certain Sylow 2-subgroup \mathfrak{T} of \mathfrak{G} by Lemma 11, \mathfrak{T} is a dihedral group. Since $\mathfrak{C}(I)$ has a abelian normal 2-complement by a theorem of D. Gorenstein-J. Walter [6], \mathfrak{G} is isomorphic to one of the following groups: PSL (2, q), PGL (2, q) where q is a power of an odd prime, or \mathfrak{A}_7 the alternating group of degree 7. Here we used the fact that S has not a solvable normal subgroup and that a group of odd order is solvable (W. Feit-J. Thompson [4]). On the other hand the group PGL(2,q)(q is odd) has two conjugate classes consisting of involutions. The group \mathfrak{A}_7 does not satisfy (c_i) , because \mathfrak{A}_7 has one class of involutions and a involution (12)(34) is commutative with (1324)(56). Hence $\mathfrak{G} \cong \operatorname{PSL}(2,q)$ (q is odd).

Combining Proposition 1 and Proposition 2 we have our main theorem stated in the introduction.

Remark. Recently M. Suzuki [12] has proved the following result.

THEOREM. Let \mathfrak{G} be a finite group. Suppose that \mathfrak{G} contains a subgroup \mathfrak{F} which satisfies the following two conditions:

- (1) \mathfrak{H} is a generalized dihedral group, and
- (2) $\mathfrak{H} = \mathfrak{C}_{\mathfrak{G}}(J)$ for any involution J of the center of \mathfrak{H} .

Then, if \mathfrak{G} is not solvable, \mathfrak{G} contains a normal subgroup \mathfrak{N} such that the order of \mathfrak{N} is either odd or twise an odd number, and that $\mathfrak{G}/\mathfrak{N} \cong PSL(2,q)$ or PGL(2,q)for some prime power q > 3.

If we use this theorem, our proof in case (ii) become rather short.

References

- Brauer, R. and Suzuki, M., On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci., Vol. 45, (1959), pp. 1757-1759.
- [2] Burnside, W., Theory of groups of finite order, Cambridge Univ. Press, (1911) (Second edition).
- [3] Feit, W., On a class of doubly transitive permutation groups, Ill. J. Math., Vol. 4, (1960), pp. 170-186.
- [4] Feit, W. and Thompson, J.G., Solvability of groups of odd order, Pac. J. of Math., Vol. 13, pp. 775-1028.

ZASSENHAUS GROUPS

- [5] Frobenius, G., Über die Charactere der mehrfach transitiven Gruppen, S.B. Preuss. Akad. Wiss. 1904.
- [6] Gorenstein, D. and Walter, J., On finite groups with dihedral Sylow 2-subgroups, Ill. J. Math., Vol. 6, (1962), pp. 553-593.
- [7] Ito, N., On a class of doubly transitive permutation groups, Ill. J. Math., Vol. 6, (1962), pp. 341–352.
- [8] Iwahori, N., On a property of a finite group, J. of Faculty of Sci., Univ. of Tokyo, Vol. 11, (1964), pp. 47-64.
- [9] Suzuki, M., On a class of doubly transitive groups, Ann. of Math., Vol. 75, (1962), pp. 105-145.
- [10] Suzuki, M., On a finite group with a partition. Arch. Math., Vol. 7, (1961), pp. 241-254.
- [11] Suzuki, M., Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc., Vol. 99, (1961), pp. 425-470.
- [12] Suzuki, M., A characterization of the simple groups PSL(2, q), Jour. of Math. Soc. of Japan, Vol. 20, (1968), pp. 342~349.
- [13] Wielandt, H., Finite permutation groups, Academic Press, New York, 1964.
- [14] Zassenhaus, H., Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Hamb. Abh. Vol. 11, (1936), pp. 17–40.
- [15] Zassenhaus, H., Über endliche Fastkörper, Hamb. Abh., Vol. 11, (1936), pp. 187-220.

Nagoya University.