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A CHARACTERIZATION OF THE
ZASSENHAUS GROUPS

KOICHIRO HARADA

Introduction

A doubly transitive permutation group & on the set of symbols  is
called a Zassenhaus group if ® satisfies the following condition: the identity
is the only element leaving three distinct symbols fixed.

The Zassenhaus groups were classified by H. Zassenhaus [14], W. Feit
[31, N. Ito [7], and M. Suzuki [9]. There have been several characteriza-
tions of the Zassenhaus groups. Namely M. Suzuki [10] has proved that if
a non abelian simple group ® has a non-trivial partition then & is iso-
morphic with one of the groups PSL(2,¢9) or Sz(2"). Since each of the
groups PSL (2,9), Sz(2") has a non-trivial partition, a theorem of Suzuki
characterizes them.,

In this paper we shall characterize the Zassenhaus groups as permutation
groups by a property of the centralizer of their involutions.

Let ® be a finite permutation group on a set of n symbols 2 = {1, 2,

- n}. For every i(0<i=<#n), we define a subset € of ® in the follow-
ing way:

€, = {G € &|G leaves exactly 7 distinct symbols fixed}.

Clearly each @€; is a union of some conjugate classes of ®. In particular
€, ={1}. A subset € may be empty for some i. We shall set a follow-
ing condition:

(¢;) there exists an involution I € €, such that the centralizer Cy(I®)
of I in & is contained in €; U {1}.

It is easy to see that every conjugate element J of I has the same
property as I, As a matter of fact, the linear fractional groups PSL(2, )
and Suzuki’s simple groups Sz(2™) satisfy one of the conditions (c,), (¢;) or
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(c). More strongly the above mentioned simple groups satisfy the tfollow-
ing condition (g;) for { =0,1 and 2:

(a;) for every element A of €, the centralizer ©g(A) is contained in

€ U {1

Other than PSL(2,¢9) and Sz(2™), the Mathieu group 9,, of degree 22
satisfies the condition (a,). If we consider the Mathieu group I, as a
permutation group of degree 12, then IN,, satisfies (a,). It is interesting to
investigate the structure of & satisfying the condition (¢;) for some i, It
seems, however, difficult to treat.

Now we state our result.

TueEOREM. Let & be a doubly transitive permutation group on 2.  Let us
assume that ©& satisfies the condition (c;) for some i. Then & is isomorphic
with one of the groups PSL(2,q) or Sz(2™), or & has a regular normal subgroup.

Remark. There exists a non solvable exactly doubly transitive group
satisfying (c;) (see Zassenhaus [15]). Therefore the last statement of the
theorem is necessary even if we assume that G is non solvable.

The proof of the above theorem is divided into two cases;
case (1): i =0 or 1,

case (2): i =2.

In case (1) our aim is to prove that the stabilizer § of a symbol 1 has a
normal subgroup £ which is regular on @ —{1}.  After it is proved, the
elementary argument shows that & is a Zassenhaus group. In case (2) we
shall apply an interesting work of N. Iwahori [8] who has investigated the
structure of groups of positive type. In later section we shall recall his
definitions and results. Using a result of N. Iwahori we shall prove that a
Sylow 2-subgroup & of ® is a dihedral group and the centralizer €g(Z) of
a central involution I of & has an abelian normal 2-complement. By a
theorem of D. Gorenstein-]J. Walter [6], we can easily prove our theorem.
Our notation is mostly standard. Denote by (®,2) a permutation
group on a set 2 of n symbols {1,2, - - -, n}. If a subgroup A of & acts
on a subset 4 of 2, we denote a permutation group induced by %« on 4 by
(A4, 4) or simply by A4, A4 is a homomorphic image of %. The normalizer
or the centralizer of a subset ¥ of ® is denoted by 9y(X) or Cy¥) respect-
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ively, or simply by 9(X), €(X) if no confusion seems to occur. The image
of a symbol j by the action of an element G of & is denoted by j¢. ||
is the cardinality of a certain set ft. All groups considered are finite.

Proof of Theorem

1. Preliminary Lemmas
First we shall prove two lemmas.

Lemma 1. Let & be a permutation group satisfying the condition (c;) for
some i. If all the tnvolutions of & are contained in a single conjugate class, then

involutions are only elements which have transpositions in their cycle decompositions.

Proof. Let A be an element of & whose cycle decomposition contains
a transposition:

Then A is a 2-singular element. Therefore A is commutative with a cer-
tain involution I which is conjugate to I” by assumption. If A? is not the
identity element of ®, then A? is commutative with I and A? leaves at
least i + 2 symbols invariant. This is impossible. This follows the lemma.

LemMa 2. Let & be a doubly transitive permutation group satisfying the con-
dition (c;) for some i. If all the involutions of & are contained in a single conju-
gate class, then the order of the centralizer Sy(I) of any involution I s equal to

n—1.

Proof. Let B(G) denote the number of transpositions in the cycle de-
composition of an element G of ®. Then by a theorem of G. Frobenius
[5] we get a following equality:

2 BG) = |®]/2.
Ge®
By Lemma 1, B(G)>0 if and only if G is an involution of ®.  Hence
g - 1®1/1€(D)] = |®]/2.

On the other hand, since an involution I has » — i/2 transpositions we get
easily

|€)| =n—1d.
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2. Case 1): i=0o0r i=1

Let ® be a non-solvable doubly transitive group on £ satisfying the
condition (¢;) for i =0 or i =1. Assume that & has no regular normal
subgroup. Denote by 9 the stabilizer of the symbol 1 and by & the stabi-
lizer of the symbols 1 and 2. Let J be an involution of & which is
conjugate to I where i =0 or 1. By the double transitivity of & we can
choose J such that a cyclic decomposition of J is (12)---. J is contained
in the normalizer Ny(®) of & in ®. Therefore J induces an automorphism
of order 2 on & By the condition (c,) or (¢;), J has no fixed element in
& Hence & is an abelian group of odd order. [ inverts every element
of &.

Lemma 3. If i =0 or 1, then all the involutions of & are contained in a
single conjugate class.

Proof. Let J, and J, be two involutions of . By the double transi-
tivity of @, there exists an element A such that

Hence the element B = J,J$ is contained in a suitable conjugate subgroup
®¢ of & Therefore the order of B is odd. This implies /, and J$ are
conjugate to each other in ®. Thus we have proved our lemma.

If i =1, then by Lemma 3 every involution has the same property as
I®,  Therefore we can choose an involution I which is conjugate to IV
and leaves the symbol 1 fixed.

Lemma 4. If i =1, then D= CyI)R.  Furthermore, every involution of 9

is written in a form I¥ where K is an element of K.

Proof. Let I, and I, be two involutions of . Then by Lemma 3
I¢=1, Ge®. Therefore 19'1¢=12=1, Hence I, leaves the symbol
167" fixed. Since I, € €, 1" =1. Hence G . In particular CxI)cH.
By Lemma 2 and Lemma 3, we have |€(/)] =n—1. Since the order of
H is m~1)-|® and €() N K ={1} by the condition (c¢;), we conclude
H=C€I)-8  Thus we have proved our lemma.

Lemma 5, If i =0 or 1, then [Ng(®): &1 =2,
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Proof. Let 4 be a set of symbols of 2 which are left fixed individually
by every element of & By a theorem of Witt [13], R(K)/® is considered
as a doubly transitive permutation group on 4. We can easily prove that
this permutation group is exactly doubly transitive. Therefore we can
conclude that |4] = ¢° where ¢ is a prime number. Assume g=2. Then
a Sylow 2-subgroup of N(®) is an elementary abelian 2-group of order 2°.
Since every involution of M(K) inverts every element of &, we conclude
s=1., This implies [R(®): &1 =2. Next assume that ¢ is odd. Since
19 NRK)/K| = ¢ —1. There exists an involution I, of $ which acts on K.
Clearly i =1 and n = odd in this case. Since & is an abelian group, all
the involutions of § act on & by Lemma 4. Therefore if a Sylow 2-
subgroup of  has at least two involutions, then there exists an involution
I, which acts trivially on &, which is impossible by the condition (c,).
Thus a Sylow 2-subgroup of § has only one involution. Since # is odd, a
Sylow 2-subgroup of ® is isomorphic to that of § and has only one involu-
tion. Hence a Sylow 2-subgroup of ® is either cyclic or generalized
quaternion group. Therefore ® has a regular normal subgroup (Burnside
[2], Brauer-Suzuki [1], Feit-Thompson [4]). This is impossible. Thus we
have proved our lemma.

Lemma 6. If i =0 or 1, then § has a normal complement & in . Namely
H=2-8 gn&=1L

Proof. By Burnside’s splitting theorem, it suffices to show that Ny(®,)=
Cy(R,) = & for every Sylow p-subgroup &, of &  For, if so, &, is a Sylow
p-subgroup of § and it has a normal complement &, in . Put plfﬂmﬂp=2.
Clearly & is a normal complement of & in . Let 4 be a set of symbols
of 2 which are left fixed individually by every element of &,. Let us
assume that |4] =3. By a theorem of Witt 9y(®,)* is a doubly transitive
group on 4. Since €y®,) contains & and & leaves just two symbols 1, 2
invariant by Lemma 5, C(®,)4 is a non-trivial normal subgroup of R(8,)4
of odd order. By the double transitivity of N(®,)4, €(®,)4 is transitive.
Hence [4] is odd. Since 47 = 4, an involution J keeps at least one symbol
unchanged. Hence » = odd and i =1. The order of the group $NR(R,)
is divisible by |4] —1. Therefore § has an involution which acts on &,.
Hence all the involutions of $ act on &, by Lemma 4. This implies that
a Sylow 2-subgroup of ® has only one involution. Hence ® has a regular
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normal subgroup. This is not the case. Hence [4] =2. Hence RN(®,) =
<J,®>. Therefore N (®,) = C4(®,) = &  This yields our lemma.

ProposiTion 1. Let & be a doubly transitive permutation group satisfving
the condition (c;) for i =0 or 1.  Then & is isomorphic with one of the groups
PSL(2,q) or Sz(2™), or & has a regular normal subgroup.

Proof. Assume that & has no regular normal subgroup. By Lemma
6, $ has a normal subgroup & of order » —1 which is regular on 2 — {1}.
Therefore ® admits a decomposition:

&=9H+9HJe.

Every element of & — & 1is uniquely expressed in a form L’KJL where
L'Le & Ke®  Next we shall show that & is a T.I. set in ®. Since
® is an abelian subgroup, it suffices to show that the centralizer of any
non-identity element of & is equal to ®.  Let an element K, € & is com-
mutative with an element of & — 9. Assume K, L'KJL = L'KJLK, where
K,Ke® L',Le & Then L'*>7'KKJL = LKK,'JL¥1, By the uniqueness
of expression of an element of & — 9 we get K,K= KK,”'. This implies
K, =1, since & is an abelian group of odd order. If K, is commutative
with an element L of &, then K,/ is commutative with L7 € & — $. This
is impossible by the above fact. Therefore & is a T.I. set in & Let us
assume that an element A1 of & keeps at least three distinct symbols,
say 1, 2, 3, unchanged. Then A€ & N ¥ where 17 = 1,27 =3, Therefore
f =84 and & keeps 1, 2, 3 invariant. By Lemma 3, this is impossible.
Therefore ® is a Zassenhaus group. Since & has only one class of involu-
tions and the order of any involution of & is |2] or [2] —1, we get
easily our proposition.

3. Case (2): i=2.

First we shall recall a result of N. Iwahori [8].

Let ® be a permutation group on M. We call M a G-space. Define
a subset MG € &) of M as follows.

Me = {me M|m® = m}.

DEeFNiTION 1. A permutation groups & on MM is of type k if the fol-
lowing two conditions are satisfied;

(1) |Ms| =k, for every non identity element G e @,
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(ii) gl Me = ¢, where ¢ denotes the empty set.
N. Iwahori’s main result is the following theorem.

TuEOREM. If & admits a ®-space M of type 2, then & is isomorphic to one
of the following groups:

(1) A,: the alternating group of degree 4,

(i1) S,: the symmetric group of degree 4,

(iii) Ws: the alternating group of degree 5 or

(iv) a generalized dihedral group with dihedral Sylow 2-subgroups.

Here a generalized dihedral group is defined as follows. Let % be an
abelian group and ¢ be an automorphism of % such that if A< %, then
A" = A™', where A" denotes the image of A by r. Under these conditions,
holomorph of %A by < is called a generalized dihedral group.

In order to prove his theorem, N. Iwahori has proved several lemmas.
We shall quote one of them here.

Lemma 7 (Lemma 1.3 in [8]). Let ® be a finite group and I a ®-space
of type k>0. Let A and B be elements in & — {1} of orders a and b respect-
wely.  Assume that

(i) AB= BA, and
(il) as=0b or a= b+ prime.

Then M, = M.

Now we shall apply his argument to our case. Let ® be a non solv-
able doubly transitive group on 2 satistying the condition (¢;) for i=2.
As in section 2, let us denote the stabilizer of the symbol 1 by § and the
stabilizer of two symbols 1 and 2 by & J is an involution of ®& which
is conjugate to IV,  We can choose J such that a cyclic decomposition of
J is (12) - - - . In the rest of this paper we shall use the notation I instead
of I?,

LemMA 8. The centralizer €(I) of I admits a C(I)-space of positive type.

Proof. We may assume that I leaves ¢ symbols, say 1,2, - - -, { invariant.
If &(I) does not admit a §(I)-space of positive type, then by the condition
(c;) every element A+ 1 of €(I) leaves just ¢ symbols 1,2, « -+, i invariant.
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Clearly every conjugate subgroup of €(I) does not also admit a &(I)-space
of positive type. Therefore if €(I¢) N €(I) > {1} then every element of E(I%)
leaves just i symbols 1,2, - - -, i, invariant. Let &, be a Sylow 2-subgroup
of & which is non-trivial by the condition (c;) (i ==2). Since J acts on &,
we may assume ®] =8,. Put &=<J,®,>. Then there exists an involu-
tion I, of & which is conjugate to I and &(J) N €([;) © (&) >{1}. Thus
every element of (/) leaves 1, 2, invariant. In particular J leaves 1,2 in-
variant. This is impossible, since J has a cyclic decomposition (12) - - - .
Thus we have proved our lemma.

Lemma 9. ©(I) s an elementary abelian 2-group or a generalized dihedral
group.

Proof. Since €(I) admits a €(I)-space of positive type, we may apply
Lemma 7. Assume that €(7) is not an elementary abelian 2-group. Let
N be a (normal) subgroup of €(I) which is generated by all non-involutions
of €(I). By Lemma 7, every element of % leaves 1,2, - -- ¢ fixed. This
implies that 9 is a proper subgroup of €(7). If A is an element of E(I)—N,
then A% =1, Therefore (AN)? =1 for NefN. Hence A'NA=N"1. Hence
N is an abelian subgroup of €(I). If B is another element of &(I)—N,
then B? =1 and the element AB centralizes 9. Hence A= B(mod N).
This implies that [€(/): N1 =2. This follows our lemma.

Lemma 10.  If €(I) is not an elementary abelian 2-group, then ©(I) admits
a §(I)-space of type 2.

Proof. Let I' be a subset of {1,2, -, i} consisting of elements left
fixed by every element of €(7). Put 4={1,2, ---,i}—I. Since €()
admits a €(I)-space of positive type, we have |4] =k=1. Let r be the
number of orbits of €(7I) on 2 —I' =M. Then

r|&I)| = M| + k(G| — 1)

(Wielandt [13] p. 8 Ex. 3. 10).
Hence

_ M-t _ n—0G—-k—-k _ n—i .
R = T =k = y—F =t

On the other hand, using a equality of Frobenius 3! B(G) = |®|/2 we get

Ge@
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ﬂiéﬁi . T&%l,)vl -=18lz.
Hence |G(I)]=n —i. Hence |G)|=n—1i, r=k+1 and |M]| = |CI)|+E.
Since ©(7) has a normal subgroup 9% of index 2 which leaves all the
symbols of 4 fixed, 4 decomposes into k/2 orbits of €(Z). Since by the
condition (¢;) any element of 9 has no fixed symbols on 9t — 4 each of the
remaining orbits of C() of M — 4 has length at least |G(I)|/2 hence exactly
[€(I)]/2. Therefore we have the following cquality.

%—I—Z:r:k—kl.

Hence k=2. Thus we have proved our lemma.

Lemma 11, Al the involutions of & are contained in a single conjugate class.

Proof. In the proof of Lemma 10, we have proved the equality |€(])]
=mn—14. This relation also holds when (/) is an elementary abelian 2-
group, because in proving the equality |€(/)] = n — i we have used only the
fact that |€(7)] admits a G(/)-space of positive type. Using a equality
2HG) = é |®], we can easily prove that there exists no involution which

is not conjugate to I.

Prorostrion 2. Let & be a doubly transitive permutation group satisfying
the condition (c;) for i =2. Then i =2 and & is isomorphic to one of the groups
PSL(2,q) where q ts a power of a certain odd prime, or & has a regular normal
subgroup.

Proof. If G(I) is an elementary abelian 2-group, then by Lemma 11,
® is a (CIT)-group (Suzuki [11]). If & has a non trivial solvable normal
subgroup, then ® has a regular normal subgroup 9. Assume that & has
no regular normal subgroup. By Theorem 5 of Suzuki [11] and the main
theorem of Suzuki[9], ® is isomorphic to one of the following groups: LF(2,2%),
Sz(2%), PSL(2,q), PSL(3,4) or M, (This is a group of order 9-8.7 = 720,
which is the projective group of one variable over the near-filed of 9 ele-
ments; Zassenhaus [14]). Since ® is a (CIT) group, in the above mentioned
groups only PSL (2,2%) has elementary abelian 2-Sylow subgroups. If PSL (2, 4)
= PSL (2,5) is considered as permutation group of degree 6, PSL(2,5)
satisfies the condition (c,). If 2*>4, the group PSL(2,2*) does not
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satisfy the condition (c;) for i =2. Therefore & = PSL (2,5). Next let us
assume that €(I) is not an elementary abelian 2-group. By Lemma 10 and
by a theorem of N. Iwahori, €(I) is a generalized dihedral group with
dihedral Sylow 2-subgroups. Since I is a central involution of a certain
Sylow 2-subgroup € of ® by Lemma 11, ¥ is a dihedral group. Since €()
has a abelian normal 2-complement by a theorem of D. Gorenstein-].
Walter [6], ® is isomorphic to one of the following groups: PSL(2,q),
PGL (2,q) where ¢ is a power of an odd prime, or %, the alternating group
of degree 7. Here we used the fact that ® has not a solvable normal
subgroup and that a group of odd order is solvable (W. Feit-]. Thompson
[4). On the other hand the group PGL (2,¢)(gq is odd) has two conjugate
classes consisting of involutions. The group ¥, does not satisfy (c;), because
A, has one class of involutions and a involution (12)(34) is commutative
with (1324)(56). Hence ® = PSL (2,q) (g is odd).

Combining Proposition 1 and Proposition 2 we have our main theorem
stated in the introduction.

Remark. Recently M. Suzuki [12] has proved the following result.

TrEOREM. Let & be a finite group.  Suppose that & contains a subgroup D
which satisfies the following two conditions :

(1) 9 is a generalized dihedral group, and
(2) 9 = Cy(J) for any involution | of the center of 9.

Then, if & is not solvable, & contains a normal subgroup N such that the order
of N is either odd or twise an odd number, and that &/N = PSL (2,q) or PGL (2,q)
Sor some prime power q > 3.

If we use this theorem, our proof in case (ii) become rather short.
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