ON DEGREES AND GENERA OF CURVES ON SMOOTH QUARTIC SURFACES IN P^3

SHIGEFUMI MORI

Our result is motivated by the results [GP] of Gruson and Peskin on characterization of the pair of degree d and genus g of a non-singular curve in P^3 . In the last step, they construct the required curve C on a singular quartic surface when $g \leq (d-1)^2/8$. Here we consider curves on smooth quartic surfaces.

The author expresses his hearty thanks to Professor Hartshorne who pointed out a mistake in the earlier version of this paper, and to Professor Iitaka who kindly allowed the author to use his word processor to write up this paper.

THEOREM 1. Let k be an algebraically closed field of characteristic 0 and d > 0 and $g \ge 0$ be integers. Then there is a non-singular curve C of degree d and genus g on a non-singular quartic surface X in P^3 if and only if (1) $g = d^2/8 + 1$, or (2) $g < d^2/8$ and $(d, g) \ne (5, 3)$.

Remark 2. Under the notation of Theorem 1, $g = d^2/8 + 1$ if and only if C is a complete intersection of X and a hypersurface of degree d/4, which will be proved in the proof below.

Proof of the only-if-part (\Rightarrow) of Theorem 1. Let $H = \mathcal{O}_X(1)$. Since $(H \cdot H) > 0$, one has

$$(C \cdot H)^2 - (H \cdot H) \cdot (C \cdot C) = d^2 - 8(g-1) \ge 0$$
,

by Hodge index theorem, because X is a K3 surface and $K_c = \mathcal{O}_c(C)$. One has $d^2 \equiv 0$, 1, 4, 1 (mod 8) according as $d \equiv 0$, 1, 2, 3 (mod 4). If $d^2 - 8(g-1) = 0$ then the classes of $\mathcal{O}_X(C)$ and $\mathcal{O}_X(H)$ are proportional. Since X is a K3 surface and $(H \cdot H) = 4$, Pic X is torsion-free and H is not divisible, whence $\mathcal{O}_X(C)$ is a multiple of $\mathcal{O}_X(H)$, which implies that C is a complete intersection of X and a hypersurface of degree d/4. It

Received November 17, 1983.

remains to show that $d^2 - 8(g-1) > 8$ when $d^2 - 8(g-1) > 0$, and we will treat three cases $d^2 - 8(g-1) = 8$, 1, 4.

Case (1) $d^2 - 8(g-1) = 8$: Let d = 4d' ($d' \ge 1$, $d' \in \mathbb{Z}$), then $2(g-1) = 2(2d'^2 - 1)$. Let E = d'H - C, then $(E \cdot H) = 0$ and $(E^2) = -2$. Since X is a K3 surface, one has

$$h^{0}(E) + h^{0}(-E) \ge \chi(\mathcal{O}(E)) = 2 + (E^{2})/2 = 1$$
.

Thus E or -E gives a curve E' such that $(E' \cdot H) = 0$, which contradicts the very ampleness of H.

Case (2) $d^2 - 8(g - 1) = 1$: Let d = 2d' - 1 $(d' \ge 1, d \in \mathbb{Z})$, then $2(g - 1) = (d'^2 - d')$. Let E = d'H - 2C, then $(E \cdot H) = 2$, and $(E^2) = 0$.

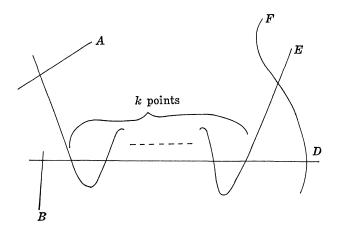
Thus as in Case (1), $h^0(E) + h^0(-E) \ge 2$. Since $(E \cdot H) = 2$ for ample H, one has $h^0(-E) = 0$ and $h^0(E) \ge 2$. Thus |E| has an effective member E_0 . If $E' = (E_0)_{\rm red}$ is irreducible, then $(E'^2) = 0$ and $(E' \cdot H) = 1$, 2 for very ample H. Thus $E' \cong P^1$ and $(E'^2) = -2$, which contradicts $(E'^2) = 0$. Hence $(E_0)_{\rm red}$ is reducible and by $(E_0 \cdot H) = 2$ for very ample H, one has $E_0 = E_1 + E_2$, where E_1 , $E_2 \cong P^1$, $\sharp (E_1 \cap E_2) \le 1$, and the intersection of E_1 and E_2 is transverse. Then $(E_0^2) = -4 + 2(E_1 \cdot E_2) \le -2$, which contradicts $(E_0^2) = 0$.

Case (3) $d^2 - 8(g-1) = 4$: Let d = 4d' - 2 ($d' \ge 1$, $d' \in \mathbb{Z}$), then $2(g-1) = 4(d'^2 - d')$. If E = d'H - C, then $(E \cdot H) = 2$ and $(E^2) = 0$. Thus one gets a contradiction as in Case (2). If d = 5 and g = 3, then d > 2g - 2. Thus $h^0(\mathcal{O}_C(1)) = 3$, which implies that C is a plane curve, but this contradicts the genus formula for plane curves. Thus " \Rightarrow " is proved.

PROPOSITION 3. Let d and g be integers such that $0 \le g \le d-3$. If char $k \ne 2$, then there exist a non-singular Kummer surface X_0 and effective divisors H_0 , C_0 on X_0 such that

- (1) $(H_0^2) = 4$, $(H_0 \cdot C_0) = d$, $(C_0^2) = 2g 2$,
- (2) H_0 is numerically effective,
- (3) C_0 is numerically effective if $g \ge 2$,
- (4) $ZH_0 + ZC_0$ is a direct summand of Pic X_0 .

Proof. Let $k=d-g-3\geq 0$. Let Y_1 and Y_2 be elliptic curves with an isogeny $f\colon Y_1\to Y_2$ of degree 2k+1. Let $P,Q\in Y_1$ be non-zero points such that 2P=0, $f(2Q)\neq 0$. Let X_0 be the non-singular Kummer surface



associated to $Y_1 \times Y_2$. Then $Y_1 \times 0$, $Q \times Y_2$, the graph of f, $P \times f(P)$, and $P \times 0$ give irreducible curves D, F, E, A, and B in X_0 such that $D \cong E \cong A \cong B \cong P^1$, and F is an elliptic curve, with the configuration as in the picture with all the intersections transverse (cf. [MM] or [SI]). Let $H_0 = D + 3F$, and $C_0 = E + gF$. Then (1) is clear; (2) follows from $(H_0 \cdot D) = 1$ and $(H_0 \cdot F) = 1$; (3) follows from $(C_0 \cdot E) = g - 2$ and $(C_0 \cdot F) = 1$; and (4) follows from $(H_0 \cdot B) = 1$, $(H_0 \cdot A) = 0$, $(C_0 \cdot B) = 0$, and $(C_0 \cdot A) = 1$. q.e.d.

Remark 4. Let k be the field of complex numbers. Then, in the local versal deformations space Def of X_0 , the locus where H_0 and C_0 lift as line bundles is an 18-dimensional smooth subvariety Pol, and there is a dense subset Pol' of Pol such that if $q \in \text{Pol'}$, then the surface X and line bundles H and C on X lying over q satisfy the conditions:

- (1) $(H^2) = 4$, $(H \cdot C) = d$, $(C^2) = 2g 2$,
- (2) H is numerically effective,
- (3) C is numerically effective if $g \ge 2$, and
- (4) Pic X = ZH + ZC.

Indeed (1) is clear, whence X is algebraic by [K, Theorem 8], and (4) follows from [K, Theorem 14]. As for (2) and (3), $2H_0$ and $2C_0$ (if $g \ge 2$) are base point free by (1) of Theorem 5. The obstructions for lifting sections of $\mathcal{O}(2H_0)$ and $\mathcal{O}(2C_0)$ (if $g \ge 2$) to Pol lie in $H^1(\mathcal{O}(2H_0))$ and $H^1(\mathcal{O}(2C_0))$ which are both 0 by Ramanujam's vanishing theorem.

We now quote results by Saint-Donat:

THEOREM 5 (Saint-Donat [SD] or cf. [MM]). Let X be a K3 surface defined over an algebraically closed field of characteristic $\neq 2$. Let H be

a numerically effective divisor on X. Then one has

- (1) H is not base point free if and only if there exist irreducible curves E, Γ , and an integer $k \geq 2$ such that $H \sim kE + \Gamma$, $(E^2) = 0$, $(\Gamma^2) = -2$, $(E \cdot \Gamma) = 1$. In this case, every member of |H| is of the form $E' + \Gamma$, where E' is a sum of k effective divisors E_1, \dots, E_k such that $E_i \sim E$ for all i.
 - (2) Let $(H^2) \ge 4$. Then H is very ample if and only if
 - (i) there is no irreducible curve E such that $(E^2) = 0$, $(E \cdot H) = 1, 2,$
 - (ii) there is no irreducible curve E such that $(E^2) = 2$, $H \sim 2E$, and
 - (iii) there is no irreducible curve E such that $(E^2) = -2$, $(E \cdot H) = 0$.

PROPOSITION 6. Let X, H, C be as in Remark 4. Then H is very ample and |C| contains an irreducible smooth member.

Proof. We will first check that H satisfies the conditions (i)-(iii) in (2) of Theorem 5. We denote by $\operatorname{disc}(A,B)$ the determinant of the intersection matrix of divisors A and B. If there is a divisor E such that $(E^2) = -2$, $(E \cdot H) = 0$, then $\operatorname{disc}(E,H) = -8$ is divisible by $\operatorname{disc}(H,C) = 8(g-1) - d^2$. However, by $g \leq d-3$, one has $d^2 \geq (g+3)^2 > 8g$ and $\operatorname{disc}(H,C) < -8$. This is a contradiction. Thus (iii) is checked, (i) is checked in the same way, and (ii) is obvious because H is a part of the basis of Pic X. Hence H is very ample. Assume that $g \geq 2$. Then we use (1) of Theorem 5 to show that C is base point free. If C is not base point free, then there is a divisor E such that $(E^2) = 0$, $(E \cdot C) = 1$. Then $\operatorname{disc}(E,C) = -1$ is divisible by $\operatorname{disc}(H,C)$, which is a contradiction, as we have seen above. Thus C is base point free and |C| has an irreducible smooth member because $(C^2) > 0$. Let g = 1. Then the equation

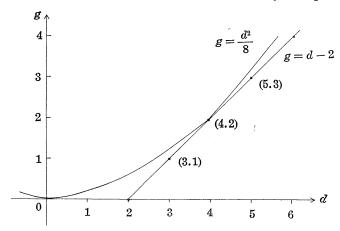
$$(xH + yC)^2 = 2x(2x + dy) = -2$$

does not have integral solutions x, y, because $d \ge g + 3 = 4$.

Hence X does not contain smooth rational curves by Remark 4, (4). By $(C^2) = 0$, |C| or |-C| contains an effective member. By $(C \cdot H) = d > 0$, |C| contains an effective member C_0 . Thus C is numerically effective because otherwise C_0 contains an irreducible curve $Z \cong P^1$, which is a contradiction. Hence by (1) of Theorem 5, C is base point free, and C is a multiple of an elliptic pencil. Since C is a part of the basis of Pic X, |C| is an elliptic pencil, and it contains a smooth elliptic curve. Let g = 0. Since $(C^2) = -2$ and $(C \cdot H) > 0$, one has $C \sim E + D$, where

 $E \cong P^1$ and D is an effective divisor. Since disc (H, C) divides disc (H, E), one has $8 + (C \cdot H)^2 \leq 8 + (E \cdot H)^2$. Thus $(D \cdot H) \leq 0$, and D = 0. Hence C = E, and Proposition 6 is proved.

We can now finish the proof of the if-part (\Leftarrow) of Theorem 1. We use induction on d. We omit the proof for (d,g)=(1,0), (2,0), (3,1), since they are well known. We may assume that $g < d^2/8$, otherwise C is given as a complete intersection. We may also assume that $g \ge d-2$ by Remark 4 and Proposition 6. Thus as shown by the picture, one sees



 $d \ge 6$. First, we assume that $(d,g) \ne (9,10)$. Let d'=d-4, and g'=g-d+2. Then $d'^2-8g'=d^2-8g>0$ and $(d',g')\ne (5,3)$. Thus by the induction hypothesis, there exist a non-singular quartic X' and a non-singular curve C' on it of degree d' and genus g'. Let H' be an irreducible hyperplanesection of X', and C=C'+H'. Since $d'=d-4\ge 2$, one sees $(C\cdot C')=2(g'-1)+d'\ge 0$, and C is numerically effective. Since $(H'^2)=4$, C is base point free by (1) of Theorem 5. If we denote by the same C, a smooth member of |C|, then C has degree d and genus g. Thus C and X are the required pair for d, g. For (d,g)=(9,10), let d'=1, g'=0, and C' a straight line on a smooth quartic surface X'. Let H' be an irreducible hyperplanesection of X and C=C'+2H'. Then, one sees that C, X are the required pair as in the above argument. This proves Theorem 1.

REFERENCES

- [GP] L. Gruson and C. Peskin, Genre des courbes algébrique de l'espace projectif (II), Ann. Sci. Ecole Norm. Sup., Paris, 4° série, t. 15 (1982), 401-418.
- [K] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J.

132

- Math., 86 (1964), 751-798.
- [MM] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, to appear in the proceedings of Japan France symposium on algebraic geometry, 1982.
- [SD] B. Saint-Donat, Projective models of K-3 surfaces, Amer. J. Math., 96 (1974), 602-639.
- [SI] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge University Press, 1977, 119-136.

Department of Mathematics Nagoya University Chikusa-ku, Nagoya 464 Japan