ON ASSOCIATIVE COMPOSITIONS IN FINITE NILPOTENT GROUPS

NAGAYOSI IWAHORI and AKIRA HATTORI

Let

$$
\begin{equation*}
f(X, Y)=X^{m_{1}} Y^{n_{1}} \ldots X^{m_{r}} Y^{n_{r}} \tag{1}
\end{equation*}
$$

be a word in two variables X, Y, i.e. an element in the free group F_{2} on two generators X, Y. Let us say that f defines an associative composition for a group G if for arbitrary elements a, b, c in G we have

$$
\begin{equation*}
(a \circ b) \circ c=a \circ(b \circ c) \tag{2}
\end{equation*}
$$

where $a \circ b$ is defined by

$$
\begin{equation*}
a \circ b=f(a, b) . \tag{3}
\end{equation*}
$$

Now Mr. M. Kuranishi raised the following problem: when f defines an associative composition for every group G ?

We shall solve this problem in this note (Proposition 1), and determine moreover associative compositions holding for all finite nilpotent groups using a theorem of Prof. K. Iwasawa ${ }^{1)}$ (Proposition 2). This result will be refined by Proposition 3.

Proposition 1. In order that $f(X, Y)$ define an associative composition for a free group F_{2} on two generators, it is necessary and sufficient that f is one of the following five types:

$$
\begin{equation*}
1, X, Y, X Y, Y X \tag{4}
\end{equation*}
$$

Proof. An element $t \neq 1$ of a free group generated by x and y can be expressed uniquely in the form $z_{1}^{\epsilon_{1}} \ldots z_{k}^{e_{k}}$, where every z_{i} is either x or y, where $z_{i} \neq z_{i+1}$ and where e 's are non-vanishing integers. k is called the length of t, and is denoted by $l(t)$ ($\operatorname{set} l(1)=0$). Then one will easily verify

$$
\begin{equation*}
l\left(t^{f}\right) \geq l(t), \quad(f \neq 0) \tag{5}
\end{equation*}
$$

Received March 17, 1954.
for any word t.
Now, let (3) be an associative composition in F_{2}, defined by f in (1) such that $n_{1} \neq 0, \ldots, m_{r} \neq 0$. From the associativity

$$
(a \circ e) \circ e=a \circ(e \circ e), \quad(a \neq e),
$$

we deduce at once that

$$
\sum m_{i}=1 \quad \text { or } \quad=0
$$

similarly we have

$$
\sum n_{i}=1 \quad \text { or } \quad=0
$$

Now, we may assume $m_{1} \neq 0$, since a new composition $a * b=b \circ a$ is associative at the same time as $a \circ b$, and then we have only to prove $r=1$. Suppose $r \geqq 2$, and compare two expressions

$$
\begin{aligned}
& (a \circ b) \circ c=(a \circ b)^{m_{1}} c^{n_{1}} \ldots, \\
& a \circ(b \circ c)= \begin{cases}a^{m_{1}} b^{m_{1}} c^{n_{1}} \ldots, & \text { if } \\
a^{m_{1}} c^{-n_{r}} b^{-m_{r}} c^{-n_{r-1}} \ldots, & \text { if } \\
n_{1}<0\end{cases}
\end{aligned}
$$

for $a, b, c \in F$. If we take a, b, c satisfying no non-trivial relation among themselves (e.g. $x^{2}, x y, y^{2}$ if F_{2} is generated by x and y), it follows that the length of $(a \circ b)^{m_{1}}$, as an element of the free group generated by a and b, is at most 2. But this is the case only if the length of $a \circ b$ itself is at most 2 by (5), contradicting the assumption $r \geqq 2$. Hence we must have $r=1$. q.e.d

Proposition 2. If $f(X, Y)$ defines an associative composition for every finite nilpotent group generated by two elements, then $f(X, Y)$ is one of the following five types:

$$
1, X, Y, X Y, Y X
$$

Proof. Let F_{2} be a free group on two generators x, y. By a theorem of K. Iwasawa ${ }^{1)}$ the intersection of all normal subgroups N in F_{2} such that F_{2} / N is a finite nilpotent group coincides with the identity group:

$$
\begin{equation*}
\cap N=\{1\} . \tag{6}
\end{equation*}
$$

Now, since $f(X, Y)=X \circ Y$ defines an associative composition for F_{2} / N, we

[^0]have for every element z_{1}, z_{2}, z_{3} in F_{2}
$$
\left(z_{1} \circ z_{2}\right) \circ z_{3} \equiv z_{1} \circ\left(z_{2} \circ z_{3}\right) \quad(\bmod . N)
$$

Hence we have by (6)

$$
\left(z_{1} \circ z_{2}\right) \circ z_{3}=z_{1} \circ\left(z_{2} \circ z_{3}\right) .
$$

Thus the proposition follows from Proposition 1.
Now we can refine Proposition 2 as follows:
Proposition 3. Let $p>0$ be a given prime integer. If $f(X, Y)$ defines an associative composition for every finite p-group generated by two elements, then, $f(X, Y)$ is one of the following five types

$$
1, X, Y, X Y, Y X
$$

Proof. It is sufficient to show that the intersection of all normal subgroups M in F (a free group on two generators) such that F / M is a finite p-group coincides with the identity group:

$$
\begin{equation*}
\cap M=\{1\} . \tag{7}
\end{equation*}
$$

This fact can be proved quite similarly as in K. Iwasawa ${ }^{1)}$ and we shall show only the corresponding lemma and theorem.

Let G be an arbitrary finitely generated group and

$$
G=Z_{1} \supset Z_{2} \supset \ldots
$$

be the descending central series of G, i.e. Z_{i+1} be the subgroup of G generated by $\left(g, z_{i}\right)=g z_{i} g^{-1} z_{i}^{-1}\left(g \in G, z_{i} \in Z_{i}\right)$:

$$
Z_{i+1}=\left(G, Z_{i}\right) \quad(i=1,2, \ldots)
$$

Then, as is seen easily, ${ }^{2)} Z_{i} / Z_{i+1}$ is a finitely generated abelian group and the torsion of Z_{i} / Z_{i+1} (i.e. the subgroup formed by all elements in Z_{i} / Z_{i+1} which are of finite order) is a finite group.

Now let us call a finitely generated group G to be of p-type if every torsion of Z_{i} / Z_{i+1} is a finite p-group. $(i=1,2, \ldots)$

Then an analogy of "Satz 1 " in K. Iwasawa ${ }^{1)}$ is given by

[^1]Theorem. Let G be a finitely generated nilpotent group of p-type. Then the intersection of all normal subgroups M in G such that G / M is a finite p group coincides with the identity group:

$$
\cap M=\{1\} .
$$

This theoren can be proved quite similarly as in K. Iwasawa, l. c. using the following lemma which is a direct corollary of his "Hilfssatz."

Lemma. Let G be an arbitrary group and let N be a normal subgroup with finitely many generators a_{1}, \ldots, a_{r} such that (G, N) is a central, finite subgroup in G of order $l=p^{\nu}$. Then the subgroup M of G generated by finitely many elements $a_{1}^{l}, \ldots, a_{r}^{l}$ and (G, N) is a central subgroup of G and the factor group N / M is a finite p-group.

Now in order to prove (7) it is sufficient to show that $F / F^{(n)}$ is a group of p-type, where $F=F^{(1)}, F^{(i+1)}=\left(F, F^{(i)}\right)(i=1,2, \ldots)$. However, as is wellknown, $F^{(i)} / F^{(i+1)}$ is a free abelian group ${ }^{3)}$ (with finitely many generators). Hence $F / F^{(n)}$ is of p-type $(n=1,2, \ldots)$. Thus Proposition 3 is proved.

[^2]
[^0]: ${ }^{1)}$ K. Iwasawa, Einige Sätze über freie Gruppen, Proc. Imp. Acad. Japan, 19 (1943), pp. 272-274.

[^1]: ${ }^{2)}$ Note that $Z_{i /}{ }^{\prime} Z_{i+1}$ is a central subgroup of G / Z_{i+1}. Then for every a, b in G, c, d in Z_{i-1} we have $(a b, c d) \equiv(a, c) \cdot(a, d) \cdot(b, c) \cdot(b, d)\left(\bmod . Z_{i+1}\right)$ (cf. H. Zassenhaus, Lehrbuch der Gruppentheorie, S. 57). The assertion is then completed by induction on i.

[^2]: 3) Cf. E. Witt, Treue Darstellung Liescher Ringe, Crelle 177, (1937).
