SOME REMARKS ON COMPLETE INTEGRAL CLOSURE

WILLIAM HEINZER

(Received 24 July 1967)

1. Introduction

This paper continues an investigation of the complete integral closure of an integral domain which was begun in [2]. We recall that if D is an integral domain with quotient field K then an element x of K is said to be *almost integral* over D if there exists a nonzero element y of D such that yx^n is an element of D for each positive integer n. The set D^* of elements of K almost integral over D is called the *complete integral closure* of D and D is said to be *completely integrally closed* if $D^* = D$.

An element x of K is almost integral over D if and only if the ring extension D[x] is contained in a finite D-module contained in K. Thus if x is integral over D, then x is almost integral over D. In particular, if D is completely integrally closed then D is integrally closed and hence an intersection of valuation rings. Since a valuation ring is completely integrally closed if and only if it has rank ≤ 1 , Krull was led to conjecture that D is completely integrally closed if and only if D is an intersection of valuation rings of rank ≤ 1 [8]. Nakayama in [10] showed this conjecture to be false. However, under an additional finiteness condition on a set of valuation rings representing the domain the conjecture is known to be true ([9] p. 549). The problem of characterizing those completely integrally closed domains which are the intersection of rank one valuation rings remains open. For example, it appears to be unknown whether a completely integrally closed domain having finite valuative dimension ¹ is an intersection of rank one valuation rings.

The complete integral closure D^* of a domain D need not be completely integrally closed [2]. Krull observes in [8] that if D is a valuation ring on a field K then D^* is either the unique rank one valuation ring of K containing D or else $D^* = K$, the second case occurring when D is contained in no rank one valuation ring of K. In particular, when D is a valuation ring,

¹ An integral domain J is said to have valuative dimension n if there is a valuation ring between J and the quotient field of J which has rank n and no such valuation ring having rank greater than n [7].

 D^* is completely integrally closed. The problem of determining the complete integral closure of a Prüfer domain² is considered in [2] and the following question is there raised. If D is a Prüfer domain, is D^* completely integrally closed? Our purpose here is to show that D^* need not be completely integrally closed when D is a Prüfer domain.

2. The example

Jaffard in [6] p. 78 has shown that if G is a lattice-ordered abelian group, then there exists an integral domain having G as its group of divisibility. We recall that if D is an integral domain with quotient field K, if K^* is the set of nonzero elements of K, and if U is the multiplicative group of units of D, then the quotient group K^*/U , ordered by defining $x' \ge y'$ if and only if $x/y \in D$, is called the group of divisibility of D. (Here x' denotes the equivalence class of K^*/U containing the element x of K^*).

Our example of a Prüfer domain whose complete integral closure is not completely integrally closed is obtained by employing Jaffard's construction on the following lattice-ordered abelian group.

Let Z denote the ring of integers and N the set of positive integers. We consider the additive group $H = Z \oplus Z$, ordered lexicographically $((a, b) \ge (c, d)$ if and only if a > c or a = c and $b \ge d$). Let

$$G = \{f : N \to H | f(n) = (a_n, b_n)$$

and $a_n = 0$ for all but a finite number of positive integers n. G is an abelian group under coordinatewise addition: (f+g)(n) = f(n)+g(n) for any $f, g \in G$ and $n \in N$. We order G by defining $f \ge g$ if and only if $f(n) \ge g(n)$ in H for each positive integer n. It is easy to check that G so defined is a lattice-ordered abelian group.

Let D be an integral domain constructed using Jaffard's theorem which has G as its group of divisibility and let K^* be the set of nonzero elements of the quotient field of D. We observe that an element x of K^* is almost integral over D if and only if the corresponding element x' of G is such that $x'(n) = (a_n, b_n)$ where $a_n \ge 0$ for all n and $b_n \ge 0$ for all but a finite number of positive integers n. This follows directly from the fact that x is almost integral over D if and only if there exists an element y' of G such that y' > 0 and $y' + mx' \ge 0$ for all positive integers m; we omit the details of the proof. Hence D^* , the complete integral closure of D, consists of zero and all $x \in K^*$ such that $x'(n) = (a_n, b_n)$ with $a_n \ge 0$ for all n and $b_n \ge 0$ for all but a finite number of positive integers n.

² D is called a Prüfer domain if every finitely generated ideal of D is invertible. Equivalently, D is Prüfer if and only if the localization D_P is a valuation ring for each maximal ideal P of D.

William Heinzer

We show next that an element x of K^* is almost integral over D^* provided $x'(n) = (a_n, b_n)$ is such that $a_n \ge 0$ for all n. It will then follow that D^* is not completely integrally closed. For example, any element of K^* which is associated with the element f of G defined by f(n) = (0, -1)for all n will be almost integral over D^* but not in D^* . To show that an element x of K^* is almost integral over D^* we need only find a nonzero element y of D^* such that $yx^m \in D^*$ for each positive integer m. Let y'and x' be the elements of G associated with y and x and let $y'(n) = (c_n, d_n)$, $x'(n) = (a_n, b_n)$. Then $yx^m \in D^*$ if and only if

$$(y'+mx')(n) = (c_n+ma_n, d_n+mb_n)$$

is such that $c_n + ma_n \ge 0$ for all n and $d_n + mb_n \ge 0$ for all but a finite number of positive integers n. We choose y' by defining $c_n = 0$ for all n and $d_n = \sup \{0, -nb_n\}$. Then $d_n + mb_n \ge 0$ for all $n \ge m$ and hence for all but a finite number of positive integers n. Thus $yx^m \in D^*$ and we conclude that an element x of K^* is almost integral over D^* provided $x'(n) = (a_n, b_n)$ with $a_n \ge 0$ for all n.

We have therefore shown that the integral domain D has the property that D^* is not completely integrally closed. But as Ohm remarks in [11], an integral domain constructed by means of Jaffard's theorem has the additional property that each finitely generated ideal is principal.³ In particular, finitely generated ideals are invertible so that such a domain is Prüfer. Thus D provides the desired example of a Prüfer domain whose complete integral closure D^* is not completely integrally closed. In fact, D has the QR-property ⁴, and yet D^* is not completely integrally closed.

3. Some further observations

We now wish to make some comments about the integral domain D constructed in the previous section. We first remark that $D = \bigcap_{i=1}^{\infty} V_i$ where $\{V_i\}_{i=1}^{\infty}$ is the set of rank 2 valuation rings defined as follows:

$$V_i = \{0\} \cup \{x \in K^* | x'(i) = (a_i, b_i) \ge (0, 0) \text{ in } H\}.$$

(Here, as usual, x' denotes the equivalence class in $G = K^*/U$ which contains x.) It is straightforward to check that V_i so defined is a rank 2 valuation ring and that $D = \bigcap_{i=1}^{\infty} V_i$. The rank one valuation overring of V_i is

$$W_i = \{0\} \cup \{x \in K^* | x'(i) = (a_i, b_i) \text{ with } a_i \ge 0\}$$

³ A proof of this fact is given in [5].

⁴ An integral domain J is said to have the *QR*-property if every ring between J and its quotient field is a quotient ring of J [4].

and D^{**} , the complete integral closure of D^* , is equal to $\bigcap_{i=1}^{\infty} W_i$. Thus D^{**} is completely integrally closed.⁵

We next wish to show that D has infinite Krull dimension. Let G^+ denote the set of positive elements of the ordered group G and let $\varphi: K^* \to K^*/U = G$ be the canonical homomorphism of K^* onto the group of divisibility of D. We consider a free ultrafilter \mathscr{U} on the set N of positive integers ([1] p. 25). For $f \in G^+$ let $M_f = \{n \in N | f(n) = (a_n, b_n) \text{ with } b_n > 0\}$. If $P' = \{f \in G^+ | M_f \in \mathscr{U}\}$, then P' is a nonempty subset of G and the fact that \mathscr{U} is an ultrafilter implies that P' has the following properties: ⁶

- 1. $f \in P'$ and $g \ge f$ implies that $g \in P'$
- 2. $f, g \in P'$ implies that $\inf \{f, g\}$ is also in P'
- 3. $f, g \notin P'$ implies that $f+g \notin P'$.

It is easily checked that the set $P = \varphi^{-1}(P') \cup \{0\}$ is a maximal ideal of D. Moreover, the fact that \mathscr{U} is a free ultrafilter implies that P does not contain the center of the valuation ring W_i on D. We show that D is infinite dimensional by showing that the valuation ring D_P is contained in no rank one valuation ring of K and hence has no minimal nonzero prime ideal. We have already observed that $D^{**} = \bigcap_{i=1}^{\infty} W_i$. Each W_i is a rank one discrete valuation ring and a nonzero element of K is a nonunit in only finitely many of the W_i . It follows that D^{**} is a Krull domain. And since D^{**} is an overring of D contained in K each finitely generated ideal of D^{**} is principal. Therefore D^{**} is a Dedekind domain and $\{W_i\}_{i=1}^{\infty}$ is the set of nontrivial valuation rings between D^{**} and K. But every overring of D which is completely integrally closed contains D^{**} . Hence $\{W_i\}$ is the set of rank one valuation rings between D and K. Since P does not contain the center of W_i on D, D_P is not contained in W_i . We conclude that D_P is contained in no rank one valuation ring of K. It follows that D_P , and therefore, D, has infinite Krull dimension.

The above observations lead us to make the following conjecture. If J is a finite-dimensional Prüfer domain, then J^* is completely integrally closed. In this connection it would be interesting to know if a finite-dimensional completely integrally closed Prüfer domain is an intersection of rank one valuation rings. More generally, if J is a completely integrally closed domain having finite valuative dimension, is J an intersection of rank one valuation rings? Nakayama's example is not finite-dimensional and it

⁵ We have in fact been unable to find an integral domain J for which J^{**} is not completely integrally closed.

⁶ Properties (1) and (2) follow from the fact that a filter is closed with respect to oversets and finite intersections, and property (3) is a consequence of the fact that the complement of an ultrafilter is closed under finite unions.

appears that no simple modification of Nakayama's construction will provide a finite-dimensional completely integrally closed domain which is not an intersection of rank one valuation rings.

References

- L. Gillman and M. Jerison, 'Rings of Continuous Functions', (Van Nostrand, Princeton 1960).
- [2] R. Gilmer and W. Heinzer, 'On the complete integral closure of an integral domain', J. Austral. Math. Soc., 6 (1966), 351-361.
- [3] R. Gilmer and W. Heinzer, 'Overrings of Prüfer domains II', J. of Algebra, 7 (1967), 281-302.
- [4] R. Gilmer and J. Ohm, 'Integral domains with quotient overrings', Math. Ann., 153 (1964), 97-103.
- [5] W. Heinzer, 'J-noetherian integral domains with 1 in the stable range', Proc. Amer. Math. Soc. (to appear).
- [6] P. Jaffard, Les Systèmes d'Idéaux, (Dunod, Paris, 1960).
- [7] P. Jaffard, Théorie de la Dimension dans les Anneaux de Polynomes (Gauthier-Villars, Paris 1960).
- [8] W. Krull, 'Allgemeine Bewertungstheorie', J. reine angew. Math., 167 (1931), 160-196.
- [9] P. Lorenzen, 'Abstrakte Begründung der Multiplikativen Idealtheorie', Math. Zeit., 45 (1939), 533-553.
- [10] T. Nakayama, 'On Krull's conjecture concerning completely integrally closed integrity domains I', Proc. Imp. Acad. Tokyo 18 (1942), 185-187; II, Proc. Imp. Acad. Tokyo 18 (1942), 233-236; III, Proc. Japan Acad. 22 (1946), 249-250.
- [11] J. Ohm, 'Some counterexamples related to integral closure in D[[X]]', Trans. Amer. Math. Soc., 122 (1966), 321-333.

Louisiana State University Bâton Rouge, Louisiana