A. Kodama Nagoya Math. J. Vol. 73 (1979), 1-5

ON BIMEROMORPHIC AUTOMORPHISMS OF HYPERBOLIC COMPLEX SPACES

AKIO KODAMA

Introduction

Let X be a hyperbolic complex space⁽¹⁾ in the sense of S. Kobayashi [2]. We write Aut(X) (resp. Bim(X)) for the group of all biholomorphic (resp. bimeromorphic) automorphisms of X.

In this note, we shall prove

THEOREM 1. Let f be a meromorphic mapping from a complex manifold M into a hyperbolic complex space Y. Then f is holomorphic. In particular, we have Aut(X) = Bim(X) for any hyperbolic complex manifold X.

In general we have $\operatorname{Aut}(X) \neq \operatorname{Bim}(X)$ for a hyperbolic complex space X with singularities. In fact, we shall show the following

THEOREM 2. There exists a normal irreducible complete hyperbolic complex space X with Aut $(X) \neq Bim(X)$.

Thus we have obtained a negative answer to Problem E. 5. in [3]. The author wishes to express his hearty thanks to Professor S. Kobayashi who suggested to prove Theorem 1, and also to Professor T. Ochiai for his help.

1. Preliminaries

For later purpose, in this section we shall recall some definitions. A *meromorphic mapping* f from a complex space X into a complex space Y in the sense of Remmert is a set-valued function satisfying the

Received March 15, 1977.

⁽¹⁾ In this note, by a complex space we mean a reduced irreducible Hausdorff complex analytic space.

following conditions:

(i) the restriction $f|_W: W \to Y$ is a holomorphic mapping for some open dense subset W of X;

(ii) the graph $\Gamma_f := \{(x, y) \in X \times Y | y \in f(x)\}$ of f is an analytic subset of $X \times Y$ which coincides with the topological closure of the set $\{(x, f(x)) \in X \times Y | x \in W\}$ in $X \times Y$;

(iii) the canonical projection $\pi: \Gamma_f \to X$ is proper.

We remark here that the set W in (i) can be chosen in such a way that X - W is an analytic subset of X. Let X, Y and Z be three complex Then, for given meromorphic mappings $f: X \to Y$ and $g: Y \to Z$, spaces. we can define the composed meromorphic mapping $g \circ f: X \to Z$ if the full inverse image of W by f is dense in X, where W is an open dense subset of Y on which g is holomorphic (cf. Whitney [5]). In general we have $g(f(A)) \neq (g \circ f)(A)$ for a subset A of X. We say that X and Y are bimeromorphically (resp. biholomorphically) equivalent if there exist meromorphic (resp. holomorphic) mappings $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$. In this case, we call f and g bimeromorphic (resp. biholomorphic) mappings and the inverse to each Moreover, in the case of X = Y these are called *bimeromorphic* other. (resp. biholomorphic) automorphisms of X. A surjective holomorphic mapping $\pi: X \to Y$ is called a proper modification of Y with center S if it is proper and the restriction $\pi: X - \pi^{-1}(S) \to Y - S$ is a biholomorphic mapping for some nowhere dense analytic subset S of Y. For any proper modification $\pi: X \to Y$ with center S, its inverse is always meromorphic. More precisely speaking, we can define a meromorphic mapping $\psi: Y \to X$ by using the holomorphic mapping $\pi^{-1}: Y \to X \to X$ $-\pi^{-1}(S)$ and it is the inverse of $\pi: X \to Y$.

2. Proof of Theorem 1

As remarked in Preliminaries, there exists an analytic subset A of M such that the restriction $f|_{M-A}: M \to A \to Y$ is holomorphic. Putting $g = f|_{M-A}$, we shall prove that g can be extended to a holomorphic mapping.

First we may assume that A is a non-singular complex submanifold of M by the same arguments as in Theorem 4.1, Chap. VI of [2]. Then, since the problem is local, we may further assume that M is a polydisc:

$$D imes D^{m-1} = \{(z, t^1, \dots, t^{m-1}) \in C^m | |z| \le 1, |t^i| \le 1 \ (1 \le i \le m-1)\}$$

and A is contained in the subset defined by z = 0.

For each fixed $t \in D^{m-1}$, we define a holomorphic mapping g_t from the punctured disc D^* into Y by $g_t(z) = g(z, t)$. Once it is shown that $g_t: D^* \to Y$ can be extended to a holomorphic mapping $\tilde{g}_t: D \to Y$ for each $t \in D^{m-1}$, the rest of our proof can be done with exactly the same arguments as in Theorem 4.1., Chap. VI of [2]. Thus we have only to show that g_t is extendable. By a result of Kwack [4], it is enough to show the existence of a sequence of points z_k of D^* converging to the origin such that $g_t(z_k)$ converges to a point p of Y. Now, since f: M $= D \times D^{m-1} \rightarrow Y$ is meromorphic, f(0, t) is a compact analytic subset of Y. We take a point p of f(0, t) arbitrarily. Then, by (ii) in section 1, there are points z_k of D^* such that the sequence $\{((z_k, t), f(z_k, t))\}$ converges to the point ((0, t), p) of the graph Γ_f of f in $M \times Y$, because the restriction $f|_{D imes \{t\}} \colon D imes \{t\} o Y$ is also meromorphic (cf. [5], Corollary 4. H., p. 196). This implies that $\lim z_k = 0$ and $\lim g_t(z_k) = p \in Y$, and $k \rightarrow \infty$ hence the proof is completed. q.e.d.

LEMMA 1. There exist a normal irreducible complex space S, a compact hyperbolic complex manifold T and a meromorphic mapping $f: S \to T$ which is not holomorphic.

Proof. Let T be a compact projective algebraic manifold which is hyperbolic. Then, as remarked in [2], p. 100, T can be imbedded into some complex projective space $P_n(C)$ in such a way that T is projectively normal, that is, the affine cone C(T): = {all complex lines through the origin o of C^{n+1} representing the points of T} is a normal complex space. It is clear that C(T) is non-singular except at the origin. Let $\pi: C(T) - \{o\} \to T$ be the restriction of the natural projection $C^{n+1} - \{o\}$ $\to P_n(C)$. Then, obviously π cannot be extended to a holomorphic mapping from C(T) into T. On the other hand, by the theorem of resolution of singularities by Hironaka [1] and an extention theorem by Kwack [4] it is easily verified that π can be extended to a meromorphic mapping $\tilde{\pi}: C(T) \to T$. The triple system $(\tilde{\pi}, C(T), T)$ satisfies our assertion. q.e.d.

LEMMA 2. There exist normal irreducible complete hyperbolic com-

AKIO KODAMA

plex spaces \tilde{U} and \tilde{V} with bimeromorphic mappings $s: \tilde{V} \to \tilde{U}$ and $t: \tilde{U} \to \tilde{V}$, where t is not holomorphic.

Proof. Take a triple system (f, S, T) as in Lemma 1. Let Γ_f be the graph of the meromorphic mapping $f: S \to T$ and $\pi: \Gamma_f \to S$ the canonical projection. Let $g: S \to \Gamma_f$ be the inverse meromorphic mapping of the proper modification $\pi: \Gamma_f \to S$. Then there exists a point x_0 of S such that $g(x_0)$ is not a single point, because f is not holomorphic. Take an open neighborhood \tilde{U} of x_0 in S which is complete hyperbolic. Since S is normal, we may assume that \tilde{U} is also irreducible. Let $V = \pi^{-1}(\tilde{U})$ and $\mu \colon \tilde{V} \to V$ be a normalization of V. Being an analytic subset of the complete hyperbolic complex space $ilde{U} imes T$, V is also complete hyperbolic. Then, from a result of Kwack [4], \tilde{V} is complete hyperbolic. Moreover, since \tilde{U} is irreducible, so are V and \tilde{V} . We now define meromorphic mappings $s: \tilde{V} \to \tilde{U}$ and $t: \tilde{U} \to \tilde{V}$ by $s = \psi \circ \mu$ and $t = \nu \circ \omega$, where $\psi: V \to \tilde{U}$ is the restriction of $\pi: \Gamma_f \to S$ to $V, \nu: V \to \tilde{V}$ is the inverse meromorphic mapping of the proper modification $\mu: \tilde{V} \to V$ and $\omega: \tilde{U} \to V$ is the restriction of $g: S \to \Gamma_f$ to \tilde{U} , respectively. Then we can show that $s: \tilde{V} \to \tilde{U}$ and $t: \tilde{U} \to \tilde{V}$ are bimeromorphic mappings and the inverse to each other. From our construction, it is clear that $t: \tilde{U} \to \tilde{V}$ is not holomorphic. q.e.d.

Proof of Theorem 2. Let $\tilde{U}, \tilde{V}, s: \tilde{V} \to \tilde{U}$ and $t: \tilde{U} \to \tilde{V}$ be complex spaces and bimeromorphic mappings as in Lemma 2. Putting $X = \tilde{U} \times \tilde{V}$, we define a bimeromorphic automorphism ϕ of X by $\phi(u, v) = (s(v), t(u))$ for $(u, v) \in X$. Then X is a normal irreducible complete hyperbolic complex space. Moreover ϕ cannot be a biholomorphic automorphism of X. In fact, if it were so, both $s: \tilde{V} \to \tilde{U}$ and $t: \tilde{U} \to \tilde{V}$ are necessarily biholomorphic mappings. This contradicts the fact $t: \tilde{U} \to \tilde{V}$ is not holomorphic. Therefore we have shown that $\operatorname{Aut}(X) \neq \operatorname{Bim}(X)$.

REFERENCES

- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326.
- [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York 1970.
- [3] —, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416.
- [4] M. H. Kwack, Generalization of the big Picard theorem, Ann. of Math. 90 (1969),

9-22.

Akita University