RELATIVE COHOMOLOGY OF ALGEBRAIC
LINEAR GROUPS, 11

HIROSHI KIMURA

1. Introduction

Let G be an algebraic linear group over a field F of characteristic 0, and
let H be an algebraic subgroup of G. Let A, M be rational G-modules. In
[4], we defined Ext{, » (A, M), and, in particular, relative cohomology groups
H"(G, H, M) were defined as Ext(s, m)(F, M).

Extie, ;m( A, M) may be identified with the space of the equivalence classes
of the rational (G, H)-extensions of M by A ([4]). Moreover Ext{, (A4, M)
may be identified with the set of the equivalence classes of the rational »-fold
(G, H)-extensions of M by A (Th. 2.2).

Let G be a unipotent algebraic linear group. Then there exists the natural
homomorphism of H*(G, H, M) into the Lie algebra cohomology group H"(g,
h, M), where ¢, ) are Lie algebras of G, H respectively. In Section 3, we
show that, if M is finite dimensional, then the natural homomorphism H’(G,
H, M) H*g, ), M) is surjective.

G. Hochschild studied the properties of rational injective modules ([3]).
In Section 4, we obtain analogous results as described in [3].

2. Extensions of rational modules

Let G be an algebraic linear group over a field F, and let H be an algebraic
subgroup of G. We denote by R(G), or simply by R, the F-algebra of rational
representative functions on G. If f€ R and x< G, the left and right transla-
tions, x+f and f-x of f by x are defined by (x-f)(y) = f(yx), (f*2)(y) = f(xy)
for all yeG. Let M be a rational G-module in the sense of [2]. We make
the tensor product R® M over F into a G-module such that x(f @m) = f+x'Q
x*m. Then R® M is a rational G-module. We denote by “R the set consisting
of the elements left fixed by left translations from H. Then YR® M is a ratio-
nally (G, H)-injective submodule of R® M in the sense of [4] ([4, Prop. 2.1]).
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In [41, we defined the relative extension functor Ext(s, m)(*, *).

ProrosiTiON 2.1. Let G be an algebraic linear group over a field F, and let
H be an algebraic subgroup of G. Let
a B
(0)—>A—B—>C—>(0)

be a rationally (G, H)-exact sequence, where A, B, C are rational G-modules.

Then, for any rational G-module M, it gives rise to exact sequences;

(O)——)Ext?a, (M, A)—>Ext?a, m(M, B)—-)E'Xt‘(’o, oM, C)
0
2., —>Ext{g,'m(M, C)

On-
Skt m(M, A)—Exth (M, B)—> - - -

4
and (0) —)Ext?o, o(C, M)—>Ext?0, H)(B, M)—%Ext?q, H)( A, M) "‘E" o ..
dn-
—>Ext ?o_,lu) (A, M) “‘——l‘)EXt("G, H)(C, M)— —>Extf'g, m(B, M)—>- -

Proof. We shall use the following rationally (G, H)-injective resolution
X(D) of a rational G-module D. For each #=0, X,(D) is the tensor product
"R® - - -  “R® D, with n+ 1 factors “R. The coboundary operator ¢, ; X»(D)
- Xn+1(D) is given by

?n(fo@ MR ®fn®d)
=1®f0® ¢ ®fn®d

n—1

+ 2(=D"® - ®fi®1Bfin® - ®fn®d
H(-D"f@ - @f»®1Q4d.

The augmentation ¢-; : D-X,(D) is given by d~>1®d. By [4, p. 274]
(0)—‘)D—‘)X0(D)‘_>XJ(D)“"9' ..

is a rationally (G, H)-injective resolution of D.

The sequence;
(01— Xn(A)-5 X0 (B) 25 X,(O)—>(0),
where an(f/i® * * * @f2®a) =£1Q * * * @f»Qala) and
Ba(fs® * * * ®f+@B) =£o® *  * @f+@B(),

is (G, H)-exact by the assumption of (a, 8). Moreover, since X,(B) is ration-
ally (G, H)-injective, X»(A) is a G-direct summand of X,(B). Hence we obtain
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exact sequences;
(0)—Homg (M, Xa(A))—Homg(M, Xa(B))-—Home(M, X,(C))—>(0)
and
(0)—Home(XA(C), M)—>Home(X,(B), M)—>Home(Xa(A), M)—->(0).
Therefore we get the desired results from the following commutative diagrams ;
(0) (0) (0)
N o R
(0) > Xo(A) > X1(A) > Xa(A) > -
\: \ |
(0) > Xo(B) > Xi(B) > Xo(B) > - - -
¥ M {
(0) >Xo(C) » Xi(C) > X:(C) > - - -
¥ y i
(0) (0) (0)
(exact) (exact) (exact),

where X,(*) = Homg(M, Xn(*)), and
0) 0) 0)

_t 4 i
(0) > Xo(C) > X1(C) » Xo(C) > + - -
y y '
(0)>Xo(B) > X:1(B) > Xe(B) > + » «
i 4 {
(0) > X (A) > X (A) > Xa(A) >+ + +
y y l

0 (0) (0)
(exact) (exact) (exact),

where X,(*) =Hom(Xnx(*), M). This completes the proof of Proposition 2.1.

A rationally (G, H)-exact sequence of rational G-modules;
(En) (0)—>C—>X—>+ + + —Xy—A—>(0)

is called a rational n-fold (G, H)-extension of C by A. When a diagram of
two rational (G, H)-extensions of C by 4;

(ER)  (0)—C—X1—: + - —X—A—(0)

il ln lx:; E!

(E7) (0)—C—Xi—>+ - —>X,—A-—>(0)

is commutative, the system x = {1, . . . , £n Of G-homomorphisms is said to be
a homomorphism of (EY) to (EY). If (En) =(E%, ..., (EW) =(En) are
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rational z-fold (G, H)-extensions of C by A and if there exists a homomor-
phism of (Ei™) to (EL), or of (EL) to (ESY) for 1<i<r, we shall say that
(E») is equivalent to (E») [5]. Let Efs, m(A, C) be the set of the equivalence
classes of rational n-fold (G, H)-extensions of C by A.

An extension (E,) induces a homomorphism
0("':1) : HomG(C, C) ")EXt:'G_H)(A, C)

by Proposition 2.1.  6£,(1) depends only on the equivalence class of (E,).
Therefore we obtain a map

0n : Efa,m(A, C)->Exty m(A, ©),

where 6, (the class of (E,))=0x,(1). In particular 6, is a one-one corres-

pondence ([4]).

TueoreM 2.2. Let G be an algebraic linear group over a field F, and let H
be an algebraic subgroup of G. If A, C are rational G-modules, then Extig, my(A4, C)
may be identified with Es, w(A, C) for n=1.

Proof. We may select a rationally (G, H)-exact sequence;
(@) (0)—>C—Qr—>- + +—>Qu-1—>B—>(0),

where each Q; is rationally (G, H)-injective. A rational (G, H)-extension of B
by A; ,
(E)) (0)—B—X,—>A—>(0)

induces an extension;
(QED) (0)—>C—Q—>+ "+ + —>Qu-—>X—>A—>(0).

Clearly this correspondence induces a map;

Q: :G,H)(A, B)—EG, s (A4, C).
On the other hand, by Proposition 1 and (), we obtain an isomorphism ;
é: EXt{G,H)(A, B)—_)Ext?G,H)(A, C).

Therefore we obtain a commutative diagram;
) Q .
@.m(A, BY—E, m(A, C)

ial 6 lo,.

EthlG, H) (Ay B) (—-EXt(ﬂG. H)(Ay C):
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where 6, and @ are isomorphisms. We shall show that § is surjective.

For a given rational »n-fold (G, H)-extension of C by A;
(En) (00— C—X—> -« + - —>Xni— A—>(0),
we may make commutative diagrams of rational G-modules;

() —>C—X;—>+ + + — X 1—>B'—>(0) ((G, H)-exact)

ll lm llfn—] lﬁ

(0)"’6‘*)@1_—" c s —Qu-1—>B —(0) ((G, H)-exact),

where B’ =Im(Xy-1—»X,), and

(0)—> B'—>Xo—> A—>(0) (G, H)-exact)

ol s

(0)—>B —Q —¢—>M->(0) ((G, H)-exact),

where @ is rationally (G, H)-injective. Let A+ @ is the direct sum as F-
module. Define a mapping « : A+ Q—->M by r(a, ¢) =ala) —¢(q). Then X =
Ker k= {(¢(x), r(x) +b ; x= X., b= B). Define a G-homomorphism p ; X~ A4
by p(¢(x), r(x) +b) =¢(x). Then Ker p={(0, b) ; b= B}). Therefore we get

a commutative diagram

(0)—B'—>X,—>A—>(0)

ol b

(E) (00—B—X —>A—(0) ((G, H)-exact),

where r(x) = (¢(x), r(x)). It is clear from the above construction that (Q(E))
is equivalent to (Es). Therefore @ is surjective. This completes the proof
of Theorem 2. 2.

3. Relative group extensions
Let ¢ is a Lie algebra over a field F, and let §) be a subalgebra of 8. Let
£ be a 8-module. By a (8, §)-extension of the abelian Lie algebra Q we shall
mean an exact sequence of Lie algebras;
(€)  (0)—>D—P->g—>(0),

satisfying the following conditions;

1) there is a linear map p : 83— such that ¢+p = identity map of 8 and p
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[x, y1="T[o(x), o(3)] for-all x=h and ye4,
2) [p, gl=a(p)g for all peB and g Q.
We shall say that two such extensions (€), (€') are equivalent if there

exists an isomorphism ¢ such that a diagram;

B

VRN
LN

(0)—9D o a—(0)

Vo

NS
SBI

is commutative. We denote by &g,y (Q) the set of equivalence classes of (8,

)-extensions of ©. As in the analogous interpretation of the ordinary Lie

algebra cohomology group H’(4, Q), next Proposition can be shown.

ProrosTioN 3.1. Let 8 be a Lie algebra over a field F, and let Y) be a subalgebra
of 8. If Q is a 8-module, then the relative Lie algebra cohomology grouwp H'(g,
5, Q) may be identified with the set of equivalence classes of (8, V)-extensions of Q.

Let G be an algebraic linear group over a field F of characteristic 0, and
let H be an algebraic subgroup of G. Let A be a rational ‘G-module. Let
X»(A) be as in the proof of Proposition 2.1. Then, for =0, the G-fixed part
Xa(A)¢ is isomorphic, as an F-space, with X,(A)Y ={f& Xn-1(A4) ; b f(x1, . . .
%n) = f(h%, ..., hxy) for .all he H}; such an isomorphism is given by §-

¢n(g), where
(@) (X1, . o ., %) = g(1, 2, . e ),
its inverse being given by f->¢n-.(f), where
on-1(f) (Ko, o o oy Xn) = X0 f (X %1y« o o, %o Xn).
The coboundary for X(A)' becomes f— dof, where

(Bf)(xly s ey x'H'l)
=20 (X7 %y o o o KT Knrr)

n+1

+ 21(— 1)‘g(x;, R Zn+1).

Let @ be a finite-dimensional rational G-module. - @ has the natural structure

of an abelian unipotent algebraic linear group. By a rational (G, H)-extension
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of the abelian unipotent algebraic linear group & we shall mean an exact

sequence of algebraic linear groups;

(E) (1)=—>Q—>P5G—>(1),

satisfying the following conditions;

1) there is a representative map B : G » P such that «a+( =identity map
of G, and B(xy) =p(x)B(y) and B(yx) =B(y)B(x) for all x= H and y < G,

2) pgp " =a(p)q for all p= P and qg= Q

3) the map f- f-a is an isomorphism of R(G) onto the subalgebra R(P)°
of R(P) consisting of the G-fixed elements.

We shall say that two such extensions (E), (E') are equivalent if there

exists an isomorphism r such that a diagram ;

P
RN

SN
1)—e T G—(1)
N
NS
PI
is commutative. We denote by Ews,r(Q) the set of equivalence classes of these
extensions.

Now, for a (G, H)-extension (E) of Q, we define f& Xa(Q) by f(x, %) =
log B(x:) B(x: %) B(x) ", It is clear that fe X2(Q). If 8 be any other map
satisfying the above condition 1), then f' is cohomologous to f, where f'=
log 8'(x) B (x7'%:) B’ (%) ", Hence a rational (G, H)-extension of @ determines
a unique element of H*(G, H, @), which depends only on the equivalence class

of the given rational (G, H)-extension of Q.

ProrosiTioN 3.2. Let G be a unipotent algebraic linear group over the field
F of characteristic 0, H an algebraic subgroup of G, and let 8, ) be the Lie algebras
of G, H respectively. If Q is a finite-dimensional rational G-module, then @(g’m(D)
may be identified with Ewq,m(Q).

Proof. Let
()  (0)—D—P—g—(0)

be a (g, h)-extension of ©. Then (&) induces a rational (G, 1)-extension of Q;

https://doi.org/10.1017/5002776300001165X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001165X

96 HIROSHI KIMURA

(E) (1)——>D——>P—EeG—+(1)

where P is the unipotent algebraic linear group consisting of the exponentials
of the elements of B, and 7 = expgeo-logs. If p : 6>V is a linear map satisfying
the condition in the definition of the (8, §))-etention of {Q, then, by the Campbell-
Hausdorff formula, it is clear that p = expg*p*loge satisfy the condition in the
definition of the rational (G, H)-extension of . Therefore (E) is a rational
(G, H)-extension of Q. It is clear that this correspondence induces a map of
Cg.n(Q) into Eg,m (D).

Conversely, let (E) be a rational (G, H)-extension, and let 5 : G->P be a
map satisfying the condition in the definition. Define s =1logs7 expy and o =
loggg*p-expg. Then (E) induces a (8, 0)-extension of O;

(6)  (0)—D—>P—3g—>(0).

In order to examine that (€) is a (8, §)-extension, we enlarge the base field
F to the field F* of the power series in one variable ¢ with coefficients in F.
Let O* P* G* H* be the algebraic linear groups deduced from O, P, G, H
by the extension of F to F* respectively. Let p™ be the extension of 3. Then

7*((expgtX) (expgtY)) = p*(expgtX) p™* (expgtY),
for all XY, Y=4d. Therefore
(loge+*5™) ((expgrtX) (expgetY))

= loge+(p™(expg:tX) 7" (expg:tY))
= logr+((expp+tp(X)) (expypto(Y)).

By the Campbell-Hausdorff formula, we can compare the coefficients of #* in
the above equality. That is,

oLX, YI1=[o(X), o(Y)], for all X, Yeau.

Hence (&) is a (8, §)-extension of Q. Clearly, this correspondence of (E) to
(€) induces the inverse of the above map of € 1 (Q) to Ew m(Q). This
completes the proof of Proposition 3.2.

By Proposition 3.1, 3.2, there exists the map of H*(8, §, Q) to H*G, H,
£2). On the other hand there exists the canonical homomorphism; H™(G, H,
Q)->H"@, b, Q) ([4. Th. 3.51). By the same way as in [2, p. 518] we can
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verify that the composition of the above maps; H*(q, 9, Q) -»HYG, H, Q)) -
H’(g, §, ) is the identity map of H*(8, §, Q). Thus we obtained the next

result

TureoreM 3.3. Let G be a unipotent algebraic linear group over the field F of
characteristic 0, H an algebraic subgroup of G, and let 8, §) be the Lie algebras of
G, H, respectively. Let 2 be a finite dimensional rational G-module.  Then the
canonical homomorphism: H* (G, H, Q) —>H"(8, §, Q) is surjective.  Moreover
the canonical homomorphism induces a map of HG, H, Q) onto the set of the

equivalence classes of the rational (G, H)-extensions of Q.

4. Relatively injective modules

Let G be an algebraic linear group over a field F, and let H be an algebraic
subgroup of G. Let M be a rationally (G, H)-injective module. It is known
that, for every rational G-module A, the tensor product AQ® M is rationally
(G, H)-injective ([4, Prop. 2.11). As in the analogous interpretation of [3,
Prop. 2.11, the following result can be shown by using Proposition 2.1 and
[4, Prop. 2.31.

Prorosition 4.1. Let G be an algebraic linear group over a field F, H an
algebraic subgroup of G, and let M be a vational G-module.  Suppose that, for
every finite-dimensional G-module U, H'(G, H, UQ M) = (0). Then M is rationally
(G, H)-injective

Next Proposition is a generalization of [4, Prop. 2.11.

ProrosiTioN 4.2. Let G, H be as in Proposition 4.1, and let L be an algebraic
subgroup of G such that theve is a rational representative map p : G — L satisfying
o(yx) =yo(x) for all ye L and x& G.  Suppose that p(x) 'p(xh) € LN H for all
he Hand x€G. Let M be a rational L-module. Then "RQ M is rationally (L,
LN H)-injective. If A is any rationally (G, H)-injective module, then AQM is
rationally (L, L0 H)-injective.

Proof. Let (0)——>C—p->B——>A’——~> (0) be a rational (L, L N H)-exact sequence,
where A’, B, C are rational L-modules, and let y be an L-module homomorphism
of C into “RQM. Let ¢ be an LN H-module homomorphism of B onto C such
that ¢+p is the identity map of C. We shall identify elements of YR® M with
naturally corresponding maps of G into M. For s < B, define the map
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B(b) : G->M by
B() (1) = oD (¢(p(x) 71+8)) (p(x) x) 1.

By [2, Prop. 2.2], B()) € RQM and r = B+p. By assumption, for any € H
and any x€ G, there is fz’e HN L such that p(xh) = p(x)4’. By the definition
of B, k
B(B) (xh) = p(xh) Ly (9 (p(xh) " +5)) (p(xh) " *xh)]
= p(D WL (@ (B p(x) ™"+b)) ('™ o(2) " 'xh)]
= p(DLr(@(p(x)71+0)) (x7)]
=B(b) (x).

Hence B(b) € YR® M.

The second part of Proposition is shown by the same way as [2, Prop. 2.2].
This completes the proof of Probosition 4.2.

Now we shall assume that the base field F is of characteristic 0. Let L
be a unipotent normal algebraic subgroup of G. Then there is a rational
representative map o : G- L such that p(yz) =yp(x) for all x€G and yeL
([2. Th. 3.11). Proposition 4.2 gives the following result.

ProposiTion 4.3. Let G be an algebraic linear group over the field F of chara
cteristic 0, H an algebraic subgrouﬁ of G, and Iét L be a unipotent normal algebraic
subgroup of G. Suppose that b(x)"‘p(xh) e L N H for all x€ G and h< H, where
p is a rational representative map of G into L such that p(yx) =yo(x) for all
¥x€G and ye L. Let M be a rationally (G, H)-injective module. Then M is
rationally (L, L N H)-injective.

Now we prove the main result in this section.

THEOREM 4.4. Let P be an algebraic linear group over the field F of chara-
cteristic 0, Q an algebraic subgroup of P, and G be a normal algebraic subgroup
of P. Let N be the maximal dnipotent normal algebraic subgroup of G. Suppose
that there is a maximal fully reducible subgroup K of G contained in the normalizer
of NNQ in G and that p(x) 'p(xq) € MNQ for all x€ P and q< Q, where p is
a rational rvepresentative map of P into N such that p(np) = np(p) for all pc P
and ne N. Let M be a rationally (P, Q)-injective module and let K' be -a fully
reducible algebraic subgroup of K. ‘Then M is rationally (G, H)-injective, where
H=K'-(NNQ).
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Proof. By Proposition 4.3, M is rationally (N, NN Q)-injective. Let U be
any rational G-module. Then U® M is rationally (N, NN Q)-injective. By
[4, Th. 2.5], for every rational G-module A,

H(G, H, A)=H(N, NnQ, A)¢"~.

In particular, it follow that H'(G, H, U® M) = (0). Hence, by Proposition 4.1,
M is rationally (G, H)-injective. This completes the proof of Theorem 4.4.
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