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1. Introduction

Let G be an algebraic linear group over a field F of characteristic 0, and

let H be an algebraic subgroup of G. Let A, M be rational G-modules. In

[4], we defined ExtJβ,/*, (A, M), and, in particular, relative cohomology groups

Hn{G, H, M) were defined as ExtΓG.H)(F, M).

Ext(G,iϊ)( A, M) may be identified with the space of the equivalence classes

of the rational (G, H)-extensions of M by A ( M ) . Moreover Extn

GtH)(A, M)

may be identified with the set of the equivalence classes of the rational n-fold

(G, £Γ)-extensions of M by A (Th. 2.2).

Let G be a unipotent algebraic linear group. Then there exists the natural

homomorphism of Hn(G, H, M) into the Lie algebra cohomology group Hn(Q,

§, M), where 9, ί) are Lie algebras of G, H respectively. In Section 3, we

show that, if M is finite dimensional, then the natural homomorphism H2(G,

H, M)->#2(G, ϊ), M) is surjective.

G. Hochschild studied the properties of rational injective modules ([3]).

In Section 4, we obtain analogous results as described in [3].

2. Extensions of rational modules

Let G be an algebraic linear group over a field F, and let H be an algebraic

subgroup of G. We denote by R{G)y or simply by Rt the F-algebra of rational

representative functions on G. If / e R and # e G , the left and right transla-

tions, x f and f x of / by x are defined by (x f)(y) = f(yx), (f x)(y) = f(xy)

for all J Έ G . Let M be a rational G-module in the sense of [2]. We make

the tensor product R®M over F into a G-module such that x{f®tn) = / Λr~10

# m. Then R®M is a rational G-module. We denote by ffi? the set consisting

of the elements left fixed by left translations from H. Then HR®M is a ratio-

nally (G, ϋΓ)-injective submodule of R®M in the sense of M (C4, Prop. 2.1]).
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In [4], we defined the relative extension functor ExtΓc?,i/)(*, *).

PROPOSITION 2.1. Let G be an algebraic linear group over a field F, and let

H be an algebraic subgroup of G. Let

(0) —*A A#Λ>C—•> (0)

be a rationally (G, H)-exact sequence, where A, B, C are rational G-modules.

Then, for any rational G-module M, it gives rise to exact sequences;

(0)—•»Ext?βfii,(Af> A)—>Ext\G,H)(M, B)—+E*t\o.B)(M9- C)

-̂ > —»ExtΓG~Λn(M, C)

^ H ) ( M , A)-^ExtΐG,H)(M, B)—>•

(0)—>Ext?β,H,(C> M)—>Ext?G,fl)(^, M)—>Ext^,H,(^, M)-—*

£r)(il, M)——->ExtΓβ,H)(C, M)-->ExtΓG.H)(5, Af)—>•

. We shall use the following rationally (G, ϋD-injective resolution

of a rational G-module Zλ For each n>0, Xn(D) is the tensor product

R<g> - - ®HR®Df with « + 1 factors HR. The coboundary operator φn \ Xn(D)

*Xn+i(D) is given by

®fn®d

4 Σ(- l ) f + 1 /o® ®/i®l.®yi+i®
o

The augmentation p_i : D-+X0(D) is given by d-*l®d. By [4, p. 274]

(0)—>D

is a rationally (G, i7)-injective resolution of D.

The sequence;

(o)

where an(fo® ®fn®a) =/o®. Θ/n®α:(β) and

βnifo® ' * * ®fn®b) =/o® ®fn®β{b),

is (G, iϊ)-exact by the assumption of (α:, j9). Moreover, since Xn(B) is ration-

ally (G, i/)-injective, X«(-Λ) is a G-direct summand of Xn{B). Hence we obtain
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exact sequences

(0)—>Homσ(M, Xn(A))—>Homff(M, Xn(B))—*UomQ(M, X»(C))—»(0)

and

(0)—>Homσ(X,,(C), Af)—>HomG(X«(B), Af)—>Homβ(X,U), M)-->(0).

Therefore we get the desired results from the following commutative diagrams

(0)

(0)

(0)

M,

(0)

(0)

(0)

(0)

(exact)

(0)

I
(0)

(0)
_ j

+&(&->.

(0)

(exact)

and

(0)

(0)

(0)

->Xz(A) •

(0)

(exact),

(0)
_ ;

_4

I
(0)

(exact) (exact) (exact),

where XM(*) =Hom(Z r t(*), M). This completes the proof of Proposition 2.1.

A rationally (G, # ) -exact sequence of rational G-modules;

(En) (0)—->C—•Xi—> -^Z«—>^—>(0)

is called a rational #-fold (G, H) -extension of C by A. When a diagram of

two rational (G, ϋf)-extensions of C by ^4;

IE1») (0)—>C—>Xl—> ^X'n—>A—>(0)

(£i) (0)— >C-^X?—^ >Z2,—»J1—»(0)

is commutative, the system * = {«i, . . . , /c»} of G-homomorphisms is said to be

a homomorphism of (£*) to {En). If (J5«) = (£°»), . • , {Er

n) = {E'n) are
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rational n-folά (G, H) -extensions of C by A and if there exists a homomor-

phism of (EΪ1) to (£(,), or of (E{

n) to (En'1) for l^f^r, we shall say that

(£*) is equivalent to (En) EL Let E?Q,H)(At C) be the set of the equivalence

classes of rational n-ίolά (G, if)-extensions of C by A.

An extension (£ n ) induces a homomorphism

0<F M> : Homσ(C, C) -» Extern (4, C)

by Proposition 2.1. 0(ffM)(l) depends only on the equivalence class of (£Λ).

Therefore we obtain a map

θn : £ I W ; 4 , C)-»ExtΓβ.*)U, C),

where θn (the class of (£»)) = 0<sn)(l). In particular î is a one-one corres-

pondence ( M ) .

THEOREM 2.2. Let G be an algebraic linear group over a field F, and let H

be an algebraic subgroup ofG. If A, C are rational G-modules, then Ext?e,B)(Ay C)

may be identified with E?G,H)(A, C) for n^λ.

Proof, We may select a rationally (G, H)-exact sequence;

(0) (0)—>C—>Qt—> —>Q«-i—>£-—KO),

where each ζ?, is rationally (G, #)-injective. A rational (G, ϋD-extension of B

by A;

(£i) (0)—>£—>Zn—>A—>(0)

induces an extension;

(Q(£i)) (0)—>C—>Oi—>• •—*Qn-i—>X—>A—>(0).

Clearly this correspondence induces a map;

Q: E]G,H)U, B)-+E?0.BAA, C).

On the other hand, by Proposition 1 and (Q)f we obtain an isomorphism;

0 : Ext}σ, H)U, B)—>ExtΓG, F ) U , C).

Therefore we obtain a commutative diagram;

, C)

Ext\0,B)(A, B)<—Ext?β,H){A, C),
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where θι and Q are isomorphisms. We shall show that Q is surjective.

For a given rational n-ίold (G, H) -extension of C by A

(En) (0)—»C—>Xi—» >Xn—*A—>(0),

we may make commutative diagrams of rational G -modules

(0)-H

(0) —

where Bf = ImQ

r-1

r

(0)-

(0)-

>Xι—-

1-

—>B -

and

-+x-

\*

-*Xn-l

1'"-

V
-±M—

—>5'—>(0)

—>J5—>(0)

((G, H) -exact)

((G, iJ)-exact),

>(0) ((G, if)-exact)

>(0) ((G,'-ff )-exact),

where Q is rationally (G, i/)-injective. Let A + Q is the direct sum as F-

module. Define a mapping K : A -f- Q->M by Λ:(Λ, ̂ ) = <ar(«) —φ(q). Then X =

Ker /c = {(f(x), rU) + ^ ί Λ:eX«, b^B). Define a G-homomorphism £ X~>A

by ρ(ψ(x), r(x) +b) = ψ(x). Then Ker/> = {(0, ί ) i s B}. Therefore we get

a commutative diagram

(Ei) (0)—>J5—>Z—>A—-»(0) ((G, if)-exact),

where r(^) = (ψ(x)9 r(x)) it is clear from the above construction that

is equivalent to (En). Therefore Q is surjective. This completes the proof

of Theorem 2.2.

3. Relative group extensions

Let 9 is a Lie algebra over a field F, and let % be a subalgebra of 9. Let

D be a 0-module. By a (9, ϊ))-extension of the abelian Lie algebra D we shall

mean an exact sequence of Lie algebras;

(S) (0)—->d—>$-%g-->(o),

satisfying the following conditions

l) there is a linear map p : 9->$ such that α μ= identity map of 0 and p

https://doi.org/10.1017/S002776300001165X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001165X


94 HIKOSHI KIMURA

[x, yl = Zpix), p(y)Ί for all z e ! j and ^60,

2) Zp, q\ = σ(p)q for all p6$ and ^ ε O .

We shall say that two such extensions (6), (©') are equivalent if there

exists an isomorphism φ such that a diagram

/ \/ \
(0)—»Q \Ψ 0

is commutative. We denote by @<g,t))(O) the set of equivalence classes of (9,

ί})-extensions of O. As in the analogous interpretation of the ordinary Lie

algebra cohomology group #2(9, Q), next Proposition can be shown.

PROPOSTION 3.1. Let 9 be a Lie algebra over a field Ff and let§ be a subalgebra

of 9. If O is a Q-tnodule, then the relative Lie algebra cohomology group H2(Q,

ϊ}, O) may be identified with the set of equivalence classes of (9, §)-extensions όfO.

Let G be an algebraic linear group over a field F of characteristic 0, and

let H be an algebraic subgroup of G. Let A be a rational G -module. Let

Xn(Λ) be as in the proof of Proposition 2.1. Then, for n>0, the G-fixed part

Xn(Λ)G is isomorphic, as an F-space, with Xn(A)' = {/e Xn-ι(A) h f(xι, . . . ,

xn) z=f(hxi, - ... , hxn) for all h&H} such an isomorphism is given by 9-»

Φn(g), where

φn(g)(Xl, - - , Xn) =gil, Xl, . . . , ΛΓn),

its inverse being given by f-*φn-Λf), where

φn-Λf )(Xθy . . - , Xn) ̂ Xo fix^Xu - , X^Xn).

The coboundary for X(A)' becomes f->δf, where

(df)(Xi, . . . ,

n + 1

Σ ( - i)*g(χu
1

Let Q be a finite-dimensional rational G-module. Q has the natural structure

of an abelian unipotent algebraic linear group. By a rational (G, ίΓ)-extension
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of the abelian unipotent algebraic linear group Q we shall mean an exact

sequence of algebraic linear groups

(E) (D—>Q-^P—*G—>(1),

satisfying the following conditions

1) there is a representative map β : G-»P such that a β = identity map

of G, and β(xy) = β(x)β(y) and β(yx) = βl y) β(x) for all x e / / a n d j>eG,

2) Pqp~1=*a(p)q for all ί e ? and g e O

3) the map /->/ α is an isomorphism of 2?(G) onto the subalgebra R(PY

of 2?(P) consisting of the G-fixed elements.

We shall say that two such extensions (E), (E') are equivalent if there

exists an isomorphism γ such that a diagram

/ \

/ ί \
(D—>0 r G—>(i)\ 1 /\ v

P'

is commutative. We denote by Eιβ,π)(Q) the set of equivalence classes of these

extensions.

Now, for a (G, #)-extension (E) of Q, we define / G ! 2 ( 0 ) by /(#i, #2) =

log β(xι)β{xTιX2)β(x2)~\ It is clear that /eX 2 (QK If j9' be any other map

satisfying the above condition l), then / ' is cohomologous t o / , where / ' =

log β'(xi) β'teϊ1^) β'fa)'1. Hence a rational (G, i7)-extension of Q determines

a unique element of H2{G, H, Q), which depends only on the equivalence class

of the given rational (G, H) -extension of Q.

PROPOSITION 3.2. Let G be α unipotent algebraic linear group over the field

F of characteristic 0, H an algebraic subgroup of G, and let 9, % be the Lie algebras

of G, H respectively. If Q is a finite-dimensional rational G-module, then

may be identified with E(Q,

Proof Let

(6) (o)—>o—^φ—->α—>(o)

be a (9, ^-extension of O. Then (6) induces a rational (G, l)-extension of Q\
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(E) (1)—>O—>P-^G—>(1)

where P is the unipotent algebraic linear group consisting of the exponentials

of the elements of % and a = expg c logp. If p : 9-»̂ β is a linear map satisfying

the condition in the definition of the (9, ϊj)-etention of O, then, by the Campbell-

Hausdorff formula, it is clear that p = expφ p log© satisfy the condition in the

definition of the rational (G, H)-extension of O. Therefore (E) is a rational

(G, #)-extension of D. It is clear that this correspondence induces a map of

<£(g,t))(O) into £<G,H)(Q).

Conversely, let (2£) be a rational (G, ϋΓ)-extension, and let p : G->P be a

map satisfying the condition in the definition. Define a = log<? 0 expφ and p =

Then (is) induces a (9, 0)-extension of D;

((£) (0)—>O—>φAβ—>(0).

In order to examine that (6) is a (fl, ή)-extension, we enlarge the base field

F to the field F* of the power series in one variable t with coefficients in F.

Let O*, P*, G*, i7* be the algebraic linear groups deduced from O, P, G, J9"

by the extension of F to F*, respectively. Let p* be the extension of p. Then

for all l e i , F G 8 . Therefore

p*) ((exp^/X) (

By the Campbell-Hausdorff formula, we can compare the coefficients of f in

the above equality. That is,

P K Yl = Zp{X), p{Y)l, for all X<Ξ% F e 9.

Hence (©) is a (9, ή)-extension of O. Clearly, this correspondence of (E) to

(6) induces the inverse of the above map of ®(g,m(O) to £«?,*)(D). This

completes the proof of Proposition 3.2.

By Proposition 3.1, 3.2, there exists the map of #2(9, ί), D) to /ί2(G, //;

O). On the other hand there exists the canonical homomorphism; Hn(G, H,

O) -+Hn(fl, % O) (C4. Th. 3.5]). By the same way as in [2, p. 518] we can
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verify that the composition of the above maps; H2{Q, I), O) ->H2(G, H> Q)) ->

H2(Q, ΐ), D) is the identity map of H2(Q, ϊj, Q). Thus we obtained the next

result

THEOREM 3.3. Let G be a unipotent algebraic linear group over the field F of

characteristic 0, H an algebraic subgroup of G, and let 03 f) be the Lie algebras of

G, H, respectively. Let O be a finite dimensional rational G-module. Then the

canonical homomorphism.: H°~ (G, H, O)-*//2(β, f), D) is surjeciive. Moreover

the canonical homomorphism induces a map of H2(G, H, D) onto the set of the

equivalence classes of the rational (G, H)-extensions of O.

4. Relatively injeetive modules

Let G be an algebraic linear group over a field F, and let H be an algebraic

subgroup of G. Let M be a rationally (G, /Z")-injeetive module. It is known

that, for every rational G-module Ay the tensor product A <S>M is rationally

(G, iT)-injeetive ([4, Prop. 2.1]). As in the analogous interpretation of [3,

Prop. 2.1], the following result can be shown by using Proposition 2.1 and

[4, Prop. 2.3].

PROPOSITION 4.1. Let G be an algebraic linear group over a field F, H an

algebraic subgroup of G, and let M be a rational G-module. Suppose that, for

every finite-dimensional G-module U, H'(G, H, U®M) = (0). Then M is rationally

(G, H)-injeetive

Next Proposition is a generalization of [4, Prop. 2.1].

PROPOSITION 4. 2. Let G, H be as in Proposition 4.1, and let L be an algebraic

subgroup of G such that there is a rational representative map p G -> L satisfying

p{yx) ^yp(x) for all y^ L and x<=G. Suppose that p(x)~1p(xh) e I Π H for all

A e H and I G G . Let M be a rational L-module. Then HR®M is rationally (L,

I f ! H) -injeetive. If A is any rationally (G, H)-injeetive module, then A®M is

rationally (L, LΓ\ H)-injeetive.

p
Proof Let (0)—>C—>B—>A'—>(0) be a rational (L, L Π i/)-exact sequence,

where A', B, C are rational L-modules, and let γ be an L-module homomorphism

of C into HR®M. Let ψ be an L Π /ί-module homomorphism of B onto C such

that φ p is the identity map of C. We shall identify elements of HR®M with

naturally corresponding maps of G into M. For ί 6 5, define the map
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β(b) :G-*M by

By [2, Prop. 2.2], β(b)^R®M and γ = β p. By assumption, for any h^H

and any xeG, there is A'e i/ΠL such that p{xh) = p{x)h'. By the definition

of 0,

Hence 0(b)tΞHR®M.

The second part of Proposition is shown by the same way as [2, Prop. 2.2].

This completes the proof of Proposition 4.2.

Now we shall assume that the base field F is of characteristic 0. Let L

be a unipotent normal algebraic subgroup of G. Then there is a rational

representative map p : G-+L such that p(yx) = yp(x) for all # e G and y^L

([2. Th. 3.1]). Proposition 4.2 gives the following result.

PROPOSITION 4.3. Let G be an algebraic linear group over the field F of chara

cteristic 0, H an algebraic subgroup of G, and let Lbe a unipotent normal algebraic

subgroup of G. Suppose that pix^pixh) G L Π H for all x^G and h<=H, where

p is a rational representative map of G into L such that p(yx) =yp(x) for all

x^G and yeL. Let M be a rationally (G, H)-injective module. Then M is

rationally (L, LΓ\ H) -injective.

Now we prove the main result in this section.

THEOREM 4.4. Let P be an algebraic linear group over the field F of chara-

cteristic 0, Q an algebraic subgroup of P, and G be a normal algebraic subgroup

of P. Let N be the maximal unipotent normal algebraic subgroup of G. Suppose

that there is a maximal fully reducible subgroup K of G contained in the normalizer

of NΠ Q in G and that p(x)~1ρ(xq) e MΠ Q for all χ(=P and q^Qt where p is

a rational representative map of P into N such that p{np) = np(p) for all p^ P

and « e N. Let M be a rationally (P, Q)-injective module and let K1 be a fully

reducible algebraic subgroup of K. Then M is rationally (G, H)-injectivey where
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Proof. By Proposition 4.3, M is rationally (Ny NO Q)-in]ective. Let Ube

any rational G-module. Then U®M is rationally {N, NC\ (J)-injective. By

C4, Th. 2.5], for every rational G-module A,

H(G, H, A) = H(N, NΠQ, A)GL\

In particular, it follow that HX(G9 H, U®M) = (0). Hence, by Proposition 4.1,

M is rationally (G, i7)-injective. This completes the proof of Theorem 4.4.
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