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Introduction

The purpose of this paper is to study the relationship between a certain

isomorphism of some rings of functions on Riemann surfaces and a quasi-

conformal mapping.

It is well known that two compact Hausdorff spaces are topologically

equivalent if and only if their rings of continuous functions are isomorphic.

We shall establish an analougous result concerning a function ring on a Riemann

surface and the quasi-conformal equivalence.

As one of the important properties of quasi-conformal mapping is its

absolute continuity in the sense of Tonelli, it is natural to consider the ring of

functions which are absolutely continuous in the sense of Tonelli. On the other

hand, we can show that this ring, with an additional condition, is coincident

with a normed ring considered by Royden [10], which we shall call Royden's

ring.

This leads us to study of the correspondence of the ideal boundary defined

by using the above normed ring under a quasi-conformal mapping.

Our main results are, roughly speaking, as follows.

Two Riemann surfaces are quasi-conformally equivalent if and only if thier

Royden's rings are isomorphic in some sense.

This can be considered as a ring-theoretic characterization of quasi-con-

formality.

A quasi-conformal mapping between two Riemann surfaces can be con-

tinuously extended to their "ideal boundaries" in an appropriate manner.

This includes the invariance of the classes OG and OIiD of Riemann surfaces

by a quasi-conformal mapping.
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1. Royden's ring M(R) and Royden's compactification R*

1.1. Let R be an open or closed Riemann surface and let BD be the class

of all complex-valued bounded continuous functions on /?, each of which has

piece wise continuousl) derivatives of the first order and has the finite Dirichlet

integral over R. We introduce the norm !l/|| of an element / in BD by

(i.i) ii/ii = ιi/L + vac/i

where ||/1|» denotes the least upper bound of values | / ( P ) | when P varies over

R and Dί/3 is the Dirichlet integral of / over R, i.e.,

where z- x + iy is a local parameter.

By the usual algebraic operations, BD is an algebra over the complex

number field C with an adjoint operation/-*/* defined by /*(P) =/(P), where

the bar denotes the complex conjugate number. We denote by M(R) the

abstract completion of BD by the norm-topology defined by (1.1). As 11/* I!

= 11/11 > not only the structure of algebra but also the adjoint operation in BD

can be extended to M(R). Thus M(R) is a commutative Banach algebra over

the complex number field C, or a so-called normed ring with the adjoint

operation.

This ring M(R) was first considered by Royden [10], so we shall call M(R)

"Royden's ring9' of R for brevity-

1.2. Let z~x+iy be a local parameter in R valid for a domain D in R

and let Δ be a domain contained in D with its closure mapped onto the plane

rectangle z(Δ)\ a<x<b, c<y<d by the local parameter z. Then we call

(J, z) the rectangular domain on R.

A complex-valued function f{P) on R is called absolutely continuous in

the sense of Tonelli (abbreviated as a.c.T.), if, for every rectangular domain

(Δ, z), fix, y) is continuous on the closure z{Δ): a^x^b, c^y^d and abso-

lutely continuous with respect to x in the usual sense for almost all values of y in

! ) The precise meaning of piecewise continuity is as follows. Let R—\)Δί be a
triangulation of R. We suppose that the boundary of Δι consists of a finite number of
analytic arcs. If a complex-valued function /(P) on R is continuous in each of the
interior of J/, we say that/(P) is piecewise continuous on R.
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c ^y ^d, and absolutely continuΘus with respect to y in the usual sense for almost

all values of x in a ̂  x ?= b, and if further the Dirichlet integral of /, whose

existence can be easily seen, is finite over z(Δ).

Let Ή(R) be the totality of complex-valued bounded continuous functions

on R, each of which is a.c.T. on R and has the finite Dirichlet integral over R.

Let the norm and the adjoint operation in Ίίl{R) be defined by |i/||

= II/IU + V&C/] and/*(P) =/(P) as in BD.

We shall deal with the relationship of M(R) and ΉiR). First we can

prove the following

LEMMA 1.1. Wl(R) is a normed ring.

Proof. We can easily verify that 9JΪ(/?) satisfies the condition of the normed

ring except its completeness. Hence we have only to prove the completeness

of m{R).

Let {fn) be a Cauchy sequence in DJHtf). As the uniform norm of an

element in WiR) is smaller than the norm of Ή(R), {/„} is a Cauchy sequence

with respect to the uniform norm. Hence we have a bounded continuous

function/(P) on R such that

(1.2) lim l !/*-/IU=0.
n-»αo

Denote by Γ(R), the totality of differentials μ of the first order on R

satisfying

(T μl\*μ< + oo,
J J R

where *μ is a dual differential of μ, *μ is a complex-conjugate of *μ and Λ

denotes the exterior product. The Γ(R) is a Hubert space with an inner

product (μ, v) defined by

(μ, v) = £j μ/\*P,

where μ and v are in Γ(R). As we have

^fmJ έ Wfn -/mil,

where dfn = ~n-dxΛ- —^-dy, {dfn} is a Cauchy sequence in the sense of strong
ox oy

convergence in Γ(R). Hence we have a = a(z)dx+ b(z)dy in Γ(R) such that
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d/n converges strongly to aE Γ(R).

Let (J, z) be any rectangular domain on R such that z{Δ) be a rectangle:

a<x<b, c<y<d and let (Jo» 2) be another rectangular domain on R such that

Jo contains the closure of Δ and corresponds to z(Δ0): aQ<x<bot cQ<y<do.

Let θ(z) be a function of the class C1 with compact carrier contained in ΔQ

and θ(z) = l o n J. We put

fn(z) = θ(z)Mz), 7(z) = 0U) •/(*),

and

Then we see that -~— fn(z) converges strongly to a(z) in the Hubert space

L 2 U ) .

For almost all values of y in co^y^do, we have

/«(*, y) = £ a | ^ ί ( ^ y)dX (« = i.2,3, . . .).

Using this and the Schwarz inequality, we get

\fn(z) -Mz)\2 ^ ibo-ao)

and hence

a
f ( \fn(z) - fo(z) I2 <foύFv ^ (6» - «o)2 f ' f ' dXdy.

This implies that/ Λ converges strongly to/o in L2(4>). Selecting the subse-

quence, if necessary, we may assume that fn(z) converges to fo(z) almost

everywhere in z(Δo). On the other hand, fn(z^ converges uniformly f(z).

Hence fiz) -fn{z) = 0 almost everywhere in Z(ΔQ). AS f(z) -fo(z) is continuous

with respect to x, J{z) -fo(z) ΞO for almost all values of y in co<3'<^o,2) i.e.,

/ ( z ) =J βϊ-Y, ^)dX

2> As the set {(Λ, y)\ f(x, y) — fo (x, ^)-τO} is of 2-dimensional measure zero, we see

that the set [x\ f{x, y) —fo(x, y)h=0) is of 1-dimensional measure zero for almost every

value of y by Fubinrs theorem. For such y, f(xt y) =fo(xt y) {a-ύx^kb) by the continuity
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for almost all values of y in Co<y<do. From this and by the definition of

θ(z), we see that/I*, y) is absolutely continuous with respect to x in a^x^b

for almost all values of y in c-ύy^d and further

ξχfiz) = a(z).

Similarlly, f(x, y) is absolutely continuous with respect to y in c^yύd for

almost all values of x in a ^ % ^ b and

i-f(z) = b{z).
ay

Thus we have d/=<x and / is a.c.T. As a = df is the strong limit point of

the sequence {dfn} in /'(/?), it holds that

(1.3) Hm VOΓ/7-73 = 0 .

From these, we can say that / i s in WΪ(R) and / is the limit point of the

sequence {/«} in SW(Λ). Thus SW(i?) is complete, q.e.d.

Next we prove

LEMMA 1.2. Suppose that an element f in CnΓ\ςBl{RΫ) has compact carrier

car, f in a rectangular domain (J, z) and thai a positive number s as given.

Then ive can find an element g in Cn+ιPM(R) such that car. g is contained in

Δ and ίf-gl^t.

Proof. We may assume without loss of generality that R is the complex

2-ρlane and ά is the rectangle a<x<b, c<y<d.

Let the distance between car. / and the boundary of A be 3c? and choose

a number p satisfying 0<p<d. Denote by MPf(z) the integral

MPf(z) = l

2 (T f(z + Z)dXdY

over p-disc with the center 2, where z = x-f iy and Z= X+ ϊY. It is well

known that Mpf(z) is of class CΛ+1. It is easy to see that car. M^f is contained

in Δ. By the uniform continuity of f(z), we get

(1.4) lim i!ΛfP/-/ίU = 0.

3) The number n is an integer ^0. Here C° denotes the class of continuous functions.
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Next we have

(1.5) -^-~M?/(z) = M? -̂

In fact, since fix, y) is a.c.T., by Fubini's theorem

\*M?-~f{z)dx = -Λ- if dXdY \X~ fiz + Z)dx
Ja OX πp JJ\z\<:p Ja OX

πpL JJ\z\<?

= MP/(z).

From this and the continuity of M? ~- f(z), we have (1.5).
όX

As - f{z) is in L2, it is well known that M? -~- f(z) converges to
OX <JX

^ f(z) strongly in L2(R) as pi 0. Hence ~ MPf(z) converges strongly to
όχ όx

^ f(z) in L2(i?) as p \ 0. The similar argument holds for o . Hence we
ox oy
obtain

(1.6) Urn VD[Mp/-/] = 0.

From (1.4) and (1.6), we have only to put g= M?f for a sufficiently small

number p. q.e.d.

By the iterated use of Lemma 1.2, we obtain the following

LEMMA 1.3. Suppose that an element f in ^5R(R) has compact carrier in a

rectangular domain (J,z) and that a positive number e and an integer n(^0)

are given. Then there exists an element g in CnΓ\^KiR) such that car. g is

contained in ά and \f — g\ ^ e.

Now we omit the restriction on the carrier of /, namely,

LEMMA 1.4. For any f in Tl(R), a positive number ε and an integer ny

there exists an element g in CnΓ\W{R) such that

Proof. Let {J/}JLi be a locally finite covering4' of R consisting of rec-

tangular domains Δj in R and let {0, }Γ=i be a resolution of unity satisfying the

4> If R is compact, we consider that Δ3 are empty except a finite number.
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following: (i) φi is in class C n , (ii) car. ψ, is contained in a Aj and (iii) {car. φi)

is locally finite.

Put /,- = fφi. Then, for any compact set K, there exists a number Nκ

such that

at any point P in K. As // satisfies the requirment in Lemma 1.3, we can find

gi in CnΓ\W(R) such that car, gi is contained in Aj and

(1.6) . il/i - #11 <-2χ+ τ •

It is easy to see that {car. gi) is locally finite and thus there exists a number

Nί for any compact set K such that

y

U

at any P in K. Thus g is in class Cn.

Let {Rm) be an exhaustion of R. For a fixed mt we can find a number

iV such that for all P in /?m

/(P) - *(P) =
< = 1

and

From these and (1.6), we get

l !/-£ίk i?m^ Y and

Letting w -* °°, we have

Thus we see that g is in 3K(Λ) Π CM and ||/ - g\\ ̂  e. q.e.d.

1.3. It is easily seen that

C1 Γ\W{R) C BD

5' cf. foot note 1).
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By Lemmas 1.1, 1.4 and the definition of M(R), it holds 3K(Λ) = M(R) and thus

we obtain the following

THEOREM 1. (i) Roy dens ring on a Riemann surface R is the totality of

complex-valued bounded continuous functions on R each of which is absolutely

continuous in the sense of Tonelli on R and has finite Dirichlet integral over R.

(it) The norm of f in M(R) is given by (1.1).

(ίίi) The set Cn Π M(R) is dense in M(R) (n = 1,2, 3, . . . ) .

1.4. Eesides the norm-topology defined by (1.1), we use another topologies

in M(R). They are as follows.

(a) B-topology: the sequence {/,} in M(R) converges to 0 in: J5-topology

if the sequence {||/f |U} is bounded and MP) converges to 0 uniformly on every

compact set.

(b) D-topology: the sequence {/*} in M(R) converges to 0 in D-topology

if the sequence {£>[/*]} converges to 0.

(c) Uniform topology: the sequence {//} in M(R) converges to 0 in the

uniform topology if the sequence {l!//ίL} converges to 0.

(d) BD-topology: the sequence {/,} in M(R) converges to 0 in the BD-

topology if {fi} converges to 0 in J3-topology and also in D-topology.

(e) Norm topology: The sequence {/,•} in M(R) converges to 0 in the

norm topology if {I!//!!} converges to 0; the relation between these topologies

are stated as follows:

B-topology—> uniform topology \
\ ^ ^norm topology,

D-topology —> .BD-topology /

where -> means "is weaker than".

Obviously M{R) is not complete with respect to B- or D- or uniform

topology. But we can prove the following.

LEMMA 1.5. M(R) is complete with respect to the BD-topology.

The proof of Lemma 1.1 can be applied nearly verbatim to this case and

so we omit the proof.

1.5. We denote by M0(R) the totality of elements in M(R) with the

compact carrier and by Mχ(R) the closure of Mo(R) in the BD-topology. It is
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easily verified that M0{R) an<3 ML(R) are ideals of M( R) and that these are

closed under the adjoint operation.

By Theorem 1 and Royden's decomposition of BD (see [9]), we get the

following

LEMMA 1.6. {Royden) M(R) = HBD®Mι(R), that is, any element f of

M(R) has the unique decomposition

f=u + g, iiwi! £ !!/ϊ; and (du, dg) = 0 in Γ(R)f

&)

ivhere u is in HBD {the class of harmonic functions in BD) andg is in MΛR).

1.6. A character of M{R) is a functional on M(R) satisfying

(1- 7) YΛf+g) = YΛf) + YΛg)9 YΛccf) = ecYΛf),

(1. 8) Z(/gr) = YΛf) YΛg)9

(1. 9) YΛf*) = Z(7),

(1.10) Z(D = 1.

From (1.8) and (1.9), the character is positive, i.e.,

11.11) / ^ 0 implies Z(/)*0.

As ί!/ί!l - .//* is non-negative, we get

(1.12) \YΛf)\ ^ |!/L ^ ιί/i|

by virtue of (1.11).

Thus the character space R* (the totality of characters of M(R)) is a

subspace of the conjugate space M(R)* of M(R) as a Banach space.

The point of R can be considered as a character by defining

P(f) =

We call this character P(/) a point character. In this sense R is embedded

in R\

We introduce a topology in /?* by the induced topology of the weak

topology a(M(RY\ M(R)) (see Bourbaki [3]) in M(RY'\ For the brevity this

is denotod by σ(Rk, M{R)). Then /?* is a compact Hausdorff space7) and the

6 ) For V(R), cf. the proof of Lemma 1.1.
7 ) By (1.10) and (1.12), R* is in the surface of the unit sphere in M{R)*. It is clear

that jR 15 is σ(M(i?)*, Λf(/?))-closed in M(R*). Hence, by the well known theorem in the
theory of Banach spaces, R': is compact subset of M{R)*.
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point character space R is an open subset of /?* which is dense in /Γ and is

homeomorphic to the Riemann surface R. In fact, R* - R is closed in /?* as

R* - R is the totality of characters which vanish on M0{R)y and that by the

general theory of normed ring, the semi-simple normed ring with an adjoint

operation is represented as the dense subset of the continuous function space

C(/?*) (Loomis [4]).

This /?* is first introduced by Royden to investigate the ideal boundary

of R (Royden [10]). So we shall call R* "Royden1 s compact ification" of R for

brevity. It is clear that every function in M(R) can be extended continuously

to whole /?* uniquely.

The set ΆR) = R* - R is called the ideal boundary of R. As stated already,

the kernel N λ = {/G M(R) '/(/) =0} of the character 1 in I{R) contains

MQ(R). The totality of 1 such that N* contains MΛR), if exists, will be

denoted by h(R) and the remainder set I(R) - IΛR) will be denoted by I2{R).

The set Iι(R) is called the harmonic boundary (Royden [10]) and LΛR) is

called the non-harmonic boundary.

2. The Normal isomorphism induced by quasiconformal mapping

2.1. Let R and R1 be two open or closed Riemann surfaces and let M(R)

and M(R') be Royden's rings of R and R' respectively. Suppose that the one-

to-one mapping ψ of M(R) onto M(R) satisfies the following conditions:

(2.1) φ is an isomorphism of the C-algebra8) M(R) onto the C-algebra M(R')

preserving the adjoint operation.

(2.2) ψ is bicontinuous with respect to the B-topology,

and

(2.3) ψ is bicontinuous with respect to the Z>-topology.

Then we shall call ψ the normal isomorphism of M(R) onto M(R').

We denote the totality of functions on R by %(R). For a one-to-one map-

ping T of R onto R\ we can define the one-to-one mapping <fτ of §(/?) onto

%(R') by

Then fr is an isomorphism between C-algebras 5(^?) and ft(R'). The ^ Γ is

8 ) I.e. an algebra over the complex-number field C.
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called the induced isomorphism by T of Ί$(R) onto J(/?').

2.2. A homeomorphism T of R onto R1 is called the quasi-conformal

mapping if the ratio of moduli of corresponding quadrilaterals by T is bounded.

This definition is due to Pfluger and Ahlfors (see [1]).

The following simple fact seems to have some applications besides its own

interest.

THEOREM 2. // T is a quasi-conformal mapping of R onto /?', then the

induced mapping <fτ restricted on M(R) is the normal isomorphism of M(R)

onto M(R').

Proof. Let the maximal dilatation of T (and hence of T~ι) be K. Let

the local equation of T'1 be

u = u(x, y)y v = v(xf y)9

where ιv-u + iυ and z = x -f iy are local parameters in R and R1 respectively.

It is known that T'1 is a measurable mapping and further we have

ιe)= \\ J(z)dxdy.

Here e is a measurable set in Rf for which the local parameter z is valid and

the local parameter iv is valid for T~λe in R and m(T~ιe) denotes the measure

of the measurable set T~ιe and finally

almost everywhere in e. The same as above holds also for T (c.f. Bers [2]).

Using this fact and the Schwarz inequality, we obtain

(2.4) KΓιDlft ^ Dί<fτ.n ^ KDίfl

It is easily seen that <fτ is bicontinuous in the β-topology in ϊ$(R).

If/ is in CιΠM(R), then <fτf is in M(R'). Theorem 1 implies that, for

any / i n MiR), we can find a sequence {fn) in C1 Π M(R) such that /„ con-

verges to / in the norm topology (and hence in the jBD-topology). As we

have seen that <pτ is continuous in the BD topology, the sequence {ψτfn) in

M(R') converges to f?/in the Z?D-topology. By Lemma 1.5, M{R) is com-

plete in the J9Z>topology and hence cτf is in MiR'). Therefore, we have that
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<fiM(R) C M{R'). Similarlly, it holds that yv-iA/(/P) C M{R). Hence we get

M(R) = M{R').

It is seen by the above argument that the conditions (2.l)-(2.3) for <fτ

are satisfied. Hence <fτ is normal. Thus we obtain our theorem.

3. Quasi-conformal mapping induced by normal isomorphism

3.1. First we give the proof of the following.

LEMMA 3.1. Let ψ be a one-to-one mappmg of M(R) onto M(R').

(i) If ψ satisfies (2.1), then ψ is isometric ivith respect to the uniform

norm, i.e.,

(3.1) ϋf/IU = ii/ίU

(ii) If ψ satisfies (2.1) and (2.3), then there exists a positive constant K

such that

(3.2) K-^ΊJCn * VBΓfTJ

and

(3.3) R-'UW^WφfW^

Hence the normal isomorphism is bicontinuous in the norm topology.

Proof. For the uniform norm, we can prove

(3.4) II/IU = sup{ Ui f-λ has no inverse in M(R)}.

To show this, we denote by a the right side of (3.4). If ||/|U < Ul, it is easily

seen that l / ( / ( P ) - λ) is the function in M(R) and actually the inverse of

f-λ. Hence we have a ^ li/IU. On the other hand, f - f\P) is not invertible

in M(R) for fixed P in R. Thus we see \f(P)\ a= a, or jj/IL ^ a. So we

have (3.4).

Similarlly we get

(3.5) l!?/|!» = sup{ UI φf - λ has no inverse in M{R')}.

As <ff - λ = ψ(/ - λ) is invertible if and only if / - λ is invertible, the

right sides of (3.4) and (3.5) are coincident, which proves (i).

To prove (3.2), we have only to show that the existence of a positive

constant k such that Dίψfl i= k £>[/]. If this is false, we can choose a
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sequence {/„} in M(R) such that Dί<ffnl> nDlfnl as usual. Then gn

= fn/n Dlfl satisfies Dίgnl<l/n and DZ<fgnl>l, which contradicts (2.3).

From (3.1) and (3.2) follows (3.3). q.e.d.

REMARK. The following problem seems important and is still open: Can

we conclude that <f is normal if ψ satisfies merely (2.1) and is continuous

(and so bicontinuous by Banach's theorem) with respect to the norm topology?9'

Next we prove the following

LEMMA 3.2. If φ is a normal isomorphism of M{R) onto M(R'), then

there exists the unique homeomorphism T' of Rr' onto 2P* satisfying the follow-

ings:

(i) T*R = R', T*IAR) = //(/?) ίί = 1,2)

and

(i i) ψ = <f T,

where T is the restriction of Tή on R.

Proof For Z in /?*, we define a functional T*'/ on M{R') by the formula

T*'/Λf) = Vλ<f~ιΓ).

Then it is quite easy to verify that T^Z satisfies the conditions (1.7)-(1.10).

Thus T* defines a mapping of R* into R'λ\ It is one-to-one and onto. By the

definition of </t/?*f M(R)) and </(/?*, M(R'))> we see that T* is bicontinuous.

Now we show that '/' = T*Z is in Rf if and only if Z is in R. Assume that

Z = P is in R. The image of the kernel NP = {/e M{R) P ( / ) = / ( P ) = 0}

of Z by c is the kernel iVy of 7J = T*/. Here we notice that Ar

F is closed in

the 2?-topology in M\R). In fact, if the sequence {//} in Np converges to /

in M{R) in the ^-topology, then /,(P) = 0 implies/(P) = 0. Hence we have

/ in Np.

Suppose that Z' = T*X is not in R'. Then Nχ> contains M0(Rf). Hence

we can select a sequence {/"<} in Λ7χ' such t h a t / ί converges to 1 in the 23-

topology. By (2.2), Nx> =<fλrχ is closed in the J5-topology in MiR') along with

iVx. Hence it holds that iVχ> contains 1, which contradicts the condition (1.10).

Hence Z' is in R'.

91 The converse of Lemma 3.1.
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Similarly we can prove that X is in R if F = Γ*Z is in R'.

Next we show that (ii) holds. Let F be in R'. Then we have

= ψ/(TT'1P') = TT~ιP(<ff)

= T*T-ιP'(φf) = T~ιPf(ψ"ι*ψf)

= T~ιPf(f) =f(T'1F)

which proves ^ = f τ.

By (ii) and T*# = i?', we can see that ρ r/ is of compact carrier if and

only if / is of compact carrier, Le.,

f(M0(/?)) =

As <£ is bicontinuous in the J3D-topology, we have

From this and the definition of Ii(R), we can conclude that

T*IΛR) = Ji(

By (ii), such T* is uniquely determined on R. On the other hand, R and

i?' are dense in i?* and /?* respectively. Hence by the bicontinuity of T*, T*

is uinquely determined, q.e.d.

3.2. By the annulus Ω = (Co, Ci) on i?, we mean the subset of R which

is conformally equivalent to the plane domain: 1 < \z I < eμ, where the Jordan

curves Co and Ci correspond to \z\ = e* and |zI = 1 respectively. We shall

assume that the 2-dimensional measure of CoUCi is zero.

The uniquely determined number μ is called the modulus of Q and is de-

noted by mod.i?.

Let the harmonic measure of Ci with respect to Ω be oj(pi Ω), i.e., the

harmonic function in Ω which is equal to zero on Co and to 1 on Ci. Then it

holds that

(3.6) 2,(mod. i?)"1 -

Now we suppose that a homeomorphism T of R onto Rf satisfies the

following condition;
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(3.7) for any anmdus Ω in R, the inequality

mod. o ^ K mod. TΩ -' K" mod. Ω

holds, where K is a positive constant depending only on T.

If T is a quasi-conformal mapping, then it is known that T satisfies (3.7)

for the maximal dilation K of T (Ahlfors [1], Mori [5]). Conversely, if a

homeomorphism T satisfies (3.7), it is quasi-conformal (cf. Yujobo [12]). We

state this as follows.

LEMMA 3.3. A homeomorphism T of R onto Rf satisfying (3.7) is a quasi-

conformal mapping.

Proof. As the quasi-conformality of a mapping is a local property, we

may assume without loss of generality that R and R' are unit discs in the

complex plane. Moreover, we may assume T is sense-preserving, for, if it is

sense-reversing, then we may replace T by T.

From merely (3.7), it holds that

M(r)/m(r) ^ er'κ,

where Mir) and ?n(r) are the maximum and the minimum distance of the

image curve of the circle \z\ = r from the image point of the center z = 0 for

a sufficiently small positive number r (A. Mori [5]).

From this, T is totally differentiable almost everywhere in R (A. Mori [5]).

At the point z where T is totally differentiable, we get

dT -2/(
dz 'dT

r-*0

- lim

^ lim

T(z + reιυί)
r

Wz + re**)
r

\T(z + re^)
"\T(z + reiQ~)

Mir)im(r) •-

- T(z)

- T(z)

- T(z)\
-T(z)\

=: erJ\

where ^ and ^_ are formal complex derivatives. For suitably chosen 0X

and 02, we get

dT
dz
dT
dz

dT
dz
dT

• d?
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or

dT ^ . e*κ

Then T is a homeomorphic solution of the Bertrami equation

where μ = -^=- / -^— Thus T is quasi-conformal in the sense of Pfϊuger-
σz I oZ

Ahlfors (Bers [2]).

Using this characterization of quasi-conformality, we get

LEMMA 3.4. T in Lemma 3. 2 is a quasi-conf ormal mapping.

Proof. Let 3 = (Co, Ci) be an annulus in R and let Ω = (Co, Ci) be the

image of Ω by T. We suppose that 3 and i2 are contained in rectangular

domains in R and Λ* respectively.

Let u be harmonic in 3 and be identically equal to 1 inside Ci and to 0

outside Co and, further, be continuous on R. We also consider the similar

function u for Ω. Then u and u are harmonic measures of Ω and Ω when

they are restricted on Ω and Ω respectively. From (3.6), we have

(3. 8) 2 τr(mod. Ω)'1 = Dίul and 2 τr(mod. β ) " 1 = D M .

For the function ψu in M(R!), we can select a sequence {vn} such that

' and

(3.9) lim \\vn - ψu\\ = 0.

This follows from Theorem 1. In particular, from (3.9),

(3.10) lim Dίvnl = Dίψϊll

Let un be identical with vn outside Ω and with the harmonic function in-

side Ω defined by the boundary value vn on Co and Ci. Then, by Dirichlet

principle, we get

(3.11) Din«] * DίvJ.

By (3.9), it holds that u(P) = ?>ϊ*(P) = lim vn(P) = lim «»(P) on A U C i .

So we have

(3.12) ^ u(P) = lim f̂ wΛ(P), ? u(P) = lim f̂ »n(P)
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inside Ω by Harnack's theorem. This holds also outside Ω almost everywhere

by selecting subsequence, if necessary.

Moreover, we get

(3.13) j D M ^ H m Dίunl
Λ-»αo

In fact,

by (3.12) and by Fatou's lemma. Noticing Lemma 3.1, we have

(3.14) Dί<ful^K Dίϊil

Using (3.13), (3.11), (3.10) and (3.14), we see that

= lim Dίvnl = DCf M]

^ K Dίill

From this and (3.8), we have

mod.Ω ^ K mod.i}.

By Lemma 3.3, we can see that T is quasi-conformal. q.e.d.

3.3. By Lemma 3.2 and Lemma 3.4, we obtain the following

THEOREM 3. If Roy den* s rings M(R) and M(Rf) of Riemann surfaces R

and Rf are normally isomorphic by the correspondence ψ, then there exists a

unique homeomorphism Γ* between the Roydeήs compactifications /?* and /?*

of R and R' satisfying

(i) T*R = R\ T*Ii(R) = lAR) (ι = 1,2)

and

(ii) T is a quasi-conformal mapping of R onto R' such that

Ψ = f τ>
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ivhere MR) and MR) are harmonic and non-harmonic ideal boundary of R and

T is the restriction of T* on R and ψτ is the induced isomorphism of T.

By Theorems 2 and 3, we can say that

THEOREM 4. Two Riemann surfaces are quasi-conformally equivalent if

and only if their Royderis rings are normally isomorphic.

4. Correspondence between ideal boundaries

by quasi-conformal mappings

4.1. Let T be a quasi-conformal mapping of R onto Rf. Then <fτ is a

normal isomorphism of M(R) onto M{R') by Theorem 2. Using Theorem 3,

we can find a unique homeomorphism Γ* of R* onto R1* such that T* = T on

R and T* carries MR) and MR) onto MR') and MRf) respectively.

Thus we get the following

THEOREM 5. For a quasiconformal mapping T of R onto R\ there exists

a unique homeomorphism T* of the Royderis compactiftcation R* of R onto the

Royderis compactification 2P* of R! such that

(i) T* = Γ on R

and

(ii) T*MR) =IΛR') ( ί = 1,2),

where Iι(R) and MR) (or MRf) and MR1)) are the harmonic and the non-

harmonic ideal boundary of R(or R') respectively.

As a direct consequence of Theorem 5, we get the following

THEOREM 6. The properties on Riemann surfaces, depending only on

(a) the set theoretical structure1^ of the harmonic ideal boundary

or

(b) the topological structure of the harmonic ideal boundary, are preserved

by the quasi-conformal mapping.

As an example, we state a property on Riemann surfaces depending only

on (a) or (b).

10> I.e. the cardinal number.
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4.2. As usual, we denote by OG the class of Riemann surfaces without

Green's function and by OHD the class of Riemann surfaces on which no non-

constant harmonic function with the finite Dirichlet integral exists.

The OG(or OHD)-property depends only on the cardinal number of the

harmonic ideal boundary, for we have the following simple lemma (cf. Royden

[10], S. Mori Cβ]).

LEMMA 4.1. Let R be a Riemann surface.

(i) R belongs to the class OG if and only if Iι(R) is empty.

(ii) R belongs to the class OHD — OG if and only if IiiR) consists of only

one point.

Proof. Royden [8] has given a characterization of the class OG as follows

using our notation,

R belongs to OG if and only if 1 belongs to MAR).

The fact l^Mι(R) means that there exists no character vanishing on MάR),

or I\(R) is empty, which proves (i).

By Lemma 1.6, R belongs to OHD - OG if and only if

M{R) = C®MX{R).

In this case, M(R)IMAR) = C. This shows that the character vanishing on

Mι(R) is only the canonical homeomorphism of M(R) onto M(R)/MAR). Hence

Iι(R) is one point, which proves (ii). q.e.d.

By Theorem β and Lemma 4.1, a quasi-con/ormal mapping preserves the

class OG and the class OHD - OG, which gives an alternating proof of a

theorem of Pfluger [8] and Royden [11] on the invariance of the classes OG

and OHD by the quasi-conformal mappings.

4.3. Next we state a property on Riemann surfaces depending only on

the topological structure of the harmonic ideal boundaries.

Let 9Ϊ be a class of some real-valued functions on an abstract space 9i.

A non-negative and non-zero function /(P) in 5Ϊ is called ?ninimal in 5ί if for

any g in Ώ satisfying

f(P) ^g(P) ^0 ( P e S )

we can find a non-negative real number cg such that

g(P) = Cgf(P)
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We denote by M^ the class of Riemann surfaces, on each of which there

exists a minimal function in the class 5ϊ of some real-valued functions. We

also denote by HBD* the completion of HBD in the uniform-topology. Hence

HBD* is a class of harmonic functions on a Riemann surface R which is

continuous on R*. Here we treat only MHBD** Clearly we have MΠBD*

D On* - OG.

LEMMA 4.2. Let 91 be a compact Hausdorff space. The continuous

function space C(9ί) contains a minimal function if and only if 91 contains an

isolated point.

A minimal function in C(91) is a characteristic function of an isolated

point in 91.

Proof. Suppose Po is an isolated point in 91. Then the function e{Pt Po)

defined by

j 1 on Po

* 0 on 91 - Po

is a continuous function and minimal in C(91).

Conversely, suppose that g(P) is minimal in C19J). We can find a point

Po in 91 such that giP0) = 2 p > 0. Let Pi(=* Po) be a point in 91. We can

find a neighbourhood U of Po such that Pi φ U and g(P) > p in U. Choose a

function /(P) in C(9ί) such that/(P0) - p, f(P) = 0(Pe91 - U) and 0^/(P) £p.

Then 0#=/(P) £g(P) (Pe9ί) and /(Po) = 1/2 g(P0). Hence, by the minimality

of g, we have 2/(P) = g(P). In particular, we have g(Pι) = 2/(Λ) = 0.

Thus £(P) =0 except P = Po, or g(P) = e(P, Po). Thus Po is an isolated

point in 91. q.e.d.

LEMMA 4.3. A Riemann surface R belongs to the class MHBD* if and only

if the harmonic ideal boundary IΛR) of R contains at least one isolated point

with respect to L{R).

Proof. Suppose there is given a continuous function g{X) on IΛR). It

is extended continuously to whole /?*. We denote it again g(7). Then g(7J

is approximated uniformly by the sequence {gn(7)} in M{R). Then the

harmonic part (cί. Lemma 1.6) un(7.) of gn(7) converges uniformly to a function

u in HBD*. Clearly u(Z) =g(Z) (Ze IΛR)). Such u is determined uniquely
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by the distribution g('/) on I\{R), for functions in HBD takes its minimum

and maximum on MR) (cf. S. Mori and M. Ota [7]). Thus HBD* is iso-

metrically C-module isomorphic to the continuous function space CilΛR))

preserving the positiveness. Hence HBD* contains minimal function if and

only if C(IΛR)) does so. Thus we get our assertion from Lemma 4.2. q.e.d.

By Theorem 6 and Lemma 4.3, a quasi-con formal mapping preserves the

class MHBD*.

REMARK. We state an interesting problem being still open: Can we

conclude that two Riemann surfaces are quasi-conformally equivalent when

their Royden's compactifications are homeomorphic in such a way as the

harmonic and non-harmonic ideal boundaries correspond each other?
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