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Introduction

Burkill (1957) introduced extended Riemann-Stieltjes integrals of the form
fa f(x)dkg(x)/dxk ' to provide an alternative approach to the theory of
distributions. We will denote Burkill's integral by {B)f<lf(x)dkg{x)ldxk~x

Burkill's paper (1957) partially motivated the study of the Riemann-Stieltjes
integral fb

af(x)d2g(x)ldu(x) in Russell (1970). He showed that the two integrals
are not equivalent.

In order to define integrals of the form f*f{x)dkg(x)ldxk~' when k § 2, it
was necessary to define and develop the concept of bounded k'h variation. This

has been done in Russell (1973) using kth divide differences, and, as indicated in
that paper, we now proceed to define, and obtain properties of-
fbf(x)dkg(x)ldxk'.

1. Notation and Preliminaries

Unless otherwise stated, undefined terms and notation will be found in
Russell (1973).

It will be assumed throughout that k is a positive integer greater than 1.
In Russell (1973) we introduced the concept of total k'h variation of a

function in a closed interval. If we call that variation inner variation, then we
now define a related variation which we describe as outer variation.

DEFINITION 1. Let k be any positive integer greater than 1. Then we will

denote by F(x t+ , , • • -,xn+k-,) a subdivision of the closed interval [a,b] of the

form

a' g j c - i + i < • • • < J C < > = a < x , < • • • <xn = b < • • • x n + t - , ^ b ' .

Throughout the paper it will be understood that a' < a < b < b'.ln addition we
point out at this stage that a F subdivision, as opposed to a v subdivision of
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432 A. M. Russell [2]

[a,b] (see Russell (1973)), requires a fixed number 2k-2 of points outside
[a,b].

DEFINITION 2. The total outer k'h variation of g on [a,b] is defined by

Wk(g; a, b, a',b') = sup § (jci+k - Jc,-)|<?*(g; * , • • -,x.-*fc)|.
T i - -k + I

We will usually use an abbreviated notation Wk(g; a',b') for this variation. If
Wk(g; a',fc')<oc we say that g is of bounded /cth variation on [a,b], and write
g G JBJV* [a ' ,&'] . The summations over which the supremum is taken are called
approximating sums of Wk(g; a',b').

LEMMA 1. // /G BVk[a',b'], then f G BWk[a',b'], and

Wk(f;a',b')SVk(f;a',b').

The proof of this lemma is easy, and will be omitted.

LEMMA 2. The inclusion, in (a,b), of extra points of subdivision to an
existing F subdivision of [a, b], does not decrease the approximating sums for
Wk(g;a',b').

A similar proof to that of Russell (1973; Theorem 3) applies, so we omit
details.

LEMMA 3. / / / G BVk[a,b], and

F(x)=( f(t)dt, a<c<b, a^x^b.

then FGBVk + l[a,b].

PROOF. Since fEBVk[a,b], it follows from Russell (1973; Theorem 19)
that f - u - v, where u and v are 0,1,2, • • •, k-convex, and have right and left
(k - l)'h Riemann * derivatives at a and b, respectively. It now follows from
Russell (1973; Theorem 13) that F can be expressed in the form F = U - V,
where U and V are 0,1,2, • • -,(k + l)-convex in [a, b]. Using an argument
similar to that in the proof of Russell (1973; Theorem 19) establishes that U and
V have right and left k'h Riemann * derivatives at a and b respectively.
Consequently F G BVk + l[a,b].

2. Definition and Linearity Properties of the Integral

D E F I N I T I O N 3 . Let Y(x~k + i, • • •, x n + k ,) beany subdivision of [a, b]. We call

max (Xi -* ; - , )
i - - t + 2 . • • • . n + k - l

the norm of the subdivision F, and denote it by
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[3] Stieltjes-type integrals 433

DEFINITION 4. The integral fh
af(x)dkg(x)ldxk~' is the real number I, if it

exists uniquely and if for each e > 0 there is a real number 5(e) such that when
X: S £ i i xi+k, i = - k + 1, • • •, n - 1,

,(g;xi + u---,xi+k)-Qk-,(g;Xj,---,Xi+k-,)] <e

whenever | | r | | < 5 ( e ) .

If the integral exists we will write (j,g) £ RSk[a,b], and we will refer to the
integral as an RSk integral. We remark that when the integral exists, its value is
independent of a' and b'.

The proofs of the following two theorems will not be given.

THEOREM 1. If (f,g)GRSk[a,b], i = 1,2, •••,n, and A,, A2, • • •, An are real
numbers, then (SI1-, \Ji,g)eRSk[a,b], and

THEOREM 2. / / (/ ,&) £ RSk[a, b], i = 1,2, •• - ,n , and fi,, /n2, • • -,/xn are rea/

numbers, then (/,2,"., fiigt)E RSk[a,b], and

THEOREM 3. Le/ ( / , g )£ /?5 t [ a , c] and RSk[c,b], where a < c < b. If f is
continuous and g has right and left (k - l)'h Riemann * derivatives at c, with g
having bounded (k - l)'h divided differences in some neighbourhood of c, then
(f,g)ERSh[a,b], and

PROOF. We consider a subdivision F(x-k + l, • • -,xn+k_,) of [a, b], and sup-

pose that JCP ,<c<xp, I g p S n . Since g has bounded (k - l)lh divided

differences in some neighbourhood of c, we can choose a 5 > 0 such that g has

bounded (/c — l)th divided differences in the interval [c —8,c +8]. We now

confine our discussion to F subdivisions for which (xp+k-, — xp~k)<8. Let

S(a,b), S(a,c) and S(c,b) denote the approximating sums of

respectively.
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434 A. M. Russell [4]

We re-label the points *_»+,, • •-,;tp-i,c\JCp, • •-,;c,+k-i as

y - * + ! , - • - , y o = a , •• - , y n + l = b , - - - , y n + k , w h e r e

y, = Xi, i = - k + 1, • • •, p - 1

yP = c , a n d

y, = Xi-i, i = p + 1, • • •, n + k.

If w e d e f i n e y, S T/f g y i + t , i = p - k,- -,p, t h e n

(1)

/(ft)

2
i=p-k+!

(2) =S(a,c)

where R consists of the last three summation terms of (1).
Hence,

2
i =p-fc

P-I

s-tp-t ,--- ,^-,)- 2 [/(i7.--i)-/(T?.-)]Qk-i(g;y/,---,yi+k-i)
i=p-fc+!

; yP, • • • , y P + * - i )

p

- 2
i=p-fc+2
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[5] Stieltjes-type integrals 435

and after further re-arrangement, R becomes

(3) 5

-2 §
i =p-k+2

yP -*,---,yP->

, ) Q / t - r ( g ; y p , • • - , y P + t - i ) .

Consequently, using the continuity of / at c, the boundedness of the (k - l)lh

divided differences in [c - S, c +8], and the existence of the right and left
(k - l)th Reimann * derivatives at c, we conclude from (3) that R has limit

as

approaches zero. The required result now follows.

COROLLARY. Let (f,g)&RSk [a,c] and RSk [c,b], where a < c < b. If f is
continuous and g has a {k - l)'h Riemann * derivative at c, then

<J,g)GRSk[a,b],
and

3. Existence Theorems

We establish the first existence theorem for a slightly modified form of the
RSk integral, defined as follows:

DEFINITION 5. // in Definition 4 we impose the restrictions

£-k + i = • • • = £-i = a and i;n~k+\ = • • • = £„_, = b,

then we denote the corresponding integral by (M) fZf(x)dkg(x)/dxk~\ and
speak of an MRSk integral.

It is now necessary to point out that when k = 2 there is a conflict of
notation with an integral of Russell (1970). Since the present paper generalises
that work the conflict can be conveniently resolved by replacing the "MRS2" by
"M*RS2".
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436 A. M. Russell [6]

It is immediately clear that if (f,g)G RSk[a,b], then (f,g)G MRSk[a,b],
but we point out later that the converse is not necessarily true. The linearity
properties of the RSk integral are easily seen to apply to the modified integral,
and we make use of them wherever necessary.

The following lemma is required for the first existence theorem.

L E M M A 4 . Let f be continuous and g k-convex in [a',b']. If
F(x-k + i, • • -, Xn+k-i) is any subdivision of [a, b], define for i = - k + 1, • • • , « - 1

Mi = s u p f(x) and mf = inf f(x),

S = ^ Mi[Qk-,(g;Xi + ,,---,Xi+i<)-Qk-i(.g;Xi,---,Xi+k-i)],

i=-k + l

and

s= 2 milQk-,(g;Xi+i,---,xi+k)-Qk-i(g;xl,---,Xi-,k~i)].

// the upper and lower approximating sums S and s become S' and s'
respectively on the addition of an extra subdivision point to F, the extra point
belonging to (a,b), then S' S S and s' g s.

PROOF. We now suppose that the extra point of subdivision is inserted in
the sub-interval (JCS ,,XS), S = 1,2, • • •, n. Denote the extra point of subdivision
by ys, and denote the points of the new subdivision F so formed by y,, where

r x>, i= -k + i,---,s-\
U + , , J =s + l,---,n+k-V

(4)

We then define

M'= iu«P -f(y)'
and

m'i= inf / (y) when i = -k + 1, • -,n + k.

We now obtain the following inequalities:

Mi = ivf'i, i = — k + 1, • • -,s — k — 1,

Mi & | ' , / = s - / c , - • - , s - 1,

We deduce the following inequali t ies:
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[7] Stieltjes-type integrals 437

A f ' , = M , i= -k + ] , • • • , s - f c - l ,

MU § M.-k,

' " " ( = 5 - Ac + 1 , - - -,^ - 1 ,

Ml-g Afs_,,

M ; = M^,, i = s + 1, •••, n.

Corresponding inequalities can be obtained for m, and m \ by replacing " M " by
" w " , and reversing the inequality signs. We now prove that S' g 5.

Writing Q(xi+I,- • \xi+k) for Qk-,(g; jti+1, • • -,jc,+k), we have

S-S'= 2

(5)

xs^,, • • •,xs+k-2)]

We now use (4) and apply Russell (1973; Theorem 1) to the first term of (5)
to give

= M-k+,[a-k+sQ(y-k+s+,,- • -,ys

-k+s+1, • • •, ys}]

since a-k+s +/3_t + , = 1.
In a similar way, the third term of (5) can be written in the form

. + i , • • •, y.+*) -

( ? ) + as 2{Q(ys, • • •, y.+*_,) -

where a,-2 + j3s-2 = 1.
The general term of the summation
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438 A. M. Russell

in (5) can be written in the form

y ' +
since

» - , +£,•-, = <*, + /3, = 1.

Substituting (6), (7) and (8) in (5), and re-arranging terms gives

S-S' = (M-k+s - Af :*+,){Q(y_t+,+1, • • •, y.) - <?(y-»+., • • •, y.-.)}
(9)

+ (Af.-, -Af',) {Q(y,+I, • • • , y , + t ) - Q(y» • • • ,*•*-•)}•

Each term of (9) enclosed by curly brackets is non-negative because / is
^-convex. Since M k+, ^ M'-k+s and Ms-i S Mi, the first and last terms of (9)
are non-negative. Furthermore, since a, + /J = 1, and M, g M!+, and Mi+t S
A/: + , when i = - fc + s, • • •, s - 2, it follows that /3,M, + aiMi+, g M'i t l . Conse-
quently all terms of (9) are non-negative, and so we have shown that

(10) 5'S5.

If we replace " M " by "m " and reverse the inequality signs, a similar argument
will prove that

(11) s'Ss.

This completes the proof.
Suppose now that F and G are defined only on [a,b], and that G has right

and left (k - l)'h Riemann * derivatives Di 'G(a) and D"~lG(b). Then clearly
there exists an extension / of F to [a,', b'] such that / is continuous in [a', b'].
For example, define / (x) = F(a),x S a and /(JC) = F(b), JC g fc. Furthermore,
there exists a function g which agrees with G on [a, b] , is a polynomial when
JC § b and JC g a, and has (fc - l)lh Riemann * derivatives at a and b. We omit
the proof. If extensions / and g are obtained in this way we say that they
satisfy Condition A.

THEOREM 4. Let F be continuous and G k-convex in [a,b]. Then there exist
extensions f and g of F and G, respectively, to [a',b'] such that

(f,g)(EMRSk[a,b].
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PROOF. Let / and g satisfy Condition A. We consider any
F(x-k+i,- • -,xn+k-i) subdivision of [a,b], and make the following definitions:

M_,= sup /(x),

m-,= inf f{x),

M, = sup fix),

m, = _mf fix), i=0,\,---,n-k,

M n k + I = sup fix),

mn-k+< = x ^ mf̂  ^ / (* ) ,

and

n-k

+ Mn_t+l{Qt_,(g; xn, • • •, jc+k-,) - Qk-i(g; xn-k+1, • • -,xn)}, and

let s be the expression obtained from S by replacing "M" by "m ". Finally, we
define

U = inf S and L = sup s.

Let S and s become S' and s' on the addition of an extra subdivision point to
T. It follows immediately from Lemma 4 that if the extra subdivision point
belongs to ia,b), then 5 ' ^ 5 and s' g s. If the extra subdivision point belongs
to either [a1,a) or ib,b'], it follows readily that S"= S and s' = s. Thus in all
cases we have

(12) S'^S, and s'zls.

Let F, and F2 be any two subdivisions of [a, b], and let F, be a subdivision
obtained by combining F, and F2, all points of F, and F2 in [a, b] being included.
If the upper and lower approximating sums corresponding to F, are denoted,
respectively, by S* and st, i = 1,2,3, then it follows from (12) that

Similarly 52 = S,, and so we conclude that L S U.
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Since / is continuous in [a',b'] it is uniformly continuous there, so, given
e > 0 , there exists S(e) such that for each i,

Mi-m, <jj whenever | | r | | < 5 ( e ) ,

M being an upperbound for the non-negative sum

S {<?*-•(£; x,+l, • • -,xi+k)- Qk-,(g; JC,, • • •,xi+t-,)}

= ( ? k - , ( g ; xn, • • - , x n + k - i ) - Q k - i ( g ; x _ k + i , • • • , * , , ) ;

and the upper bound exists since D+ 'g(x) and Dk'g(x) exist for all x in

(a',*>') by Bullen (1971; Theorem 7(b)). Hence

OSU-L^S-s = 2 ( M -m,- ) [Qk-i(g;x i + 1 , - - - ,Xi+k)

Therefore , since e > 0 is arbitrary, U = L = / , say. Consequently if

£-k-n = £-k+2= ••• = £-i = a, * , - ^ £ gJCi+k, / = 0 , l , - - - , n - f c , and

it follows that

n - l

i = - k + l

whenever | |r | |< 8(e). This completes the proof.

REMARK. The necessity of introducing the interval [a',b'] in association
with the interval [a, b] arose from determinations of the behaviour of 5 and s
on the addition of extra subdivision points. An example is given in Russell
(1970) of the difficulties arising when IT, and not I\ subdivisions of [a, b] are
used.

We now relax the restrictions imposed upon / and g in the intervals [a', a ]
and [b,b'], and also obtain existence theorems for the RSk integral.

THEOREM 5. Let f be continuous on [a',b']. If g is k-convex in [a',b'\,

then (f,g)EMRSk[a,b].

The proof is straightforward and will be omitted..

THEOREM 6. / / / is contiguous on [a',b'], and g E BVk[a',b'], then
(f,g)<EMRSk[a,b].

PROOF. The proof follows from Theorem 18 of Russell (1973), Theorem 5,
and Theorem 2.
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THEOREM 7. // / is continuous and g £ BVk[a',b'], then ( / ,g)e RSk[a,b],
and

The proof is straightforward and will be omitted.

We have obtained an existence theorem for the RSk integral when / and g
are defined on [a',b']. If F and G are only defined on [a,b], F being
continuous and G of bounded k'h variation, then it is clear from the previous
discussions that extensions / and g of F and G, respectively, exist such that
(f,g.)E.RSk[a,b], We now state two theorems, without proof, which show
effectively that the existence of the RSk integral is determined by the behaviour
of / and g in [a,b] and at the end points a and b, and is otherwise independent
of the extensions used.

THEOREM 8. Let f, and f2 be two functions that are continuous at a and b,
and, in addition, are continuous and equal on [a,b]. If g G BVk[a',b'], then
{fug) and (f2,g) belong to RSk[a,b], and

THEOREM 9. Let f be continuous on [a1, b'], and let g,, and g2 belong to
BVk[a,b]. If, in addition, gt(x) = g2(x), a s j g fe, and g, and g2 have (k - I)"1

Riemann * derivatives at a and b, then (/,gi) and (f,g2) belong to RSk[a,b],
and

dkg2{x)
dxk" •

If in Definition 4 we consider only IT subdivisions of [a,b], so that We
necessarily consider only functions / and g defined on [a, b], then we obtain an
RSH integral,

1" td"g(x)

We now present existence theorems for this integral.

THEOREM 10. // (f,g)eRSk[a,b], and g has (k - l)Ih Riemann * deriva-
tives at a and b, then (f,g)ERSt[a,b], and
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The proof is straightforward and will be omitted.

THEOREM 11. If f is continuous on [a,b], and g GBVk[a,b], then
(J,g)GRSt[a,b].

PROOF. Since g &BVk[a,b], it follows from Russell (1973; Theorem 19)
that g has right and left (k - l)th Riemann * derivatives at a and b respectively,
and so there extensions F and G satisfying Condition A and such
that F is continuous and G is of bounded kth variation in [a',b']. Thus
(F,G)GRSk[a,b] , and the required result now follows from Theorem 10.

We conclude this section by giving an example which shows that the
existence of the MRSk integral does not imply the existence of the RSk integral.
Let k=2, a = 0 and b = 1. If f(x) = 0 when x ^ 0, /(0) = 1, and g is any
function for which g'-a) and g+(<1) exist and are unequal, then

does not exist, whereas

does exist, and equals g'+ai — g'Ja).

4. Related Integrals.

We now discuss further useful modifications of the RSk integral. These
modifications will be obtained by giving £, in Definition 4, a specific value in the
sub-interval [xhxi+k], and also by restricting our subdivisions so that all
sub-intervals are of equal length. In Russell (1970) examples of modified
integrals are given, one of which exhibits properties of Dirac's delta function.

If in Definition 4 we put £ = x,, we call the corresponding integral the
M»RSk integral.

Again, if in Definition 4 we consider only F subdivisions in which all
sub-intervals (x, - x , ,) are of equal length, and put £ = xi+k, then we call the
corresponding integral the MkRSk integral. This integral will be useful in the
context of integration by parts.

We conclude this section by showing that ( / ,g)E MnRSk[a,b] when / is
quasi-continuous and g is of bounded k'h variation on [a',b']. We define step
functions and quasi-continuous functions that are anchored at a as in Webb
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(1967). We must now define the following extensions of the unit step functions 
L, and R, of Webb (1967): 

rL (x) = 0, a' S x < c 

= 1, c S x S b', and 

/, (x) = 0, a' g JC g c 

= l ,c <x Sfc'. 

THEOREM 12. If k ^2 and g & BVk[a',b'], then 

and 

exist and equal 

Dt 'g(b)-Dt'g(c) 
(k - 1)! 

The proof is straightforward and will be omitted. 

THEOREM 13. If F is a step function on [a,b], and g G BVk[a',b'], then 
there exists an extension f of F such that (f,g)E.M,,RSk[a,b]. 

Again the proof is straightforward and will be omitted. 

THEOREM 14. If F is a quasi-continuous function anchored at a, and 
g G BVk [a', b'], then there is an extension f of F such that 

(M.) 

exists. 

PROOF. Since F is quasi-continuous on [a,b], there exists a sequence {F„} 
of step functions which converges uniformly to F. We extend each step 
function F„ by defining 

/ 0 , x 

/„(*)= \ F„(x),a g r s i , 

V F„(b),x > b. 

Then the sequence {/„} converges uniformly to, say, / on [a',b']. Then, using 
Theorem 13 we obtain 

https://doi.org/10.1017/S1446788700016153 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016153


444 A. M. Russell [14]

(Mo) / . ( * > ^

^\\U-fn\\Wk(g;a',b'), where

||/m-/n| |= sup \fm(x)-fn(x)\.

Hence

is a Cauchy sequence of real numbers, so let its limit be I.
Let e > 0 be given. Then there is a positive integer n such that

3'(13)

and

(14)

Since (/„,#)€= M0RSk[a,b], there exists S(e) such that whenever | |r | |< 5(e),

(15)

where S(T,fn,g) is an approximating sum for

(Mo)

Consequently, if S(T,f,g) is an approximating sum for the M0RSk integral, and
| |r | |<S(e), then using (13), (14) and (15) we obtain

\I-S(r,f,g)\<e,

and this completes the proof.

5. Integration by Parts

In order to obtain an integration by parts result we will need to introduce
Hellinger-type integrals. The simplest integration by parts result is given in
Russell (1970) for the case k = 2. For larger values of k it appears to be
convenient to work with sub-intervals of equal length.

In order to define our Hellinger-type integrals we make use of the operator
Aj, where
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l f(x + h)-f(x), and

DEFINITION 6. Let e > 0 be arbitrary and let s be a fixed positive integer
t such that 1 Ss Sk - 1. Then
i

L dfixJx
d^1

is the real number I, if it exists uniquely and there is a real number 8(e) such
that

<e

whenever | | rh | |<S(e).
We retain the factorial terms in our definition as a consequence of the

result.

O <f- v . . . v i A ^

when all sub-intervals are of equal length h.

THEOREM 15. Let (f,g)<E RSk[a,b]. IfDk^2g(a), Dt'2g{b), D^"2/(a) and
Dk2f(b) exist, and 1 ^ s S fe - 1, then

f" d°f(x)sksg(x) . t ,
— , k-, • exists and

)a dxk

M« ft, ,d"sM (~ D'^ ~ ' ) ' (fc ~ *>! V dsf(x)dk*g(x)

PROOF. We consider any Th subdivision of [a, b] in which all sub-intervals
are of equal length h. Denote the corresponding approximating sum of the RSt

integral by S(r\,/ ,g). Since (f,g)GRSk[a,b], we can choose & = xl+k-s,
i = - k + 1, • • •, n - 1. Then, writing A" instead of AE, and using the property

we are able to show that

hk\k-iy.S(rh,f,g)

(17) =(-1)* "If' A7(jcl+*-,)A*-'g(*+.)
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Dividing (17) by hk\k - 1)!, noting that the existence of a (k - 2)lh Riemann *
derivative implies the existence oi a. {k — s — 2)'h Riemann * derivative when
s = 1,2, • --,k -2, and letting | |r| | approach zero, establishes the required
result.

THEOREM 16. Let (f,g)(ERSk[a,b]. IfDk'g(a), Dt'g(b), D" 'f(a) and

Dk'f(b) exist, then

exists, and

(18)
2 mg(a)].

PROOF. The proof is similar to that for Theorem 15, and will be omitted.

REMARK. If in addition to the hypothesis of Theorem 16 we know that
(g,f)BRSk[a, b], then the MkRSk integral in (18) can be replaced by the RSk

integral.

6. Reduction of the RSk Integral

THEOREM 17. Let f be a step-function on [a,b], and let g £ BVk ,[a',b'].

If G(x) = G(a') + Jl g(t)dt, a'^xSb', then there is an extension F of f to

[a',b'] so that

(k -

PROOF. The case k = 2 appears in Russell (1970), so we assume that k g 3.
We first note that since g GBVk ,[a',b'], it follows from Lemma 3
that G(EBVk[a',b']. Then, as in Theorem 12, {rc,g)&M0RSk-,[a,b],
(rc,G)EM0RSk[a,b], and

and

(Mo) I rr(jt).^(*>-I>i-G(*)-Dj-G(c)r , , ) | /v<
dx1

Corresponding results apply for the extended unit step function /,.. It now
follows from Russell (1973; Theorem 18) and Bullen (1971; Theorem 7), that
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Dt'G(b) = (Gk-2)'+(b) = (gki)l(b) = Dk
+-2g(b).

Similarly, Dt 'G(c) = Dt 2g(c), and consequently

Similarly,

The required result now follows using the definition of a step-function.

THEOREM 18. Let f be anchored at a, continuous in [a',b'] and let

g<EBVk-\a',b'}. If

g(t)dt,

then

dxk 2 •

PROOF. We first observe that (f,g) and (/, G) belong to RSk ,[a, b] and
RSk[a, b] respectively. Let F be the restriction of/ to [a, b]. It is a well known
result that a sequence {Fn} of step functions can be obtained which converges
uniformly to F. As in Theorem 14 we define an extension /„ of Fn for each n.
Then the sequence {/„} converges uniformly to a function h on [a',b'], and h
will be continuous in [a',b']. From Theorem 13 we conclude that (/„, G)G
M0RSk [a,b], and ( / n ,g )e M()/?Sk-,[a,ft], and Theorem 17 tells us that

x) f
*} = (Mo)J /.

(*)-

for all values of n.
Since g and G belong to BVk~,[a',b'] and BV,t [a \b ' ] respectively, we let

n tend to infinity and obtain

Since (A, G) and (h,g) e RSx [a, fo] and /?St-i[a, fc] respectively, it follows that

and finally since h is continuous on [a',b'], agreeing with / on [a,b], we
employ Theorem 8 to show that
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