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Introduction

We have introduced in our former work [1] a theory of mathematical

objects which can be regarded as a prototype of set theory. We have been

successful to imbed the Zermelo set-theory [3] without the axiom of choice in

our system. However, it seems impossible to imbed the Fraenkel set-theory [4]

in our system even without the axiom of choice. In this work, we introduce

another system of object theory in which we can imbed the Fraenkel set-

theory without the axiom of choice. We shall denote our former system by OZ

(object theory in the manner of the Zermelo set-theory) and the new system

we are going to introduce in this work by OF (object theory in the manner of

the Fraenkel set-theory). We shall also denote the Zermelo set-theory without

the axiom of choice by SZ and the Fraenkel set-theory without the axiom of

choice by SF.

As for description of our theory, we illustrate some notions and leading

ideas properly important for OF in ordinary sentences to give vivid images of

them. Concerning proofs, our reasoning can be formulated in the so-called

classical predicate-logic of the first order, such as the logical system LK formu-

lated by Gentzen [61 As it is advisable to minimize careless mistakes in our

real deductions by formulating our theory in a formal system, we have formu-

lated our proofs in the way of describing formal deductions introduced in our

former work [2]. In the following, we denote our logical system, the

combination of the logic and our way of description, by PLK (practical system

of logic equivalent to Gentzen's LK). It should be also remarked here that

our system assumes existence of some objects. In fact, any proposition of the

form 3χ(%(x) -*^i(x)) is provable in LK. For the most part of theorems and

meta-theorems in this work, however, we indicate their logical basis only. We
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120 KATUZI ONO

give exact formal proofs described in PLK only for theorems and meta-theorems

properly important for OF.

Originally, we do not need any special term-symbols such as 0, {0}, ix, y),

fix), etc. All the symbols denoting objects can be taken as variables. For

convenience' sake, however, we introduce a special kind of term symbols in

the set theory described in Section (15), because we can show that there is

no danger of appearing new contradictions caused by introducing these term

symbols. (We do not give further any detailed proof of it in this work.)

Variables for objects in general are denoted by capital Latin letters. In Section

(11), however, we introduce set variables denoted by small Latin letters which

are used especially for sets.

Just as the system OZ, the new system OF is also an extremely simple

system. It has only one primitive notion "membership" (notation "<=") and

assumes only one axiom scheme. OF is a system closely related to SF in the

sense that the only one axiom scheme of OF resembles the axiom of replacement

of SF, just as OZ is closely related to SZ in the sense that the only axiom

scheme of OZ resembles the aussonderung axiom of SZ. OF is a system

stornger than OZ in the sense that we can imbed OZ in OF (See (14.6)1'.),

whereas it seems impossible to imbed OF in OZ. The main purpose of this

work is to introduce the system OF and to prove further that a theory of sets

equivalent to SF can be established in OF quite naturally.

Just as in OZ, we describe the axiom scheme of OF by making use of the

satellite notion. The satellite notion of OF is a modification of the satellite

notion of OZ, but we must admit that the definition of the latter seems slightly

simpler than that of the former. So, we can not say that OF is an improved

system of OZ. However, the imbedding process of SZ as well as of SF in OF

is much simpler than that of SZ in OZ. Moreover, the Fraenkel set-theory

looks like a better ground than the Zermelo set-theory to construct mathematical

theories in it. So we believe that it is an important problem to seek for a

theory as simple as possible in which we can construct the Fraenkel set-theory.

Our new system OF is a trial system intended to be a basic system of this

kind. In this work too, we discuss nothing concerning the axiom of choice,

J) In the numbering of the forms (a) and (a, b) in this work, a and b denote the
numbers of a section and a paragraph respectively.
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A STRONGER SYSTEM OF OBJECT THEORY 121

but it may be possible to prove consistency of the axiom by following GodeΓs

proof, [5].

OF has the only one primitive notion "membership", naturally a binary

relation denoted by " e ". In OZ, we have succeded to establish a set theory

equivalent to SZ by restricting our object field to producible objects (See OZ-

(3.2.1)2) and OZ-(5.2.1) together with OZΛ2.2Λ) and 0Z-13.1.D.) and at the

same time by defining membership " e " in terms of proto-membership €, the

only one primitive notion of OZ. (See 0Z-U.9.1) together with OZ-(4 6.1).)

To imbed SF in OF, we have also to restrict our object field to sets (defined

in (11.1)), but it is not necessary to modify our primitive notion membership

G any more. We can really develop a set theory in OF in a simpler way

than in OZ because of this situation. Anyway, membership e of OF corresponds

to proto-membership € of OZ.

In developing the two systems of our object theories OZ and OF, essential

difference lies in the notion of unit objects. In OZ, unit objects are defined in

connection with identity s of OZ, while in OF, unit objects are defined in

connection with equality = of OF which is defined a s l = Y^VS(S£ΞX= SΪΞ Y)3)

and consequently which corresponds to pro to-equality s of OZ. (See (2.1),

OZ (1.2. 3 >, OZ-d.2.5), and OZ ( 1.43).) However, it should be noticed here

also that these notions coincide if they are properly interpreted in set theories

such as the system SF.

In OF too, the notion of satellites is essentially important. Also the satellite

notion of OF coincides with the satellite notion of OZ, if they are properly

interpreted in SF. However, they show an apparent difference in development

of our object theories by the difference between the unit-object notions of the

two systems or, in other words, by the difference between identity of OZ and

equality of OF.

In describing OF, we employ further two kinds of meta-symbols for denoting

conditions and relations. First kind of such symbols are special symbols such

as = used for abbreviations of long expressions. Examples of notations

21 T h e numberings of the forms OZ-(a)y OZΊa, b), and OZ-(a, b, c) denote (a\ (a, b),

and (a, b, c) of our former work [1], respectively.
3> Any formula of the form 21^23 is read "21 is defined by 23", which means that the

notation S2ί s tands for the proposition S3.
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122 KATUZI ONO

expressed by symbols of this kind are X= Y, I c y , X0Yf χaγ, 0(X), a{X),

etc. I c y means VS(Se 3Γ->Se Y) and 0(X) means VS-S&X respectively.

(See Definitions (2.15) and (6.1).) Symbols such as 0 and a are used for

denoting conditions on a single variable as well as for denoting binary

relations. For example, 0{X) is expressed also as X0Y when the condition

0(X) is regarded as a binary relation. (See Definition (6.1).) Usually, the

condition and the binary relation denoted by a common symbol are closely

related to each other. Let us take up now another example σ. Just as in

OZ, we define also in OF the condition σ(P) at first and define the relation

XaY thereafter by making use of the notation σ(P). (See OZ-(1.1. 3), (1.4),

and (1.5.).) The conditions and relations denoted by these special symbols can

be of course defined in terms of membership e , the only primitive notion of

OF.

Another kind of meta-symbols are used for denoting forms of formulas.

For this purpose, we use capital German letters together with capital Greek

letters which are used especially for binary relations. For example,

(A)

is a proposition scheme corresponding to the aussonderung axiom, and

(B) VXYZ5)(XΓZ/\YΓZ- ~>X= Y)->3PVX(X<=P=3Z(XΓZ/\ZeΞM))

is a propoistion scheme corresponding to the axiom of replacement.

As we express the forms of propositions mostly by symbols for binary

relations of this kind, it looks convenient to introduce here some combinations

and operations of binary relations.

Together with the relation products of binary relations (See OZ-(1.1.1).),

we use the logical combinations of the forms Γ<}Δ of 7' and J, which are

defined by X(Γζ>Λ)Y^ 'XIΎOXΛY, where O stands for any one of Λ, V,

-*, and = . Similarly, we can define the negation -?Γ and the inverse relation

Γ (or Γ'1) of Γ in a natural way. Notations such as Φ, ^ , 3 , 2 , etc. can

be also used if adequate. By the way, we use also expressions such as

4) In describing axioms and theorems, we usually omit universal quantifiers of a
formula standing at its top and having the whole formula as their scope.

δ> Quantifiers of the forms \/X Z and 3X Z naturally stand for vX \/Z and
3X' 3Z respectively.
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A STRONGER SYSTEM OF OBJECT THEORY 123

XΓYΔZ, XΓYΔZΘW, etc. in case of need, which naturally stand for XΓYΛ YΔZy

XΓY/\YΔZ/\ZΘWy etc., respectively. Naturally, the relation product is as-

sociative in the sense that any relation of the form (ΓΔ)Θ is equivalent6' to

Γ(dΘ). Accordingly, we usually omit parentheses denoting the order of

multiplications. Moreover, the relation product is monotone in the sense that

the relation ΓΔ implies7) the relation ΘΛ if Γ and Δ imply © and A respectively.

So, any relation of the form Γ(Δ/\Θ) implies ΓΔ as well as ΓΘ, and any

relation of the from (Γ/\Δ)Θ implies ΓΘ as well as Δ Θ. Also, the relation

product is distributive over the combination V in the sense that any relation

of the form Γ(JVΘ) is equivalent to ΓΔM ΓΘ and any relation of the form

(ΓVJ)Θ is equivalent to ΓΘVJΘ.

Further, we define the comprehension operator {D by

(C) X{Γ)Y^VS(S<ΞX = SΓY),

where S is a variable which does not occur in Γ. We denote the inverse

relation of {D naturally by (Γ}. We have introduced the operaor "{ )"

already in our former work [2], although we did not give it the name "com-

prehension operator*' there (See PD-(3)S)). This operation makes our descrip-

tion amazingly simple. For example, equality = of OF is denoted simply by

{ e ) and the unit-object relation is denoted simply by { = ). Namely, X{ = )Y

means that X is a unit object of Y. (See (2.26).)

Concerning equality in OF, we can not expect that any relation of the

form = Γ as well as any relation of the form Γ = is equivalent to Γ. Any

relation Γ which is equivalent to = Γ (or to Γ= ) is called left invariant (or

right invariant). If a relation is left invariant as well as right invariant, we

call it invariant. (See Definition (2.2).)

Although the satellite notion of OF is really somewhat different from the

satellite notion of OZ, the interpreted satellite-notions of these two systems

coincide in the system SF, so we have no need to give further explanation for

the purpose that one should have a vague image of the satellite notion of OF.

6> Any two binary relations Φ and Θ are called equivalent if and only if
\/XY'X(ΦΈ=Θ)Y holds.

Ί) We say that the binary relation Γ implies the binary relation Δ if and only if
\/XY'X{Γ-*A)Y is provable.

8> We refer to Section (a) of our former work [2] by PD-(a).
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124 KATUZI ONO

(Detailed illustration is given in (1.7).) Here we would like to show a feature

of our system OF from a rather imaginative side.

The axiom scheme of OZ is a form of formulas obtained by replacing a

membership relation of the aussonderung axiom by the satellite relation of OZ.

There is a good reason to expect that one may obtain another nice generating

principle by replacing a membership relation of the axiom of replacement by

a suitably defined satellite-relation. Because the axiom of replacement is

somewhat stronger than the aussonderung axiom, one may expect that an

object theory stronger than OZ can be established on the basis of this generating

principle regarding it as a sole assumption of the theory. Compared with the

aussonderung axiom or with the axiom scheme of OZ, however, the usual

expression of the axiom of replacement seems too complicated, having the

assumption of uniqueness of the mapping. For example, compared with the

formula (A), the feature of (B) looks too complicated, because it has the

uniqueness assumption VXYZ(XΓZ/\ YΓZ- -*X=Y).

By virtue of the comprehension operator, we know a very extensive type

of unique mappings having a simple form. Namely, we can easily show that

any relation of the form {Π defines a unique mapping (regarding Y{Γ)X as

a mapping X to Y) with respect to equality = i.e. { e ). (See (2. 7).) Although

it seems impossible to express every unique mapping A in the form {Γ)y we

can express any left invariant unique mapping A in the form {Γ). Because,

in SF, every relation can be regarded as invariant, we need not afraid that

this restriction may cause any essential difficulty. By the way, how can we

express every left invariant unique relation A in the form {/')? If there is an

object Z satisfying ZAX, YAX is equivalent to Y{ e J ) I However, if there is no

such Z, we can make use of the well-known Russell paradox. Namely, let us

define Γ by

(D) UΓV^ -U^AV\J{-^3W' WΔV\ Λ £7$ ϋ).

Then, we can prove that A is equivalent to the relation {/'). An exact proof

of this fact is given in (2.31) at the end of Section (2). In this connection,

it should be particularly noticed that the whole theory of Sections (2) and (3)

can be developed without assuming any axiom. (Compare PD-(S).)

In fact, the formula
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A STRONGER SYSTEM OF OBJECT THEORY 125

(E) 3P-P{{Γ)6Ξ)M i.e. 3 P V I ( Z G P = : 3 Z - I < Γ ) Z ε M )

is a special case of the proposition scheme (B), the proposition scheme cor-

responding to the axiom of replacement, but it is a proposition scheme of so

extensive character that we are apt to regard it as a substitute of the axiom

of replacement. Attracted by the extremely simple form of the formula (E),

we have attempted to define the satellite relation a in such a way that the

modified formula

(F) 3P P{{Γ)σ)M

of (E) will be a sole axiom scheme of an object theory called OF which can

be taken as a prototype of the set theory SF.

We have been successful to do this only by modifying the satellite notion

of OZ in accordance with the modification of the unit-object notion. The

modification of the unit-object notion seems indispensable to our plan, because

we can regard all the binary relations of the form {/"") as unique mappings

only since we take the relation { e ) as equality. (See (2.7).) In accordance

with this modification, we define at first XSY by \TS(S{ e ) G Z - ^ S { e ) e Y)

as a modification of the relation I c y which literally corresponds to the

relation X S Y of OZ. We define next σ(P) by VS(S^ <ΞP = S C G P ) . Then,

we άeήne XσY by VP(σ(P) ί\ YGZΞP -*XeeP) 9 ) . (See (1.2), (1.3), (1.4), (1.5),

and (2.15).) Anyway, the interpreted satellite-notions of OZ and of OF coincide

in SF. As pointed out in OZΛ7), we can prove in SF that there is a set formed

by all the interpreted satellites of any set. This leads to the result that OF

is consistent if SF is so. Our new system OF is formally introduced in Section

(1), and a short sketch of a consistency proof of OF relative to SF is given

in (1.7).

Sections (2)-(15) are devoted to show that we can really establish the

object theory OF on the basis of the only one axiom scheme (F) which is

strong enough to establish a set theory equivalent to SF (so, according to OZ-

(7) and OZ-(6), also an object theory equivalent to OZ and a set theory

equivalent to SZ) in it. (See especially (14.6) and (15.11).) Only in Section

(10), we take a somewhat long way round by developing a theory of natural

9> In OZ, we can define XσY also as vP(σ(P)/\Y€
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numbers in our object theory OF. To take a shorter course, we have only to

give an example of infinite sets. Anyway, it is really a long series of trouble-

some work to develop the object theory OF starting from the sole axiom

scheme (F).

As our primitive notion e seems only right-invariant (See (2.5). It seems

impossible to prove that e is left-invariant.), we can expect only for a special

kind of objects X that X contains as its members every object which is equal

to a member of X. Such objects X are called normal (formally defined in

(2.27)). One can easily see that the axiom of extensionality is equivalent to

the assertion that all the sets are normal. It should be particularly remarked

here that every object generated by an axiom of the form (F) is normal.

(We can prove this by (2.8), (2.10), and (2 29).)

In OF too, we define regularity. However, regularity of OF is slightly

different from that of OZ. To define regularity, we use the notion of descendents.

We call any object X satisfying a condition of the form X= e e Y (the

number of e ' s is 0, 1, 2, . . . ) a descendent of Y. (The descendent relation

is formally defined in (7.1). See also (7. 7).) By making use of the descendent

notion, we define regularity of OF also in such a way that, for any regular

object X, there may be no infinite descending chain X 3 Xx ^ X2

 3 .

(Compare (8.1) and OZ-(2.2.1). See also (8.2), illustration.) Any object

whose descendents are all normal is called totally normal (formally defined in

(9.1)). We can establish the theory of OF exclusively in the field of regular

and totally normal objects which we simply call sets. (See (11.1).) The main

result of this work is that the set theory SF is nothing but an object theory

established exclusively in the field of sets. (See especially Section (15). Compare

Gandy [7].)

The relation between OF and SF resembles to the relation between the

theory of natural numbers without complete induction and the theory of natural

numbers with complete induction. (We denotes these two systems hereafter by

No and N respectively.) OF and SF have the common generating principle of

the form (F) just as No and N have the common generating principle that

every number is followed by another number. Possibly there may be many

systems OF of object theory having (F) as their sole generating

principle, just as that there may possibly be many systems No of natural-
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A STRONGER SYSTEM OF OBJECT THEORY 127

number theory having the same generating principle that every number is

followed by another number. The ordinary natural-number system N can be

regarded as the minimum system of these systems of natural numbers.

Similarly, the ordinary set theory SF looks like the minimum system of the

object theories having the same generating principle (F).

The complete induction of N positively asserts that N is really the minimum

system among those systems No. The system SF, however, has no principle

literally corresponding to the complete induction. In fact, it seems impossible

to confirm by axioms of SF that the system SF is really the minimum system

among those systems which have the same generating principles as that of SF.

So, it might be possible that a sufficiently small system of object theory having

certain generating principles can be regarded as a system of set theory by

suitable interpretation. This was the case for OZ, because a sufficiently small

system of objects, the system of producible objects, can be regarded as SZ if

we define membership and equality suitably for the system. In OF too, we

can construct a theory equivalent to SF by restricting the field of objects to

the field of sets, i.e. the field of regular and totally normal objects. (See

Definitions (8.1), (9.1), and (11.1). See also Section (15).) However, regularity

and total normality can never be proved to be characteristic of objects belonging

to the minimal system among those systems OF having (F) as their sole

generating principle.

By the axiom scheme (F), we can prove existence of suitably defined unit

objects, sum objects, and power objects of any object (See (5.3), (5.2), and

(5.4).), and also existence of suitably defined pair objects of any two objects

(See (6.11) and also Definition (6.9).). However, it is extremely remarkable

that we can prove these theorems even when we replace our satellite relation

by the literal interpretation of the satellite relation (denoted here by g) of OZ.

Namely, o is the relation defined by

(G) I ^ ^ V ? W P ) Λ

where a(P) stands for VS(SGΞGΞPΞ SΩ

Now, for convenience' sake, let us denote by OH the system of object

theory having

10> See the foot-note 9).
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(H) 3P'P{{Γ)g)M

as its sole axiom scheme. The satellite notion of OH is surely simpler than

that of OF. Moreover, we can prove existence of unit objects, sum objects,

power objects of any object, and also existence of pair objects of any two

objects in the system OH. We can further show in OH that membership G

implies the relation tf, so the example proof of PD-(3) is also valid for OH.

Hence, in OH too, there exists no object containing all the objects as its

members. Because any object R defined by R{{ G )o)M (proved to be existing

by the axiom scheme of OH) contains all the objects X satisfying X^M (we

can prove reflexivity of { G ) without any assumption), XoM can not hold for

all objects X. Hence, a(p) must hold for some P. Since reflexivity of the

relation c can be proved also without any assumption, there is surely a non-

vacant object P in the system OH which satisfies VS(S<= P - ^ S E G P ) . At

the first glance, one might suppose that this object P is an example of infinite

objects, but in reality, we have never been able to confirm by the axiom scheme

(H) only that P contains infinitely many members. We can prove in our

system OF that there is surely an object formed by all the natural numbers

(defined in (10.4)) which is an example of infinite objects in all respects, so,

our modification of the satellite notion has been effective for our purpose

anyway. (See (10.5), (10.7), and (10.15).)

(1) The system OF

In this Section, we introduce the system OF formally at first ((1.1)-(1.6)),

and next we give an illustration for the system.

(1.1) The binary relation G (membership) is the only primitive notion of

the system OF.

(1.2) DF. XZΞ Y~X{ G ) G Y. The binary relation G is called the gener-

alized membership. Any object X satisfying I G 7 is called a generalized

member of Y.

(1.3) DF. I c Y~VS{S^X->S^ Y). The binary relation <£ is called the

generalized inclusion. Any object X satisfying XS, Y is called a generalized

subobject of Y.

(1.4) DF.

https://doi.org/10.1017/S0027763000011077 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011077


A STRONGER SYSTEM OF OBJECT THEORY 129

(1.5) DF. ^ y ^ V P W P l Λ y G G P . - . ^ G G P ) . The binary relation a

is called the satellite relation. Any object X satisfying XoY is called a satellite

of Y.

(1.6) Axiom scheme. All the formulas of the form

3P'P{(Γ)σ)M

and formulas of this form only are axioms of our system OF, where any

number of free variables other than P may occur in the binary relation Γ.

(1.7) Illustration. 3Pm P{{Γ)σ)M can be also expressed as

Ξ X{Γ)OM)

and X{Γ)oM can be expressed as 3Γ(VS(Se X= SΓY) Λ YσM). Accordingly,

X{Γ)oM means that X is an object formed by all the objects bearing the

relation Γ with a satellite Y of M, and P{{Γ)σ)M means that P is an object

formed by all the objects X satisfying the condition X{Γ)oM. In OZ, the

satellite notion is introduced in such a way, that any proto-member as well as

any subobject as well as any unit object of an object is a satellite of the

object, and that the satellite relation is reflexive and transitive. (See OZ-(1.2.11),

OZ-(1.2.12), OZ-(1.4.9), OZ-U.2.13), and OZ-U.2.14).) Each axiom of OZ

asserts that all the satellites of an object satisfying a certain condition form a

new object. (See OZ-(1.1.4).) We wish to introduce the satellite notion of

OF similarly to the satellite notion of OZ but at the same time in a form

suitably modified for the axiom scheme of OF.

It is not necessary in OF to draw any distinction between proto-membership

and membership. According to the axiom scheme of OF, any member of an

object generated by an axiom is characterized by their members, so the proto-

equality of OZ looks like a better example for defining equality in OF rather

than identity of OZ. Just replacing "€" in the definition of proto-equality of

OZ by " e ", we define equality = of OF. Thus equality notion of OF deviates

from identity of OZ in some extent. (Compare Definition (2.1) with OZ-(1.2. 5)

and 0Z-Q.2.3).) In accordance with this deviation, the notion of unit objects

has to be slightly changed. Moreover, in defining satellites, inclusion has to

be replaced by a new notion, the generalized inclusion £ which is a little

weaker than inclusion. According to Definitions (1.4) and (1.5), in OF too,
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membership e , the generalized inclusion £, and the unit-object relation { = )

(defined in (2.26)) implies the satellite relation a. Also, the satellite relation

a is reflexive and transitive. (See (3.2), (3.3), (3.4), and (3.1).)

If we interpret "objects" of OF as "sets" of SF and " e " of OF as " e "

of SF, we can easily see that " £ " of OF is interpreted as " c : " of SF and the

satellite relation a of OF is interpreted as the relation " o", which is defined

by

where a(p) is a condition on p defined by ί ( ί )

Namely, the relation a of SF is the same relation " 3 " that is defined in OZ-(7).

In SF holds that, for any set m, there is a set n formed by all the satellites

(in the interpreted sense) of m. (This is shown in OZ-(7).) For any binary

relation Γ in SF, the relation x{Γ)y (defined naturally as VS(SEΛ ΞSΓV)) is

evidently a unique mapping y to x, because SF has the axiom of exten-

sionality. As p{{Γ)σ)m expresses V # ( # e ^ = :3y x{Γ)ydm) and further

Vjyίjy e n = yarn) holds, so 3pmp{{Γ)a)m can be also expressed as

3pVx(χtΞp= :3y x{Γ)y&n). This is a special case of the axiom of re-

placement of SF, because x{Γ)y is a unique mapping y to x. Accordingly, the

interpreted proposition of every axiom of OF is provable in SF.

Thus the system OF can be imbedded in SF, so our object theory OF is

consistent as far as the Fraenkel set-theory is so.

(2) Equality and inclusion

In this Section, we define two binary relations, equality = and inclusion

c, and also the notion normality. We describe also some elementary properties

of these notions in connection with membership e , the generalized membership

€Ξ, and the generalized inclusion ci.

(2.1) DF. The relation { e ) is denoted by = and is called equality.

(2.2) DF. Any binary relation is called right (or left) invariant if and

only if Γ= (or = Γ) is equivalent to the relation Γ. If Γ is right invariant

as well as left invariant, it is simply called invariant.

n> See the foot-note 9).
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(2.3) Equality = is reflexive, symmetric, and transitive. Also, equality

is invariant. (Proof.121 By (2.1).)

(2.4) Any binary relation Γ is right (or left) invariant if the relation Γ =

(or — Γ) implies Γ. Consequently, Γ is invariant if the relation = F = implies

Γ. (Proof. By (2.2) and (2.-).)

(2.5) The membership e is right invariant. (Proof. By (2.1) and (2.4).)

(2.6) The membership e implies the generalized membership e. (Proof.

By (1.2), (2.1), and (2.3).)

(2.7) Any relation of the form {Γ)(Γ} implies equality = . In other

words, any relation of the form {Γ) is unique with respect to equality =,

regarding X{Γ)Y as a mapping Y to X (Proof. By (2.1).)

(2.8) Any binary relation of the form ΓΔ is right invariant if A is so, and

it is left invariant if Γ is so. Consequently, the relation ΓΔ is invariant if Γ

is left invariant and A is right invariant. (Proof. By (2.2) and (2.4).)

(2.9) If two binary relations Γ and Δ are both right (or left) invariant,

the binary relations Γj\ Δ and Γ\J A are both right (or left) invariant. (Proof.

By (2.2) and (2.4).)

(2.10) Any relation of the from {D is left invariant. (Proof. By (1.2),

(2.1), and (2.4).)

(2.11) For any right invariant relation, Γ the binaty relation {D is invariant.

(Proof. By (2.2), (2.3), (2.4), and (2.10).)

(2.12) T h e generalized membership e is invariant. (Proof. By ( 1 . 2 ) ,

(2.5), (2.8), and (2.10).)

(2.13) The generalized inclusion c is reflexive and transitive. (Proof. By

(1.3).)

(2.14) The relation <=£ is equivalent to the generalized membership e=.

(Proof. By (1.3) and (2.13).)

(2.15) DF. I c 7 ^ V S ( S e J ^ S G 7 ) . The binary relation c is called

inclusion. Any object X satisfying X^ Y is called a subobject of Y.

12 > In any proof of this type, we indicate its logical basis only.
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(2.16) The inclusion c is reflexive and transitive. (Proof. By (2.15).)

(2.17) Equality = is equivalent to the relation C A D , where Ώ. is the

inverse relation of inclusion c . (Proof. By (2.1) and (2.15).)

(2.18) The inclusion c is invariant. (Proof. By (2.4), (2.16), and 12.17).)

(2.19) The relation e c is equivalent to the membership e . (Proof. By

(2.15) and (2.16).)

(2.20) I c F - > V S ( S G l ^ S £ y ) . (Proof. By (2.6) and (2.19).)

( 2 . 2 1 ) I C 7 Ξ V S ( S E I - , S G 7 ) . (Proof. By (1.2), (1.3), (2.1), (2.2),

(2.6), (2.12), and (2.14).)

(2.22) The inclusion c implies the generalized inclusion £. (Proof. By

(2.20) and (2.21).)

(2.23) The generalized inclusion £ is invariant. (Proof. By (2.4), (2.13),

(2.17), and (2.22).)

(2.24) The relation ( e ) implies the generalized inclusion £. (Proof. By

(2.21).)

(2.25) The inverse relation of {£=) i.e. the relation (£=} implies inclusion

c . (Proof. By (2.6) and (2.15).)

(2.26) ^{ = ) 7 - » 7 e Z Namely, the inverse relation of { = ) i.e. the

relation ( = } implies membership e . (Any object X satisfying X{ = )γ is

called a unit object of Y. The relation { = ) is called the unit-object relation.

Proof. By (2.3).)

(2.27) DF. Any object X satisfying X{^)X is called normal

(2.28) Any object X is normal if VS(S€Ξj£-*Se X). (Proof. By (2.6)

and (2.27).)

(2.29) X{Γ)Y-*X{ς=)X holds for any left invariant binary relation Γ.

(Proof. By (1.2), (2.1), (2.2), (2.27), and (2.28).)

(2.30) The relation {£=) is transitive. (Proof. By (2.12) and (2.29).)

(2.31) Any left invariant relation Δ can be expressed in the form (Γ), if

A A implies equality = , in other words, if the relation Δ is unique.
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Proof 1 3 ) /A-+C, d.

A) Assume that Δ is left invariant and that ΔΔ implies = .

B) Define Γ by UΓV^t - Z7GΞ ΔVM (-?3W WΔV: MJ$ U).

c)) Δ implies {Γ) /cA-cd. cA) V I F ! 1 4 ) XΔY.

cb)) VS(SΪΞX-SΓY) lcbA->cbc. cbA) VS! SGΞX

ebb) S G J 7 lcbA,cA. cbc) SΓΓ /c^, β.

cc)) VS(SΓF-SeX) lccA-»ccg. ccA) VS! SΓF.

ccb) S G J 7 V (-^3Pf • WΔYl ASΦS) /CCA, B.

ccc) 3PF-PFJΓ /cA.

ccd) S G Ξ J F /ccb, CCC. cce) Ξ Z I S G Ξ Z J F /ccrf.

ccf) Z = X /cΛ, cce, A.

ccg) SGΞZ /CC ,̂ ccf, (2.5), (2.2).

cd) Z{Γ) Y lcby cc.

d)) {Γ) implies J /dA^dh. άA) VXY\ X{Γ)Y.

db)) ΞW WΔY ldbA-*dbe (reductio ad absurdum).

dbA) Assume ~-3W-WΔY.

dbb)) VS(S6l->S$S) IdbbA-^dbbe. dbbA) VS! S ε l

dbbb) SΓF /J^A, JA.

dbbc) S e J Γ V (-73W-WΔY: ASΦS) I dbbb, B.

dbbd) V S G J Y /dkA. dbbe) S ί S Idbbc, dbbd.

dbe)) V S ( S $ S - > S G I ) IdbcA-^dbcd. dbcA) VS! SΦS.

dbcb) ^ΞW'WΔY: f\S$S /dbA, dbcA. dbec) SΓF /dbcb, B.

dbed) SGΞX /^CC, UZA.

dbd) V S ( S G Ξ Z Ξ S Φ S ) /dbb,dbc.

dbe) contradiction /^M (the Russell paradox).

dc) 3T! TJF / ^ .

dd)) VS(SGΞΛ"-^SGΞT) IddA-^ddg. ddA) VS! S e l

ddb) SΓY I ddA, dA.

ddc) SΪΞΔYV(-^3W'WΔY: f\S$S) /ddb, B.

ddd) SGΞ ΔY I ddc, db.

13> Any proof of this type is a formal proof described in PLK.
14> Nominating quantifiers (See PD-(l).) of the forms yX Zl and 3X Z!

naturally stand for \/X--\/Zl and 3J£ 3Z! respectively.
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dde) 3ZI SZΞZΔY Iddd. ddf) Z=T /dde, dc, A.

ddg) SeiT /dde, ddf, (2.5).

de)) VS(S^T-+SEΞX) ldeA-*ded. deA) VS!

deb) SCΞJY I deA, dc.

dec) SΓY /deb, B. ded) S e X /dec, dA.

df) Z = T /dd, de, (2.1). dg) Z

dh) X4F /<fe A, (2.2).

(3) Fundamental properties of the satellite relation σ.

(3.1) The satellite relation a is reflexive and transitive. (Compare OZ-

(1.2.13) and OZ-(1.2.14). Proof. By (1.5).)

(3.2) The membership e implies the satellite relation a.

Proof /A-*£. A) VXY\ X<=Y.

b)) XaY /bA-*bl, (1.5). bA) VP! ^ P I A F

bb) F C G P /bA, (1.4).

be) Z e g e P /A, bb. bd) l e G P / ^ , (2.21).

be) X = e e P /M, (1.2), (2.1). bf) 3Z! I = Z

bg) Z C G P /bf, bA, (1Λ). bh) I c Z /ήΛ (2.17).

bi) Z£Z /M, (2.22).

bj) Z££ e P /^*, ^ . bk) I C G P /^', (2.13).

bl) XGΞGP /M, M, (1.4).

(3.3) The generalized inclusion £ implies the satellite relation a. (Com-

pare OZ-U.2.12). Proof. By (1.4), (1.5), and (2.13).)

(3.4) The unit-object relation { = ) implies the satellite relation a.

Proof /A-*b. A) VZF! X{ = ) Y.

b)) Xc y /bA-^be, (1.5). bA) VP! tf(P) Λ Γ e GΞP.

bb) 3Z! F G Z G ? /6A.

be)) ^ £ Z /bcA-*bcd, (2.21). bcA) VS! S ε l

beb) S=Y /A,bcA. bec) S = G Z /beb, bb.

bed) S<iZ /^c, (1.2), (2.1).

bd) X g e P /^c, ^ . be) ZGΞGP /6A, M, (1.4).

(3.5) The satellite relation a is invariant. (Proof. By (2.4), (2.17), (2.22),

( 3 . 1 ) , a n d ( 3 , 3 ) . )
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(4) Generating principles

In connection with the axiom scheme of OF, some generating principles,

including those corresponding to the axiom scheme of OZ or to the aussonderung

principle of OZ, hold in OF. (See OZ-(l. 3.1).) As they seem very powerful for

the later exposition, we describe them in this Section.

(4.1) -^VT'TΪΞM. (There is no object formed by all the objects.)

This theorem is really important. However, we can prove this theorem

by a slight modification of the example proof given in PD-(3), employing (2.1),

(2.2), (2.3), (2.5), (3.2), and the axiom scheme (1.6). (See the foot-notes 4) and

5) of PD i.e. [2].)

(4.2) 3P' P{ = Γ/\a)M. (This is a meta-theorem of OF corresponding to

the axiom scheme of OZ. Propositions of the form 3P- P{Γί\a)M in general

seem unprovable in OF. Even when we take up this proposition scheme, we

can not regard it as a literal interpretation of the axiom scheme of OZ,

because the definition of the satellite relation a of OF is not a literal interpreta-

tion of the satellite relation of OZ. (Compare OZ-(1.1.4). Compare also (1.2),

(1.3), and (1.4) with OZ-U.1.2) and OZ-U.1.3).)

Proof /A-»ί. A) Define Δ by XΔY^ • YΓM-+X& Y.

b) 3PI P{{Δ)a)M /axiom. c) VT(T^ P= T{Δ)cM) /b.

d) y/T(T^P=3Z(VU(U^T=UΔZ)AZσM)) /c.

e) VT(TGPΞ3Z(V/7(ί/eTΞ • ZΓM-> Ϊ7e= Z) /\ZσM)) /d, A.

f)) VT(T<ΞP-+T( = ΓAσ)M) lfA-*fi. fA) VT! TEE P.

fb) 3Z! Vσ(U(=T= ZΓM-+Ut=Z)ΛZσM /e, fA.

fc)) ZΓM lfch-*fcc (reductio adabsurdum). fcA) Assume ^ZΓM.

fcb) Vί/ ί/eT Ifb, fcA. fee) contradiction Ifcb, (4.1)

fd) VU(U^T^U^Z) lfb,fc. fe) Γ = Z /fd, (2.1).

ff) T=ΓM lfetfc. fg) TaZ //*, (2.17), (2.22), (3.3).

fh) TσM /fg,fb, (3.1). fi) T(=Γl\σ)M Iff fh.

g)) \rT{T{=Γf\σ)M->T(=P) IgA-^gh. gA) VT! T= ΓM/\TσM.

gb) 3SI T=SΓM /gA.

gc)) VU(U(Ξ T= - SΓM-* UΪΞ S) Igca, gcb.

gca) VU{UZΞT=UΪΞS) /gb, (2.1).

gcb) VU(U(ΞS= -SΓM^U^S) Igb.
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gd) SσT Igb, (2.17), (2.22), (3.3). ge) SaM /gd, gA, (3.1).

gf) VCΛ UCΞT= - SΓM-* UΪΞ S) Λ SaM /gc, ge.

gg) 3ZVί/( £/EΞ Γ = • ZΓM-> U<ΞZ)Λ ZaM) /gf.

gh) T G P /*, £#.

h) VT(TGP=T(=ΓΛί;)M) //, #. i) P{--^ΓAσ)M /h.

(4.3) 3P-P{ = ΓΛcz)M (Compare OZ-U.3.1). Proof.lδ) We can take

an object, say P, satisfying P{ =- (ΓΛ £ ) Λj)M by (4.2). P{=ΓA^)M can

be proved by (2.2), (2.3), (2.23), and (3.3).)

(4.4) 3 P P{ = (ΓΛ EΞ ))M. (A meta-theorem of OF corresponding to the

aussonderung axiom of SZ. Compare OZ-( 1.3.1). Proof. We can take an

object, say P, satisfying P{ = (ΓΛ EΞ ) Aa)M by (4.2). P{ = (ΓΛ EΞ ))M can

be proved by (2.17), (2.22), (3.1), (3.2), and (3.3).)

(4.5) 3 P " P{{Γ) EΞ )M. (A meta-theorem of OF corresponding to the axiom

of replacement of SF.)

Proof /A-*d. A) Define Δ by ZJY^X{Γ)EΞΛf.

b) 3Q\ Q{{Γ)σ)M /axiom. c) 3 P ! P{ = (JΛ EΞ ))Q /(4.4).

d)) P{{Γ)e )Λf /da, db.

da)) V Z ( Z E Ξ P - ^ Z { Γ ) E Ξ M ) I da A-^ dad. da A) V * ! X E Ξ P .

dab) Z=JQ /daA,c. dac) Z = { Γ ) E Ξ M /dab, A.

dad) X { Γ ) E Ξ M /ώc, (2.10), (2.2).

db)) V X ( X { Γ ) E Ξ M - * X E Ξ P ) IdbA-^dbf. dbA) VZ! Z { Γ ) E Ξ M

dbb) X{Γ)σM /dbA, (3.2). dbc) J E Q /J^, ^.

dbd) XJQ I dbA, A. dbe) J f = ( 4 Λ e ) 0 /(2.3), dbd, dbc.

dbf) Z G P /J^, C.

(5) Objects formed by satellites of an object

In this Section, we prove at first existence of objects formed by satellites

of an object (defined in (5.1)). Next, we show existence of power objects of

an object (defined in (5.2)), existence of sum objects of an object (defined in

(5.3)), and existence of unit objects of an object (defined in (5.4)). We can

prove that any object formed by satellites of an object, any power object of

15) In any proof of this type, we give a short sketch of a formal proof originally
described in PLK together with its logical basis.
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an object, any sum object of an object, and any unit object of an object are

all normal by (2.29) together with (3.5), (2.18), (2.12), (2.3), and (2.8). At

the end of this Section, we prove further a proposition which can be regarded

as a generalization of complete induction. (See (5.8).)

(5.1) 3P'P{σ)M. (The relation {a) corresponds to the relation θ of OZ.

Compare OZ-U.3.2) and OZ-(2. 3.1). Accordingly, P{σ)M is read " P is an

object formed by satellites of M". Proof. We can take an object, say P,

satisfying P{ = ( e -» e ) l\a)M by (4.2). P{a)M can be proved by (2.3).)

(5.2) 3P P{c)Mas well as 3P-P{£)M (P{c)Af is read "P is a power

object of M'\ as it means VΓ(Γe P== Γci l ί ) . The first formula asserts

existence of power object of any object. Compare OZ-il. 4.6). Proof. We can

take two objects, say Q and R> satisfying Q{ = Q Λ£)Λf and #{ = £ Λ £ ) M

by (4.3). Q{c)M and #{£)M can be proved by (2.2), (2.18), (2.22), and

(2.23).)

(5.3) 3 Z - X { e e ) F . (X{CΞ(Ξ)Y is read "X is a sum object of Y".

3X' X{<=G)Y seems unprovable in OF. The theorem asserts existence of

sum objects of any object. Compare OZ-il. 4. 5). Proof. We can take an object,

say X, satisfying X{ = e e Aσ)Yby (4.2). I { G G ) 7 c a n be proved by (1.2),

(2.1), (2.2), (3.1), (3.2), and (3.5).)

(5.4) 3X-Z{ = )Γ. (X{ = )Y is read " X is a unit object of Y". This

interpretation may be natural, because X{ = )γ means VT{T<^ X=T~ Y).

However, it should be remarked here that X{ = ) Y is not a literal interpreta-

tion of X{Y) of OZ, as equality = of OF is rather more closely related to

proto-equality ^ of OZ than identity = of OZ. (Compare (2.1) with OZ-

(1.2.3) and OZ-(1.2. 5).) The theorem asserts existence of unit objects of

any object. Compare OZ-(IΛA). Proof. We can take an object say X,

satisfying X{ = = /\σ)Y by (4.2). X{ = )Y can be proved by (2.1), (2.3),

(2.17), (2.22), and (3.3).)

(5.5) X{ = )Y/\U{ = )V- -» -X=U= Y= V. (The relation { = ) is unique

in both directions. Proof. Assume X{ = )Y and U{ = )V. Then, X- U implies

Y= V by (2.2), (2.10), and (2.26); and Y= V implies X=U by (2.2),

(2.3), (2.7), and (2.11).)
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(5.6) 3X'X{^)Y. (Proof. By (1.2) and (4.5).)

( 5 . 7 ) The relation {σ)σ(σ} implies inclusion c . Namely, X{a)aZf\Y{a)Zm

->X^Y. (Compare OZ-(2. 3.5). Proof. Assume X{a)UaZ and Y{σ)Z. Then,

holds I c y b y (2.15). Namely, for any member T of X, holds TaU, so also

TaZ by (3.1), hence Γ ε F . )

(5.8) VXY XiΓΓV e V £ V { = )- -*r)Ym.-+ U(σ-*Γ)V. (Generalized

complete induction: If membership e as well as the generalized inclusion £

as well as the unit-object relation { = ) implies a transitive relation Γ9 the

satellite relation a implies the relation Γ. Compare OZ-11. 6), especially OZ-

(1.6.1) and OZ-(1.6.4).)

Proof lA-*c.

A) Assume VXY- X{ΓΓV e= V £ V{ = ) - -»Γ) Y, i.e. assume that ΓΓ

implies Γ and that e as well as £ as well as { = ) implies Γ.

b)) Γ is left invariant lbA-*bd> (2.4). bA) V Z y ! Z = Γ Γ .

bb) Z £ Γ F /6A, (2.17), (2.22). be) XΓΓY /bd, A.

bd) ZΓy I be, A.

c)) ( implies Γ lcA-*cl cA) VC7F! Z7<;7.

cb) 3P!P{=ΓΛ<;)F /(4.2). cc) P{ΓΛc;)F /cb, b, (2.2).

cd)) V S ( S S 6 P - . S C G P ) lcdA~>cdi. cdA) VS! S G G P .

cdb) 3T! S e T e P /CJΛ. ede) TΓKAΓtfV lcdb.ee.

edd) SΓΓ /c^, A. cde) SΓV /edd, cdc} A.

cdf) SσT /cdb, (3.2). edg) S<;F /cdf, ede, (3.1).

cdh) S e P /cde, edg, cc. cdi) SS. e; P /cdh, (2.13).

ce)) V S ( S C G P ^ S G G P ) IceA +cem. ceA) VS! S C G P .

ceb) 3T! S £ T e P /ceA. cec) TΓV/\TaV Iceb, cc.

ced) SΓT /ceb, A. cee) S*Γ /ceb, {3.3).

cef) 3/?!2?{ = )S /(5.4). ceg) i?ΓS /c^/, A.

ceh) ie^S / ^ / , (3.4). cei) PΓK / c ^ , c ^ , c^c, A.

cej) T&rF /C^/Ϊ, C ^ , cec, (3.1). cek) R^P jcei, cej, cc.

eel) SΪΞR /cef, (2.26). cem) S G G P /eel, cek.

cf) </(P) /cJ, cβ, (1.4).

eg)) F G G P lcge,cgd. cga) 3 ^ ! FF{ = ) V /(5.4).
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cgb) WΓV /cga, A. cgc) WσV /cga, (3.4).

cgd) WSΞP /cgb, cgc, CC. cge) F e W /cga, (2.26).

ch) ί / e e P /cf,cg,cA, (1.5).

ci) 3Z\ USΞZ(ΞP /ch. cj) ZΓV /ci, cc.

ck) OTZ lei, A. cl) C/ΓV /cA, cj, A.

(6) Null objects and pair objects

We can define null objects in OF in such a way that they have all the

essental properties of the null set in ordinary set theories.

In OF, we can further prove existence of suitably defined pair objects of

any two objects. (See (6.9) and (6.11).) Of course, the definition of pair

objects in OF turns out to be something different from the literal interpretation

of the definition of pair objects in OZ. It seems impossible in OZ to prove

existence of pair objects of any two objects generally, neither in the sense of

the definition of OZ-(3.2.9) nor in the sense of the literal interpretation of

Definition (6.9).

(6.1) DF. P0Q~VS-S$P, and 0(P)^3Q P0Q. (Compare OZ-( 1.4.1).

P0Q as well as 0(P) is read "/Ms a null object'1. It should be noticed here

that P0Q is independent of Q by definition. We introduce the relation 0

because it seems sometimes convenient that we can denote the condition to

be a null object in a form of a binary relation.

(6.2) v ( I e j β ί y ) , (Proof. By (6.1).)

(6.3) X0Y=X0Z. (Proof. By (6.1).)

(6.4) The relation 0 implies inclusion c , so holds 0(X)-+X^ Y. (Proof.

By (2.15) and (6.1).)

(6.5) 3P'0(P). (Existence of null objects. Compare OZ-(1. 4.2). Notice

that the following proof is quite different from the proof of OZ-{1. 4.2).)

Proof /A-*g. A) Denote the relation e -* e by Γ.

b) 3PI P{{Γ)σ)M /axiom. (M being an arbitrary object.)

c) VS(S£ΞP=S{r)oM) Ib. d) VS(SeϊP=:3Z S{Γ)ZσM) /c.

e)) -73Z(S{Γ)Z<JM) /eA-*ee (reductio ad absurdum).
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eA) Assume 3Z! S{Γ)ZσM. eb) VΓ(Γe S^TΓZ) /eA.

ec) VT(TGS=T(G -* e)Z) /A, efc ed) VT TZΞS lee.

ee) contradiction fed, (4.1).

f) VS-SΦP /rf, e. g) 0(P) //, (6.1).

(6.6) -7l(0Λ{ = ))y, i.e. ^3XY(0(X) AI{ = )y). (Any null object

can never be a unit object of an object. Proof. By (2.26) and (6.1).)

(6.7) The relation 0 is invariant, and X= y-> -0UO Ξ 0 ( 7 ) , (Proof. By

(2.1), (2.4), and (6.1).)

(6.8) 0(Jf)Λ0(7) -*X = y and X0£/Λy0F- ->Z= F. (Proof. By (2.1)

and (6.1).)

(6.9) DF. Z{X} r ί ^ V T ( Γ G Z = Γ = l V r = Y). (Z{X, Y) is read "Zis

a i>tf/r o^£?ί of Z and T\ Compare OZ-(3. 2. 9). Notice that Z{ = )X can be

also expressed as Z{X, X}.)

(6.10) Z{X, y}-> X<EΞZf\Y<ΞZ. (Proof. By (2.3) and (6.9).)

(6.11) 3Z'Z{X, Y}. (Existence of pair objects of any two objects.

Compare OZ(3.2.10). By virtue of this theorem, the theory of OF can be

developed remarkably simpler than the theory of OZ.)

Proof /A, B-+c, d, e; (6.9). A) VM!

B) Define Γ by UΓV^ • (£/GE JA0( V)) V (tfe yΛ-70(V)).

c) 3Z! Z{{Γ)c;)M /axiom.

d)) VΓ(ΓGZ-> Γ = Z V Γ = y ) IdA-^dh. dA) V T I Γ e Z .

db) T{Γ)(;Z /JΛ, c.

dc) 3S! T{Γ)SaZ /db. dd) VU(U(ΞT=UΓS) Idc.

de) Vί/(C/eT= -(LΓeXΛ0(S))V(C7erΛ-70(S))) /B, drf.

df)) 0(S)->T=Z ldfA-»dfc. dfA) Assume 0(S).

dfb) VU(U(ΞT=UeΞX) /dfA, de. dfc) T = Z /dfb, (2.1).

dg)) -70(S)->T=y ldgA-»dgc. dgA) Assume -70(S).

dgb) VU(U<=T=U^Y) /dgA, de. dgc) T= y Idgb, (2.1).

dh)

e))

ea)) VΓ(T = X->ΓεZ) leaA-*eaj. eaA) VT! T =
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eab) 3S! 0(S) /(6.5).

eac) V(7((/sΓ=C/eI) /eaA, (2.1).

ead) Vί/(f/eTΞ • (C/e ZΛ0(S)) V (t/e FΛ ̂ 0(S))) /^&, eαc

eae) Vί/(t/e T= C/ΓS) lead, B. eaf) T{Γ)S /W.

eag) Scϋf /**£, (6.4).

eah) Sc M /W, (2.22), (3.3). eai) T{Γ)σM /eaf, eah.

eaj) T G Z /eaz, c.

eb)) VΓ(Γ==F->ΓeZ) lebA-*ebj. ebA) VT! T= Y".

ebb) 3S!S{ = )M /(5.4). ebc) τ0(S) /ebb, (6.6).

ebd) V£/(£/GΞ Γ Ξ C / G 7 ) /^A, (2.1).

ebe) VU(UEΞT = - (Z7e ZΛ0(S)) V (£/e FΛ^0(S))) /dte, gW.

ebf) VU(UGT=UΓS) I ebe, B. ebg) T{Γ)S lebf.

ebh) S^M/ βW, (3.4). ebi) T{Γ)oM I ebg, ebh.

ebj) Γ G Z I ebh, c.

(6.12) Z{Z, y}->Z{e)Z. (Any pair object is normal. Proof. By (1.2),

(2.1), (2.3), and (6.9).)

(6.13) 3 Z V T ( T E Ξ Z Ξ -T^XMT^Y). (Any object Z satisfying

= - T e Z V T e F ) can be regarded as a union object of X and Y. Compare

OZ-(3.2.11). Although it seems impossible to prove generally for any X and

Y existence of an object U in OF such that VT(TGi/= • T e l V T e y ) , we

can develop the theory of OF in a remarkably simpler way than the theory

of OZ because we can prove this theorem easily in OF. Proof. We can take

a pair object, say U, of X and Y by (6.11). We can further take a sum

object, say Z, of U by (5.3). Then, V T I T G Ξ Z Ξ - T G I V ΓEΞ Y) can be

proved by (2.12), (6.9), and (6.10).)

(6.14) Z{Z, Y}/\W{U, V}' -> :Z= FFΞ -(Z= UΛ Y= V)W(X= FΛ F= U).

(Proof. By (2.3), (2.5), (6.9), and (6.10).)

(6.15) X=Yf\X{U, V}' -*Y{U, V). (Proof. By (2.1) and (6.9).)

(7) Descendents

Just as the notions of constituents and ancestors in OZ, the notion of

descendents is of particular importance in OF. By employing the notion of

descendents, we can adequately define the notions, regularity and total
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normality, which are essentially important in OF. (See Sections (8) and (9).)

In this Section, we define the notion of descendents (in (7.1)) and describe

some fundamental properties of it. (Compare OZ-(1.5).)

(7.1) DF. ^ 7 ^ V P ( V S ( S e G ? - > S G P ) - > ( 7 G P - , l G P ) ) . Any object

X satisfying XδY is called a descendent of Y.

Illustration. The notion of descendents of an object Y in OF is a modifi-

cation of the notion of descendents x of a set y in ordinary set-theories,

which satisfy a condition of the form x e - G ^ . The descendent relation δ

is defined in such a way that XdY holds if and only if X and Y satisfy a

condition of the form X= e e Y for a finite number of EΞ'S, including the

case of no e's. The adjustment is carried out in such a way that the relation

δ becomes invariant. (See (7.6). Compare OZ-ίl.5.1).)

(7.2) The descendent relation δ is reflexive and transitive. (Proof. By

(7.1).)

(7.3) The generalized membership έ= implies the descendent relation δ.

(Proof. By (1.2), (2.1), (2.2), (2.5), and (7.1).)

(7.4) Equality = implies the descendent relation δ. (Proof. By (2.2),

(2.12) and (7.1).)

(7.5) The descendent relation δ implies the satellite relation a. (Proof.

Assume XδY. To prove XoY by (1.5), take any object Q satisfying a(Q) and

Y^^Q. We can take an object R satisfying R{ = £ e /\σ)Q by (4.2). We

can prove R{ί^)Q by (2.2), (2.23), (3.1), (3.2), and (3.3). We can further

prove VSiSzΞtΞ R^S(=R) by (1.2), (1.4), (2.1), (2.2), (2.6), (2.14), and

(2.23) and Y^R by (1.4) and (2.6). Hence XέR by (7.1), which implies

ZEΞGΞQ by (1.2), (1.4), (2.1), (2.2), and (2.23).)

(7.6) The descendent relation δ is invariant. (Proof. By (7.4), (7.2), and

(2.4).)

(7.7) The descendent relation δ is equivalent to the relation δ e V = .

(Compare OZ-{ 1.7.1). Proof. To prove that δ implies δ e V = , take any

descendent X of Y. We can take an object P satisfying P{ = U e V = ) Aσ) Y

by (4.2). We can prove P { δ ε V = ) Γ b y (2.2), (2.17), (2.22), (3.1), (3.2),

(3.3), and (7.5), because ^ e V = is left invariant by (2.3\ (2.9), and (7.6).
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We can further prove VS(S<EΞ(= P->S(Ξ P) by (2.6), (7.2), (7.3), and (2.5);

and 7 E P by (2.3) and (2.6). Hence holds X^P by (7.1) which implies

Z U G V = )Y by (1.2) and (2.1). On the other hand, we can prove by (2.6),

(7.3), (7.2), and (7.4) that ί e V = implies δ.)

(8) Regularity

We wish to call any object M regular, if and only if M has no infinite

descending chain M^Xi^X2^ . However, our formal definition turns out

to have a peculiar form by technical reason. (See (8.2), illustration.)

(8.1) DF. MpN^>/X(XdMNXtΞN -»XΈ5<ΞN), and p(M)^-?MpΞ)δM.

Any object unsatisfying ρ(M) is called regular. (Compare OZ-(2.2.1).)

(8.2) Illustration. In ordinary set theories, xδm can be interpreted as

that x and m satisfy a condition of the form x e e m. (See (7.1), illustra-

tion.) Our Definition (8.1) of regularity may be justified, because, in the

interpreted sense, Vm-μim) is equivalent to the fundierung axiom assuming

that the aussonderung axiom holds. This is shown informally as follows.

Namely, let Σ be a set theory in which the aussonderung axiom holds.

Then, we can take for any pair of sets m and n, a set p defined by p =

{x; xδm/\x^n}. If xδm and x^n i.e. x^py then x^^n implies x=χ=p

because t^δrn implies tδrn. Hence, mpn is equivalent to Vxix^p-* x 3 &p).

On the other hand, if the fundierung axiom holds in Σ, then mpn can be true only

when p is a null set. As n'Bδm implies that p is not a null set, mp^δm can

never hold. Thus, \fmmp{m) can be proved. Next, let us assume conversely

Vm p{m). Then, for any p, p^δp implies ~yppp. Evidently, p^Bδp means

that p is non-void, and ^ppp implies that the set p has a member disjoint

with p. Hence, we have the fundierung axiom.

(8.3) 0(M)-*p(M). (Null object is regular. We can prove the theorem

by reductio ad absurdum employing (6.1), (8.1), (7.7), and (6.7).)

(8.4) KδMApiM) • -*p(K). (Any descendent of a regular object is regular.

Compare OZ-(2.2.5).)

Proof lA-*j. A) Assume KδMί\ -?p{K).

b) 3NS\ KpN^SδK I A, (8.1).

c) VI(Iό^AZeiV - l 9 G i V ) /&, (8.1).
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D) Define Γ by XΓY~XδK. e) 3L\ L{ = (ΓΛ e ))N /(4.4).

f)) M^L //A->fk, (8.1). fA) VZ! Z ό W A I e L

fb) 3YI X = Y(ΓΛΪΞ)N /fA, e. fc) YδKAY^N /D,fb.

fd) 3Z! YΞ>Z(ΞN Icfc. fe) Z G I /A fd, (2.3), (2.5), (2.2).

ff) ZδY /fd, (2.6), (7.3). fg) Z5# /fffc, (7.2).

fh) ZΓiV //^, D. fi) Z=(ΓAG)iV /(2.3),/fe,/rf.

fj) Z G L /*,/«. fk) Z B G L //β,/y.

g)) SGΞZ, / ^ , ̂  ga) SΓΛ̂  lb% D.

gb) S=(ΓΛe)iV /(2.3), ga, b.

h) S5M /b9A9(7.2). i) MpΞBδM /f, g, h.

(8.5) Kt=M/\p(M)m -*p(K). (Any generalized member of a regular object

is regular. Compare OZ-(2. 2.5). Proof. By (8.4) and (7.3).)

(8.6) M=-N-+ p(M) =p(N). (Regularity is a property modulo equality.16)

Compare OZ-(1.2.6) and OZ-(2.2.5). It should be noticed here that M=iV in

OF literally corresponds to M^N in OZ. Proof. By (8.4), (7.4), and (2.3).)

(5.7) \TX(Xς=M-+ p(X))-*ρ(M). (Any object formed by exclusively

regular objects is itself regular. In OZ, we have nothing corresponding to this

particularly powerful theorem.)

Proof IA-»h. A) Assume -rp(M).

b) 3NSI MpN^SδM /A, (8.1).

c) VX(XδMAX(ΞN- ->Z3eiV) /b, (8.1). d) 3TI SΞBT^N /c,b.

e) Sδ^MWS = M Ib, (7.7).

f)) S ^ G M - > ' V V Z ( Z G ¥ ^ P ( Z ) ) IfA-^ff.

fA) Assume 3U\ SδU^M.

fb) UδM If A, (2.6), (7.3).

fc)) UpN /fcA->fcc, (8.1). fcA) VZ! XδUAX^N.

fcb) XδM IfcA, fb, (7.2). fee) X^^N /c, feb, fcA.

fd) Up^δU /fc,b,fA. fe) -7p(Z7) /fd, (8.1).

ff) UϊΞMl\-^p{U) /fA,fe.

g)) S = M-> • -7VX(X<5M-*|θ(Z)) lgA-*gj. gA) Assume S = M

1 6 ) In the interpreted sense of OZ-(5.1.1).
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gb) TδS Id, (2.6), (7.3). gc) TδM /gb, b, (7.2).

gd)) TpN IgdA-^gdc, (8.1). gdA) VXl XδTΛXtΞN.

gdb) XδM I gdA, gc, (7.2). gdc) I B G J V /gdA, gdb, c.

ge) T B G J V IC gc, d. gf) N^δT I ge, (2.6), (7.3).

gg) 7> a 5Γ /#£ £/.

gh) -7β(T) /ggA&Λ). gi) T G M /d, gA, (2.5), (2.2).

gj) TSΞMA^P(T) /gi, gh.

h) ^ V X ( Z G Ξ M - > P ( Z ) ) / * , / , g.

(8.8) KξLMf\p(M) • -*p(K). (Any generalized subobject of a regular

object is regular. Compare OZ-(2.2.5). Proof. By (2.21), (8.5), and (8.7).)

(8.9) K{ = )MAp(M)' -*p(K). (Any unit object of a regular object is

regular. Compare OZ-(2.2.6). Proof. By (8.6) and (8.7).)

(8.10) KύMl\p{M) -*p(K). (Any satellite of a regular object is itself

regular. Compare OZΛ2.2.7).)

Proof IA -g. A) Define Γ by XΓY~ - p( Y) -> 9{χ).

b) VXF-Z(/'Γ->Γ)Γ /A. c) VXΓ J¥ (e-*Γ)y /(2.6), (8.5), A

d) \TXY'X(£-*Γ)Y /(8.8),Λ. e) V J 7 Z({ = ) -> Γ)F /(8.9),Λ.

f) \rXY-X(a-»Γ)Y lb,c,d,e, (5.8). g) iΓ^MΛ p(M) • -> p(K) If, A.

(8.11) /ίWMΛp(M) -*p(iΓ). (Any object formed by satellites of a

regular object is itself regular. Compare OZ-(2.3. 2). In OF, we can prove

this important theorem very easily by (8.10) and (8.7).)

(8.12) R{P, Q) Λ p(P) Ap(Q) - -> p(£). (Any pair object of any two regular

objects is itself regular . Proof. By (6 .9 ) , (8 .6 ) , a n d (8.7). )

(9) Tota l ly normal objects

Together with regularity, total normality is a notion of particular importance

in OF. We call an object totally normal if and only if all the descendents of

it are normal. (See (9.1).) In this Section, we show some elementary pro-

perties concerning total normality.

(9.1) DF. v(P)^VX(XδP->X{^)X). Any object P satisfying v(P) is

called totally normal.
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(9.2) /;(P)->P{ei)P. (Totally normal objects are also normal. Proof. By

(7.2) and (9.1).)

(9.3) P = ζ)-> - v(P) = v(Q). (Total normality is a property modulo equality.

Proof. By (9.1), (7.6), and (2.3).)

(9.4) QdPΛv(P)' ->*(©). Especially, Q^P/\p(P) -*v(Q). (Any de-

scendent of a totally normal object is also totally normal. Especially, any

generalized member of a totally normal object is also totally normal. Proof.

By (7.2), (7.3), and (9.1).)

(9.5) V I ( I G M - > ^ ( I ) ) A M { G ) M -*V(M). (Any normal object formed

exclusively by totally normal objects is totally normal.)

Proof lA^b. A) VM!

b)) AM) IbA-be, (9.1). bA) V I ! XδM.

bb) Xδ^MWX=M /bA (7.7).

be)) XδeM->X{<=)X /bcA->bce. bcA) Assume^ίεM

beb) 3YI XδY^M I be A.

bec) v(Y) Ibcb, A. bed) v(X) Ibcb, bec, (9.4).

bee) X{^)X /bed, (9.2).

bd)) X=M-*X{^)X IbdA^bdc. bdA) Assume X=M.

bdb) X = { e ) = Z I bdA, A, (2.3).

bde) X{ΪΞ)X /(2.2), (2.11), (2.12), bdb.

be) X{^)X /bb, be, bd.

(9.6) ζ?{e=) ίP/\v(P) - -+v(Q). (Any normal generalized subobject of a

totally normal object is also totally normal. Naturally, 0 { E Ξ ) C P implies

Q{ΪΞ)Q by (2.12) and (2.29), and the same condition implies also QSP by

(2.24) and (2.13). Proof of the theorem. For any totally normal P and Q

satisfying Q{^)Q and QSP, we can prove yfX(X<=Q-»p(X)) by (2.14) and

(9.4), so Q is totally normal by (9.5).)

(9.7) 0(P)-*v(P). (Any null object is totally normal. Proof. By (1.2),

(2.27), (2.28), (6.1), and (9.5).)

(9.8) R{P, Q} Λ v{P) Λ v{Q) - -* v{R), especially R{ = )PΛ v(P) • -* *(#).

(Any pair object of any two totally normal objects is totally normal especially,

any unit object of a totally normal object is totally normal. We can prove
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the first formula by (6.9), (6.12), (9.3), and (9.5). As noticed in (6.9),

R{P, P} is equivalent to R{ = )P, so the first formula implies the second one.)

(9.9) 3P-P{{e)c)M". (For any object M, there is an object formed by

all the normal generalized subobjects of M. Proof. We can take an object P

satisfying P{ = {e)c: Λ £)Λf by (4.3). We can prove P{{e)£)M by (2.2),

(2.8), (2.10), (2.13), and (2.24).)

(9.10) P ( { E ) C ) M Λ ^ ( M ) ->V(P). (Any object formed by all the normal

generalized subobjects of a totally normal object is also totally normal. Proof.

By (2.8), (2.10), (2.29), (9.5), and (9.6).)

(9.11) p(M)-* • P { e e ) M = P ( G G ) M (For any totally normal object M,

P { e £ ) M a n d P ( G G ) M are mutually equivalent. Proof. By (9.4), (9.2), and

(2.6).)

(9.12) P { E G ) M Λ J > ( M ) -*V(P). (Any sum object of any totally normal

object is also totally normal. Proof. By (2.6), (2.8), (2.12), (2.29), (9.4), and

(9.5).)

(10) Natural numbers

Although it is not indispensable to establish a full theory of natural

numbers as a preparation for establishing a set theory, it seems adequate to

introduce here a theory of natural numbers in our system OF by the inter-

pretation that any null object is regarded as the number zero and any unit

object of any natural number X is regarded as the number following X. From

this point of view, we write down here again a few propositions already stated.

(See (10.8) and (10.9).) By proving that there is an object formed by all the

natural numbers, we know that the axiom of infinity holds in OF in the sense

that there is an object formed by infinitely many objects. To prove that we

can construct a theory of sets in which the axiom of infinity in its original

sense holds, we have to define the notion of sets in OF and to show that any

natural number as well as any object formed by all the natural numbers is a

set. (See (11.13) and (11.14).)

Informally speaking, any object X is called a natural number (notation

"g(X)") if and only if we can find X in an infinite sequence Xo, Xh . . . ,

where XQ is a null object and Xn±i{ = )Xn holds for all n (The notion of
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natural numbers is defined formally in (10.4).) For convenience' sake, we

introduce a binary relation " # " before defining natural numbers. The relation

% is naturally a relation closely connected with the notion of natural numbers.

Namely, X% Y means that we can find X in an infinite sequence Zo, Zi, . . . ,

where Zo is equal to Y and Zn^{ = )Zn holds for all n. (See (10.1).)

Accordingly, X is a natural number if and only if X% Y holds for a null object

Y. (See (10.4) and (6.1).)

(10.1) DF. I

(10.2) The relation % is reflexive and transitive. It is also invariant.

(Proof. By (2.3), (2.4), (2.12), and (10.1).)

(10.3) Equality = implies the relation #. (Proof. By (10.1), (2.2) and (2.12).)

(10.4) DF. #(X)^ :3Y-X$0Y. Any object satisfying #(X) is called a

natural number.

(10.5) &{X)-*%{X). (Zero is a natural number. In this Section, any null

object is called "zero" for the purpose to make the interpreted images of our

natural numbers vivid. Proof. By (6.1), (10.2), and (10.4).)

(10.6) The relation { = )£ implies the relation %. (Proof. Assume X{ = )%Y.

For any P satisfying VS(S{ = ) e P-*Se P) and Y<=P, we can prove Z G P

by (1.2), (2.1), (2.2), (2.3), (2.6), (2.11), and (10.1). So, Xt Y by (10. D.)

(10.7) Y{ = )XA $(X) - -*t(Y). (Any unit object of a natural number is

also a natural number. In this Section, we call any unit object of a natural

number X "a natural number following X" for the same purpose as mentioned

in (10.5). Proof. By (10.4) and (10.6).)

(10.8) U{= ) IAF{ = ) y - - 'X= Y=U=^ V. (See (5.5). Especially, in

the field of natural numbers, any two numbers are mutually equal if and only

if a natural number following one of them is equal to a number following

the other.)

(10.9) 0{X) - • -?X{ = )Y. (Zero follows no natural number. See (6.6).)

(10.10) VX(0(X)-+mX)) and VYZ(\Z= Y V Z{ = )Y) Λ 3ί( Y) • --> %{Z))

imply VJVXjfί W) -> 31 ( WO). (This theorem corresponds to the complete

induction. Evidently, the second assumption of the theorem can be replaced
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by VYZ(Z{ = )YΛ3ί(Y)- -»9l(Z)) for any condition 3ϊ(T) on T modulo

equality. Compare OZ-il.8.11) and OZ-(6. 9.10).)

Proof /A-*b.

A) Assume V I ( 0 ( Z ) - > « D ) and VYZ((Z=Y\/ Z{ = )Y) ΛΪί(Y)' ->9I(Z)).

b)) VWΓ(J(PF)->3ί(ϊΓ)) IbA-^bd. bA) VFF! #(PF).

bb) 3UVI W$U0V /bA, (10.4).

be) VP(VS(S{ = )eP-*SeP)->(£/eP->PFeEP)) /Z>6, (10.1).

bd)) ?I(W0 /bdA-^bdk. bdA) Define Γ by FΓG^ΪKF).

bdb) 3P! P{=ΓAσ)U /(4.2).

bde)) VS(S{ = ) GΞ P->S^P) /bdcA-+bdcn. bdcA) VS! S{ = ) e P .

bdeb) 3 T ! S { = ) T G Ξ P /M^A. bdcc) T=ΓC7ATσU /bdeb, bdb.

bdcd) 3/?! T = RΓU /bdcc. bdce) 3 © ! Q{ = ) # /(5.4).

bdcf) S = Q I bdeb, bdce, bdcd, (10.8). bdeg) 2ί(£) / bdcd, bdA.

bdeh) 9I(Q) / ^ ^ , Me*, A. bdci) QΠ7 /Mcft, bdA.

bdcj) S = /Ύ7 I bdcf, bdci.

hack) S={ = ) = σU /bdcf bdce, bdcd, bdcc, (2. 3).

bdci) SaU /bdek, (2.3), (2.11), (2.2), (3.4), (3.1).

bdcm) S{ = ΓAσ)U I bdcj, bdci. bden) SGΞP /bdern, bdb.

bdd)) U^P I bddg, (2.6).

bdda) 0(U) /bb, (6.1). bddb) ?!(£/) /bdda, A.

bddc) Z/ΓC/ /bddb, bdA. bddd) U=ΓU Ibddc, (2.3).

bdde) Z7</£7 /(3.1). bddf) U(^ΓAa)U /bddd, bbde.

bddg) ί/GΞP /WJ/, W6.

bde) PFέiP /be,bde,bdd. bdf) BMIW^MZΞP /bde, (1.2), (2.1).

bdg) M=ΓU /bdf, bdb. bdh) PF = ΓC7 /bdf, bdg, {2.3).

bdi) 3K! W = KΓU /bdh. bdj) 51 (/ό /bdi, bdA.

bdk) S2I(PF) /Mi, fo#, A.

(10.11) S(PF)-»p(P7). (Every natural number is regular.)

Proof /A-»rf. A) Assume ff(Pf). b) VZ(j0ί(J)->p(J)) /(8.3).

c) VYZ((Z= FVZ{ = )Y)Λp(F)- ->p{Z) /(8.6), (8.9).

d) p(PF) /A, 6, c, (10.10).

(10f12) $(W)-+v(W). (Every natural number is totally normal.)
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Proof lA-*d. A) Assume J(W). b) VX(0(X)-+viX)) /(9.7).

c) v y z ( ( Z = r v z { = ) y ) Λ i ; ( Γ ) - - > w ( Z ) ) /0 .3) , (9.8).

d) *(W0 /A, 6, c, (10.10).

(10.13) 5-relation implies ^-relation. (Proof. For any X and Y satisfying

X%Y, take an object P satisfying P{σ)Y by (5.1). Then, we can prove

VS(S{ = )eΞP->SϊΞP) by (3.1) and (3.4). Since Y G P by (3.1) and (2.6),

we can prove XσY by (1.2), (2.1), (2.2), (3.5), and (10. D.)

(10.14) 3P-P{*)M. (Proof. By (2.2), (4.2), (10.2), and (10.13).)

(10.15) 3P-P{$0)M, i.e. 3 P V S ( S E ? Ξ ±p(S)). (There is an object formed

by all the natural numbers. Compare OZ-(1.8. 5) and OZ-(6.9.6). Proof. By

(6.5) and (10.14), we can take objects U and P satisfying 0{U) and P{%)U.

For this P, we can prove P{$0)M and V S ( S e P - f ( S ) ) by (2.2), (6.1), (6.3),

(6.8), (10.2), and (10.4).)

(10.16) P{$0)M-* ρ(P). (Any object formed by all the natural numbers

is regular.)

Proof lA-*g. A) Assume P{%0)M. b) 3U\ 0(U) /(6.5).

c) 3Q! Q{̂ )C7 /(5.1).

d)) P c Q ldA-+df, (2.15). dA) VΓ! Γ e P .

db) TS0M /Λ, dA. dc) TS#£/ /db, {6.3).

dd) 7WZ7 /dfc, (10.13), (6.4), (2.22), (3.3).

de) Tc ίJ /JJ, (3.1). df) T e Q /c, ^ .

e) p(U) /b, (8.3). f) pi©) /c, β, (8.11).

g) p(P) /</,/, (2.22), (8.8).

(10.17) P{Jt0)M-^^(P). (Any object formed by all the natural numbers

is totally normal.)

Proof IA-+d. A) VPMl P{$0)M.

b)) V Z ( Z e P - ^ ( Z ) ) IbA-bd. bA) VZ! X e P .

bb) ZJ0Λf /M, A.

be) #(X) / ^ , (10.4). bd) AX) /be, (10.12).

c) P{^)P /A, (10.2), (2.8), (2.29). d) v(P) /b, c, (9.5).

(10.18) VdWA#(W) -+${V), i.e. the relation d$0 implies the relation %0.
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ab. aA) VZ! 0(X).

abA) VT! TδX.

abc) v ^ G l /aA, (6.1).

0(T) /aA, abd, (6.7).

VT(TδZ $(T)))

(Any descendent of a natural number is also a natural number. Since the

second statement can be easily deduced from the first formula by (6.3) and

(10.4), we prove here the first formula formally.)

Proof la-f.

a)) \rx(fό(X)-»VT(TdX-+$(T)))

ab)) VT(T5X->ί(T)) labA->abf.

abb) Tδ^XWT^X /abA, (7.7).

abd) T=*X /abb, abc. abe)

abf) %(T) /*&?, (10.5).

b)) VYZ(Z = YAVT(TδY->%(T))

bA) VFZ! Z =

bb)) VT(TδZ-»#(T)) IbbA-bbd.

bbb) T<5=F lbbA,bA. bbc)

bbd) β(Γ) /Me, M.

c)) VFZ(Z{ =

cA) VΓZ! Z{

cb)) VT(TδZ->UT)) IcbA-^cbe.

ebb) TδzΞZV Ύ^Z /cbA, (7.7).

cbc)) TδeZ-^f(T) IcbcA-^cbce.

cbcb) S = F I cbc A, c A. cbec)

cbed) T£Γ /c^c, (2.2), (7.6).

cbd)) T = Z-*$(T) IcbdA-^cbde.

cbdb) F S F I{7.2).

ί(F) IcA, cbdb. cbdd)

bbA) VΓ! T5Z.

/bbb, (2.2), (7.6).

lcA-»cb.

cbA) VT!

cbcA) Assume 3S! TδS^Z.

T ( 5 ^ y /cbcA, cbeb.

cbee) ίf(T) /cδcJ, cA.

cbdA) Assume T = Z.

S(Z) /cbdc, cA, (10.7).

cMA, (10.2), (10.4), (2.2).

cbdc)

cbde) #(T)

cbe) ί(T)

d) VFZ((Z=

e) fi(Pf)-^VT(T(5PF->ϊ(T)) la, b, (10.10).

f) VδWt\%(W) -^ί(V) M

(10.19) Remark. The relation 5 can be regarded as the relation " < " in

the field of natural numbers. However, we do not discuss the matter here in

detail. (Compare OZ-(6.9.14).)
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(11) Sets and set variables

To construct a set theory in OF, our field of objects has only to be restricted

to a special field, the field of sets. Just as in OZ or in other theories of classes,

it seems adequate to introduce set variables also in OF. In this Section, we

try to define sets in such a way that a theory of sets can be imbedded in OF.

(11.1) DF. $(X)~ -p(X)/\v(X). Any object X satisfying $(X) i.e. any

object which is regular and totally normal is called a set.

(11.2) Set variables. We use small Latin letters for denoting sets. Expres-

sions of the forms Vs %(s) and 3s -$(s) naturally denote VS( $ (S) -* ̂ (S))

and 3S( $(S) Λ $(S)) respectively. Simple nominations of the form

Qs! ft(s) in PLK naturally denote QS! $(S)/\%(S). General nominations of

the form VsQiίi* Ό,khl S(5> *i> > tk) and general nominations of the form

BsQiti -Qkhl %(Sy ίi, . . . , tk) in PLK naturally denote the series of expres-

sions defined recursively by VS! $ (S), Qiίi 0*1*1 g(S, ίi, . . . , U) and

3S! $(S) ΛQiU -QjfeU-δίS, ίi, . . . ,U), Qίti Qat*! $(S, h, . . . , tk),

respectively. Here in these expressions, the variables s and S are assumed to

occur only in the indicated places each one of Q, Qi, . . . , Qk denotes either

of the quantifier symbols V or 3 ,* and tu . . . , tk may be set variables or

object variables (k> 1). Qjii QytyQs • $Ui, . . . , tj, s) and Qiίi

QiίyQsQyf-iίy+i * * Qy+*iy+*! ^(ii, . . . , ty, s, iy+1, . . . , ίy+yfe) (./', ^>0) are called

ί/zδ expressions obtained by restricting the quantifiers QS of Qiii QylyQS-

S(t3, . . . , iy, S) and Qiίi QytyQSQy+ity+i * * * Qy+̂ ίy+jfe! %(h, . , ty, S, ty+i,

. . . , fy+fe) ίo the set range, respectively. (Compare OZ-(5. 2.1) and see PD (D.

Notice that Vs! ^(s) does not denote VS! $(S)->g(S), but does denote VS!

Obviously, VS-g(S) implies Vs-^(s) and 3s-.^(s) implies 3S-g(S). In

the following, however, we do not expressly refer to this Paragraph when we

make use of this property.

(11.3) The set-theoretical images of formulas and the set-theoretical

images of special predicates and relations. Just as in OZ, we introduce notations

of the form |s3ί|, which denotes the formula obtained by restricting all the

quantifiers (including nominating quantifiers) of the formula s)ί to the set range,

and we call |s3ί| the set-theoretical image of the formula 3ϊ. (Compare OZ-
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(5.3.2) and OZ-(5.3.5).) If Γ is a special symbol such as " c " or ' V , we

denote sometimes \XΓY\ by ZΓ F and \Γ(X)\ by Γ ( Z ) . For example |-X"cy|

as well as X^ Y denotes the same formula Vs(se J£-*se Y). We can regard

f as a special relation or a special predicate when Γ denotes a special relation

or predicate. Relations or conditions of this type are expressed simply by

attaching the word "set-theoretical". For example, "X^Y" is read "X is a

set-theoretical subobject of y " or "X is set-theoretically included in y " and

"p(X)" is read "J£ is set-theoretic ally regular".

We have some obvious rules for constructing set-theoretical images of

formulas such as "|5IΛ93| is |3l|Λ|SB|", "|VX-3l(Λ")| is V*|91(*)|, assuming

that no more X's and x's occur in 91 (T)", etc. However, we do not discuss

the matter here in detail. (Compare OZ-(5.3. 4).)

(11.4) $(#), pύ), and v(x). (Any set is a set. Any set is regular and

totally-normal. Proof. By (11.1) and (11.2).)

(11.5) 0(P)-* $(P). (Any null object is a set. Accordingly, null objects

can be called also null sets. Proof. By (8.3), (9.7), and (11.1).)

(11.6) X = y-+ $(X). (Any object which is equal to a set is also a set.

Namely, the condition $(Γ) is a condition on T modulo equalty. Compare

OZ-(5.1.5).)

Proof lA-+d. A) Assume X = y. b) p(y)ί\v{y). /(11.4).

c) p(X)f\p(X) /A, b, (8.6), (9.3). d) $(X) /c} (11.1).

(11.7) Z ε j / - > $ ( I ) . (Any generalized member of a set is also a set.

Compare OZ-(5.1.14).)

Proof lA-*d. A) Assume J i j ; . b) p{y) ί\v(y) /(11.4).

c) p{X)ί\v(X) /A, by (8.5), (9.4). d) $(X) /c, (11.1).

(11.8) X{ = )y-» $ (X). (Any unit object of a set is also a set. See (11.11).)

Proof lA->d. A) Assume Z{ = )^. b) p(y)Ap(y) /(U.4).

c) p(X)ί\v{X) /A, bt (8.9), (9.8). d) %(X) /c, (11.1).

(11.9) P{{e)£)m^ $ (P). (Any object formed by normal generalized

subobjects of a set is also a set. Compare OZ-(3.2. 5).)
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Proof IA-+H. A) Assume P{{e)c:)w.

b) p(m)Nv(m) /(11.4).

c) 3Q\ Q{a)m /(5.1). d) p(Q) /c, 6, (8.11).

e)) P c ( ? leA-*ee, (2.15). eA) VT! ΓeP.

eb) T{e)£τw /A, eA.

ec) T<ww /eb, (2.24), (3.3). cd) Γ</m /ec, (3.1).

ee) Γ e Q /C, ed.

f) p(P) /e, rf, (2.22), (S.8). g) *(JP) /A, b, (9.10).

h) $(P) //, g, (11.1).

(11.10) P{ee)w-> $(P) and ζ?{ee )ra-+$(©). (The second formula

asserts that any sum object of a set is also a set. Since Q{<=^)m is equivalent

to C ( G £ ) W by (9.11) and (11.4), we have only to prove the first formula.

Compare OZ-(3.2.5).)

Proof /A-*h. A) Assume P { e e )m. h) pint) f\v(m) /(Π.4).

c) 3RI R{σ)m /(5.1). d) p(R) /c, b, (8.11).

e)) P c i ? /eA-+ee, (2.15). eA) VT! TeP.

eb) T E G W /A, βA. ec) Taom /eb, (3.2).

ed) Tjm /ec, {3.1). ee) T e i ? /c, ^J.

f) p(P) le, d, (2.22), (8.8). g) v{P) I A, b, (9.11), (9.12).

h) $(P) //, ^, (11.1).

(11.11) R{p, q)-+ $(R). (Any pair object of any two sets is also a set.

According to (6.9), (11.8) is a special case of this theorem. Compare OZ-

(3.2.11).)

Proof /A-> d. A) Assume R{p, q).

b) p(p)/\v(p) and p(q).\v(q) /U1.4).

c) p(R)Λp(R) /A, b, (8.12), (9.8). d) $ (#) /c, (11.1).

(11.12) X^-> $(JL). (Any descendent of a set is also a set.)

Proof /A->d. A) Assume Xδy. b) (D(^)AI (JV) /(11.4).

c) p(X)/\v(X) I A, b, (8.4), (9.4). d) $(X) /c, (11.1).

(11.13) Jt(PF)-> $(FF). (Any natural number is a set. Proof. By (10.11),

(10.12), and (11.1).)
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(11.14) P{$0)M-* $(P). (Any object formed by all the natural numbers

is a set. Proof. By (10.16), (10.17), and (11. l).)

(11.15) V I ( I G M - > $(Z))ΛM{e)M- - $(M). (Any normal object

formed exclusively by sets is itself a set.)

Proof /A-/. A) AssumeVKZGM^$(I))AM{E)M.

b) V K I G M ^ P ( I ) ) /A, (11.1). c) p(M) /b, (8.7).

d) V K I G M - ^ I ( I ) ) /A, (11.1). e) v(M) Id, A, (9.5).

f) $(Λf) /<:, e, (11.1).

(12) Extensionality

To construct a set theory in OF, it is desirable that sets of the same

extent can be regarded as equal to each other. In this Section, we describe

some theorems concerning the extensionality of sets in preparation for con-

structing a theory of sets. (See especially (12.4) and (12.9).)

(12.1) X = Y-+y/p(X&β= Y^p). (Equal objects are either simultaneously

members of a set or simultaneously non-members of a set.)

Proof lA->d. A) Assume X=Y.

b)) Vp(X<EΞp-»YeΞp) fbA-*be. bA) Vpl Xep.

bb) v(p) /(11.4). be) p{£)p lbby (9.2).

bd) Y*<=p /A, bAf (2.3), (1.2), (2.1). be) Y<Ξp /be, bd.

c) Vp(Y£Ξp->X(Ξp) /similarly to b.

d) Vp(X£Ξp=Ξ YEΞP) Ib, c.

(12.2) VP(X£:P-+Y(ΞP)->X=Y. (If 7 is a member of every object

containing X as its member, X and Y are mutually equal.)

Proof lA-»e. A) Assume V P ( Z e P-> F G P).

b) 3Q\ Q{ = )X /(5.4). c) J G Q /b, (2.26).

d) y e Q /Ac. e) X = Y /£, tf, (2.3).

(12.3) \Fp(xep-*Y&p)->x=Y. (If F is a member of every set containing

a set ΛΓ as its member, # and F are mutually equal.)

Proof /A-*/. A) Assume V>Uei>-> YGΞ/>).

b) 3ζ?! Q{ = )* /(5.4).
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c) # e Q /b, (2.26). d) ${Q) /b, (11.8).

e) 7e(? /A, c, d, (11.2).

f) x=Y /b, e, (2.3).

(12.4) x =y = Vp{x <=p=y<^ρ). (Two sets are equal to each other if and

only if they are either simultaneously members or simultaneously no members

of every set. Proof. By (12.1) and (12.3).)

(12.5) X<=y = Xt=y. (Broadly speaking, membership e is equivalent to

the generalized membership e for sets. Proof. By (9.2) and (11.4).)

(12.6) X{e=)y = X = y. (Broadly speaking, the relation {£=) is equivalent

to equality = for sets. Proof. By (2.1) and (12.5).)

(12.7) Equality = implies set-theoretical equality = . (Proof. By (2.1)

and (11.3).)

(12.8) Set-theoretical equality = imples equality = for sets. Namely,

\fs(s e χ = s^y) -> x =jy.

Proof IA -» d.

A) Assume x=y i.e. VS(SGΛ; = SEI};) by (2.1) and (11.3).

b)) xςzy /bA~>bc, (2.15). bA) VT! T^x.

bb) $(Γ) /bA, (2.6), (11.7). be) T^y /A, bA, bb, (11.2).

c) yΩx /similarly to b. d) x-y /b, c, (2.17).

(12.9) Set-theoretical equality = is equivalent to equality = for sets.

(Proof. By (12.7) and (12 .8 ) . )

(12.10) Set-theoretical equality = is reflexive, symmetric, and transitive.

(Proof. By (2.1) and (11.3).)

(12.11) X^y = X^y. (Any object is a generalized subobject of a set if

and only if the object is a subobject of the set. Proof. By (2.15), (2.21), and

(12.5).)

(12.12) Inclusion c implies set-theoretical inclusion 2. (Proof. By (2.15)

and (11.3) . )

(12.13) χ£Y-+χc:Y. (Proof. By (2.6), (2.15), (11.2), (11.3), and (11.7).)

(12.14) Λ:£ Y = xQ Y. (Any set is a set-theoretical subobject of an object
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if and only if the former is a subobject of the latter. Proof. By (12.12) and

(12.13).)

(12.15) Set-theoretical inclusion <= is reflexive and transitive. (Proof. By

(2.15) and (11.3).)

(12.16) x0Y = x0Y. (Proof. By (2.6), (6.1), (11.2), (11.3), and (11.7).)

(12.17) Z{x, y) ->\Z{x, y}\. E s p e c i a l l y , Z{ = )x-> \Z{ = )x\. ( P r o o f . B y

(6.9), (11.3), and (12.9).)

(13) Set-theoretical satellites and set-theoretical descendents

In this Section, we describe some properties of the set-theoretical satellite-

relation σ~ and the set-theoretical descendent-relation ?. To make our descrip-

tion simpler, we introduce the notation for set-theoretical products of binary

relations at first.

(13.1) DF. X(Γ*Δ)Y^:3s-XΓsΔY. The relation Γ*J is called the set-

theoretical product of the two binary relations Γ and A.

(13.2) \XΓAY\=X(f*2)Y. (Proof. By (11.3) and (13.1).)

(13.3) The set-theoretical relation-product Γ*J of any two binary relations

Γ and Δ implies the relation product ΓΔ of them. The set-theoretical relation -

product is monotone in the sense that the relation Γ*Δ implies the relation

Θ*Λ if Γ and Δ implies Θ and A respectively. Also, the set-theoretical relation-

product together with the relation product is associative in the sense that the

relations Γ(AΘ), Γ*(AΘ), Γ(J*Θ), and Γ*(J*Θ) are equivalent to the relations

{ΓΔ)Θ, (Γ*A)Θ, (ΓA)*Θ, and (Γ*J)*Θ, respectively. Accordingly we usually

omit the parentheses denoting the order of combinations.

Any relation of the form Γ*(JΛΘ) implies Γ*J as well as Γ*<9, and any

relation of the form (ΓΛJ)*(9 implies Γ*6> as well as J*β. Also, the set-

theoretical relation-product is distributive over the combination V in the sense

that any relation of the form Γ*(JVΘ) is equivalent to Γ*JVΓ*(9 and any

relation of the form (ΓV J)*Θ is equivalent to Γ*6>V/Θ. Further, any relation

of the form ΓrΔ is, just as the relation ΓΔ in (2.8;, right invariant if A is so,

it is left invariant if Γ is so, and it is invariant if Γ is left invariant and A is

right invariant. (Proof. By Definition (13.1).)
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(13.4) XΓeΞy = -XΓ*^y, XΓ = y = XΓ*=y, and x = ΓY> ΞΞ - # =

(Proof.ZΓej;^XΓ*ejv can be proved by (2.6), (11.2), (11.7), and (13.1). XΓ=y->

XΓ*=y and x= ΓY-+X = *ΓΓ can be proved by (2.3), (11.2), (11.6), and (13.1).

ZΓ*ev->J¥Γej>, XΓ*=y->XΓ=y, and # = *Γ7->Λ;= ΓY hold by (13.3).)

(13.5) X^y^X^y. (Proof. By (1.2), (2.1), (11.3), (12.7), and (13.1).)

(13.6) #eY-**eY. (Proof. By (1.2), (2.1), (11.3), (12.8), and (13.1).)

(13.7) Membership e , the generalized membership e, and the set-

theoretically generalized membership e= are mutually equivalent for sets.

(Proof . B y ( 1 2 . 5 ) , ( 1 3 . 5 ) , a n d ( 1 3 . 6 ) . )

( 1 3 . 8 ) X£y-+Xty.

Proof lA-*b. A) VXyl X^y.

b)) Xty /bA->bd> (1.3), (11.3). bA) Vs! s e X

bb) S G I /M, (13.6). be) s % /W, A, (2.14).

bd) S G ^ / ^ , (13.5).

(13.9) xtY->χczY.

Proof /Λ->6. A)

b)) Λ Γ £ F lbA->be, (1.3). bA) VS!

bb) $(S) /6Λ, (11.7). be) S^x /bA> (13.5).

bd) S G F /A, bb, be, (1.3), (11,2), (11.3).

be) SEEY /bb, bd, (11.2), (13.6).

(13.10) Inclusion c , the generalized inclusion £, the set-theoretical inclu-

sion £, and the set-theoretically generalized inclusion £ are mutually equivalent

for sets. (Proof. By (12.11), (12.14), (13.8), and (13.9).)

(13.11) X{^)y->\X{^)y\. (Proof. By (11.3) and (13.7).)

(13.12) \x{£)y\->x{eϊ)y. (Proof. By (2.6), (11,2), (11.3), (11.7), and

(13.7).)

(13.13) \x{t=)y\=x=y. (Proof. By (12.6), (13.11), and (13.12).)

(13.14) a{p)->a{p). (Proof. By (1.4), (11.3), (11.7), and (13.10).)

(13.15) The set-theoretical satellite-relation $ implies the satellite relation

a for sets.
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Proof /A-»c. A) Vxyl xa'y.

b) \rp{d{p)/\yt=*<=P'->xe*<=p) /A, (1.5), (11.3), (13.2).

c)) xσy IcA -> cr. cA) Define Σ by XΣY ^ $ (X).

cb) 3 P ! P{ = 2- Λ</).y /(4.2).

cc)) VT(TeP-*$(T)) /rcA-*^. ccA) VT! T G P .

ccb) 3S! T = Sî y /ccA, c£. ccc) $(S) /cc£, cA.

ccd) $(Γ) /<?«:, (11.6), (11.2).

cd) P{^)P /cb, (2.3), (2.8), (2.9), (3.5), (2.29).

ce) $(P) Ice, cd, (11.15). cf) 3^! {̂ = I'Atfb' /cb, ce, {11.2).

eg)) V s ( s e * G ^ s c * G j ) ) IcgA-^cgg. cgA) Vs! s£*ej ι .

cgb) 3ί! s(ΞttΞp IcgA, (13.1). cgc) f</;y /cgb, cf.

cgd) s ^ / ^ , ^ c , (3.1), (3.2). cge) s = s-ξy /(2.3), (11.4), cA.

cgf) s c s G ί /(13.10), (2.13), cgd, cge, cf.

egg) s £ * G ί /cgf, (13.1).

eh)) Vs(sc*Gί-.se*Gί) /chA->chi. chA) Vs! sc*e^ .

chb) 3ί! sίt^p I chA, (13.1), (13.10).

chc) 3u\u{ = )s /(5.4), (11.8), (11.2). chd) ί^ /chb, cf.

che) ί#(ĵ  /cΛc, cftft, cM, (3.1), (3.3), (3.4).

chf) u=uΣy /(2.3), (11.4), cA chg) u<=p Iche, chf, cf.

chh) SZΞU /chc, (2.26). chi) se*e/> /cftΛ, cΛ̂ , (13.1).

ci) tf(ί) /ĉ r, cλ. (1.4), (11.3), (13.2).

cj) 3z\ z{ = )y /(5.4), (11.8), (11.2). ck) y^z /cj, (2.26).

el) z^zΣy /(2.3), (11.4), cA. cm) ary /CΛ (3.4).

en) 2Gj) /c/, cm, c/. co) y(=*<=p /ck, en, (13.1).

cp) 3ιv\ x^w^p /ci, co, b, (13.1). cq) way lep, cf.

cr) xσy /cp, eg, (3.1), (3.2).

(13.16) |VS(See^-> S<=p)\ = VS(SGGj)->SGί). (Proof. By (2.6),

(11.2), (11.3), (11.7), (13.1), (13.2), and (13.3).)

(13.17) Xdy-*Xty. (Proof. By (7.1), (11.3), (13.5), (13.6), and (13.16).)

(13.18) xty-*xδy.

Proof IA-+1. A) \fxy\ xiίy.

b) Vp{Vs{seΞ*ςΞp->s€Ξp)->{yeΞp->χςΞp)) /A, (7.1), (11.3), (13.2),

(13.7).
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c) 3P\ P{ = δ/\σ)y /(4.2).

d) P{δ)y /c, (7.6), (7.5), (2.2).

e)) VΓ(TεP->$(Γ)) /eA-+ec.

eb) Γίy /eA, A ec) $(Γ)

f) P{έ)P /d, (2.29), (7.6). g)

*0 3^! ̂ {dVy /d, # (11.2).

i)) V5(sG*Gί-^5Gi)) liA-+ie

ib) 3ί! s E ί G ί /ίΛ (13.1).

id) s<5.y /#, ic, (2.6), (7.3), (7.2).

ie) sεj) /id, ft.

j) y^p IK (7.2). k) *e^ /ί, /, 6. 1) xδy /k, h.

eA)

leb, (11.

) $(P)

iA)

ic) tδy

VT! Γe
12).

le, f, (11

Vs! 5G*e

p.

.15).

(13.19) The descendent relation δ and the set-theoretical descendent-rela-

tion δ are equivalent for sets. (Proof. By (13.17) and (13.18).)

(14) Set-theoretical images of axioms and theorems

In this Section, we prove that the set-theoretical images of axioms and

theorems (without capital-letter free-parameters) are provable in OF. (See

(14.3) and (14.4). Compare OZ-(6.1).) By virtue of this proof, we can see

also that OZ can be imbedded in OF. (See (14.6).)

To prove the above meta-theorem, we make use of a theorem, which can

be regarded as the set-theoretical image of a presumably unprovable proposition

in OF. (See (14.1).) By virtue of this theorem, we can also introduce term

symbols in our theory of sets. (See (15.1).) In addition to this theorem,

there are some important theorems of this kind, a couple of which are

described in this Section.

(14.1) x^y-> |9I(#) = 91 (jy) I, where any number of free set-variables may

occur in %(t). (We can prove this meta-theorem by making use of (2.1),

(11.3), (12.4), and (12.9).)

(14.2) Any relation of the forms = Γ , f = , and = Γ = as well as any

relation of the forms =*Γ, Γ* = , and =*Γ*Q is equivalent to the relation

f for sets. In other words, any relation of the form Γ is set-theoretically

invariant. Here, any number of free set variables may occur in f. (Proof.

By (12.8), (13.1), and (14.1).)
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(14.3) I 3P P{{Γ)σ)m\, where P should not occur in Γ but any number of

free set-variables may occur in Γ. (The set-theoretical image of any axiom

of OF is provable in OF. Compare OZ-(6.1.1).)

Proof IA -> k. A) Define Δ by XΔY^ • X = *f * = Yarn.

b) 3P! P{{J)<?)m /axiom.

c)) VT(T^P->$(T)) IcA-^ce. cA) V Π T e P .

cb) 3Z7! T{Δ)Uam /cA, b.

cc)) VMPFeT->S(PF)) /ccA-*ccc.

ccA) VPF! PFe T. ccb) FKJtf /ccA, c&.

ccc) $(W) /ccb, A, (11.6), (13.1).

cd) T { G ) T M , Λ (13.3), (2.3), (2.29). ce) $(T) /^ , cJ, (11.15).

d) P{e)P /^, (2.8), (2.10), (2.29). e) S(P) /c, d, (11.15).

f) 3^! p{{Δ)σ)m /b, e, (11.2).

g)) Vt(t€=p-> -\t{Γ)σm\\J0(t)) IgA-^gk. gA) Vtl tepΛ-r0(t).

gb) i{J)^m /^Λ/. gc) 3F! t{Δ)Yσm Igb.

gd) 3S! S e f / ^ , (6.1). ge) SJF /̂ rf, #?.

gf) S=*f* = Yσm /ge, A.

gg) S(F) /^/, (2.3), (11.6), (13.1).

gh)) Vs(seί->sΓ7) IghA^ghd.

ghA) Vs! sGί. ghb) sJ7 lghAygc.

ghc) s = ̂ f*=F I ghb, A. ghd) sΓF /ghc, gg, (U-2).

gi)) Vs(sfF->5eί) IgiA^gic. giA) Vs! sΓ7.

gib) s jy M, £iA, ^/, ̂ , (2.3), (11.2), (13.1). gic) seί / ^ , ^ .

gj) I ί { ^ ) y | /gh, gi, (11.3). gk) |ί{Γ)(;wl /gj, gg, gf, (11.2).

h ) ) Vt(\t{Γ)σm\^teΞp) /hA^hg. hA) Vί! |*{Γ)<τ»ι|.

hb) 3^! lί{Γ)^|Λ^tfW /Ai4, (13.2), (13.1).

he)) VS(SίΞt->SJy) IhcA-^hcd. hcA) VS! S e ί .

heb) $(S) IhcA, (2.6)., (11. 7). hec) Sf> /ΛcA, heb, hb, {11.2), (11.3).

hed) SJ^ /hec, heb, hb, A, (2.3), (11.2), (13.1).

hd)) \fS(SΔy->S£Ξt) /hdA-*hde.

hdA) VS! SΔy. hdb) S = * f * = ^ IhdA, A.

hdc) $(S) /M6, (11.6), (13.1). hdd) Sfy /hdb, hdc, (14.2).

hde) S e ί //?Jc, Mύί, hb, (11.2), (11.3).

he) ί{J)v /ftc, M. hf) f{J)crm /M hb. (13.15).

https://doi.org/10.1017/S0027763000011077 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011077


162 KATUZI ONO

/h/,f.

3n(0(n) Λ I n{Γ)σmI)

Assume 3w! 0(w) Λ |n{Γ)am\.

hg)

i))

iA)

ib))

iba))

ibab)

ibac))

ibacb)

ibad)

j))

jA) Assume

jb))

jbb)

jbc)

jbd))

jbdb)

HA -> ib.

Vt(t£Ξp->\t{Γ)σm\) I ibaA

\t{Γ)σm\V0(t) I ibaA, g.

0(t)->\t{Γ)σm\ I ibac A

t -n I ibac A, iA, (6.8).

t{Γ)σm\ I ibab, ibac.

• ibad. ibaA) Vt\

ibacA) Assume 0(ί).

ibacc) \t{Γ)σm\ libacb, iA, (14.1).

Λ In{Γ)σm\

jbA) Define ® by

(2.3), (2.8), (2.29).

VT(Te©->$(T)) ljbdA->jbdd*

3WI T= W(Θ/\<=)p IjbdA, jbb.

jbdA) VT!

jbdc)

jbdd)

jbe)

jbf)

jbg))

&(W) I jbdb, (2.6), (11.7).

$(T) I jbdb, jbdc, (11.2), (11.6).

$(Q) I jbc, jbd, (11.15).

, jbe, (11.2).

IjbgA-^jbgc, jbgf.

jbgc)

jbge)

jbh))

jbhA)

jbhb)

jbhd)

jbi))

jbia))

jbiab)

jbib))

jbibb)

jbibd)

/jbgb, (12.1). jbgd) 3W\ t=WΘp Ijbgb.

WO ljbgd,jbA. jbgf) -70(ί) /ibge, jbgd, (6.7).

t=p/\-7 0(t)' ->t^q) ljbhA->jbhd.

Vf! ίG^Λ -70(ί).

ί@i> /jbhA, jbA.

ί £ ^ /jbhc, jb/.

|<7({Γ)<;M /jbia, jbib, (11.2), (11.3).

jbhc) ί = ( 0 Λ ε ) ί /jbhb, jbh A, (2.3).

Vt(t(Ξq-*\t{Γ)σm\) I jbiaA

tt=pA-?0{t) I jbia A, jbg.

Vf(l *{/")*,» I->fe$) IjbibA-

fε=£ I jbib A, h. jbibc)

ί eζ? I jbibb, jbibc, jbh.

jbiac. jbia A) Vί! ί ε^ .

jbiac) U { Γ W | I jbiab, g.

jbibd. jbib A) Vί!

70(ί) I jbib A, j A.
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k) 3q\q{{Γ)a)m\ It, j .

(14.4) Remark. (14.3) implies that the set-theoretical image of every

theorem of OF is provable in OF. (Compare OZ-(6.1.2).) Of course, we

regard hereby that all the parameters seemingly free in the theorem as bound

variables which are bound to the removed universal quantifiers standing at

the top of the theorem.

With respect to free set parameters, we can now talk of the set-theoretical

image of a proposition without assigning its special expression, because the

set-theoretical images of any two equivalent propositions are equivalent to

each other. (Compare OZ-{6.1.4).)

(14.5) By (14.4), we can regard the set-theoretical image of every theorem

as a new theorem. In the following, we refer to the set-theoretical image of

a theorem («, b) by (β, b)*.

It should be remarked here that we must be careful when we make the

set-theoretical image of a theorem seemingly containing free set-variables.

For example, the first formula of (11.4)* is not the formula I $(#) | , which

means VX( $ (X) -* | S (X) I), but it means V#( I $ (*) I -> I $ (*) I) since the first

formula $ (x) of (11.4) is an abbreviation of VZ(S(J)-> $(X)). (See (11.3),

(14.4), (11.4), and also (14.8)-(14.10).)

(14.6) We can imbed OZ in OF by the interpretation that we regard

proto-membership "€" of OZ as membership " e " of OF and the field of objects

X of OZ as the field of sets x of OF, accordingly, we regard the satellite

relation "#" of OZ as the set-theoretical satellite relation " ? " of OF. (Proof.

By OZ-U.1.2), OZ-U.1.3), (1.4), (1.5), (2.15), (11.3), (13.1), and (13.10).

See foot-note 9).) Accordingly any axiom of OZ is interpreted as a proposi-

tion of the form Vw wm3pVx(χ ^p = • %(x) l\x^am) which contains no

more free variables.

Now, let %{X) be the formula obtained by replacing all the variables in

%{x) other than u, . . . , w, and m by their corresponding object variables,

and let Γ be the binary relation defied by XΓY^KX), where 7 is a variable

which does not occur in %{X). Then, evidently holds Vxy(xfy = $(#)) in OF.

By (4.2)*, Vw -wmΞpl \p{ =Γ/\σ)m\. For this p, we can further prove

Vx(x<Ξp= t(x)Nxom) by making use of (11.3), (13.1), and (14.2). Thus
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OZ can be imbedded in OF.

(14.7) \X{EΞ)X\ (Any set is set-theoretically normal. Proof. By (11.4),

(9.2), and (13.11).)

(14.8) v(x). (Any set is set-theoretically totally-normal. Proof. By (14.7),

(9.1), and (11.3).)

(14.9) p(x). (Any set is set-theoretically regular.)

Proof /A->h (reductio ad absurdum). A) Assume -?p(x).

b) xp*Ξ>*dx /A, (8.1), (11.3), (13.2).

c) 3yl xpy=>*$x /b, (13.1).

d) y=)δx /c, (13.1), (13.18).

e) yft(t$xM<Ey-*t=>*ey) /c, (8.1), (11.3), (13.2).

f)) xpy /fA-*fd, (8.1). fA) VT! Tδxf\TtΞy.

fb) S(T) If A, (2.6), (11.7). fc) Tίx //A, (13.17).

fd) T B G ^ lfA,fb,fc, e, (11.2), (13.3).

g) ~7p(x) If d, (8.1). h) contradiction /g, (11.4).

(14.10) § (x). (Any set is a set-theoretical set. Proof. By (11.1), (11.3),

(14.8), and (14.9).)

(15) A theory of sets

In this Section, we show that the Fraenkel set-theory SF (without the

axiom of choice) can be imbedded in OF. To prove this, we show that all

the axioms of SF hold in the field of sets in OF. In the proofs of these

interpreted axioms, we make use of (11.2), (11.3), and (13.1) without notice.

For convenience' sake, we introduce term symbols in our theory of sets,

although they are not indispensable for our system.

(15.1) Term symbols. If there is a set p satisfying Vs(s <Bp = 31(s)),

then V5(se # = 21 (s)) implies q=p; so, according to (14.1), we do not have

to draw any distinction between these sets p and q in our set theory, since

= can be regarded as equality. We denote the set p by the term symbol

{s 2ί(s)} as in OZ or in other ordinary set-theories. (See OZ-(6.3). Concerning

the meaning of the set-theoretical images of propositions, in which term symbols

occur, see OZ-(6.3.4).) For any term symbol 1 holds evidently $(l). In the
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following we make use of this fact without notice.

(15.2) Unit sets and pair sets. By (6.9)* and (6.11)*, we can introduce

the term-symbol {x, y) (pair set of x and y) which denotes {s; s=y\ί s^y}.

{x, x) is denoted by {x} (unit set of x) as usual. By (6.9)*, hold s^{x, y)

= 's^x/\s = y and s^{x}~s^x. (Compare OZΛ6.δ).)

(15.3) Sum sets. By (5.3)*, we can introduce the term symbol

(sum set of m) which denotes {s sll*era}. By (13.7) holds seS(m) == se

(Compare OZ-(6.7.10).)

(15.4) Power sets. By (5.2)*, we can introduce the term symbol

(power set of m) which denotes {s; sςLm). Evidently, holds s^^(m) =

(Comdare OZ-(6.7.8). )

(15.5) Null set. We can introduce the term symbol 0 (null set) which

denotes {x * $ * } . We can show by (2.3)*, (6.1)*, and (6.5)*, that {x; x^x}

is an admissible term symbol. Evidently holds Vs • s Φ 0. (Compare OZ-(6.4).)

(15.6) Infinite sets. By (10.15)*, we can introduce the term symbol %

(set of all the natural numbers) which denotes {s; 3 (5)}. By (15.2), (15.5),

(6.1)*, (10.5)*, and (10.6)*, we can prove easily

0 e ϊ , and x e #-» {x} e ?.

These formulas show that the axiom of infinity holds in our set theory.

(Compare OZ-(6.9).)

(15.7) Equality. Concerning equality in our theory of sets, hold

=pΞΞy^p), and

by (2.1)*, (12.10), (12.9), and (12.4). The third formula can be regarded as

the axiom of extensionality. (Compare OZ-(6.2).)

(15.8) Aussonderung. By (4.4)*, we can introduce the term symbol

{s |s = (ΓΛ€=)»i|}. If we define Γ by XΓY^ί(X), we can see by (14.1)

and (12.9) that the term symbol can be also expressed as {s |3ί(s) | Λsew}.

Accordingly, the aussonderung axiom holds in our set theory, because any

set-theoretical condition on 5 can be expressed in the form of |9ϊ(s)|. (Compare

OZ-(6.7.4).)
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(15.9) Replacement. Let xΔz be a relation satisfying \fxy(xΔz/\yΔz

-># = _y). By (4.5)* we can introduce the term symbol {s | S { G J ) G W | > .

We prove now that \sΔ^m\ implies | s{ε J ) G W | . Namely.

Proof of I S J G m\ -» \s{^Δ)(= w| /A->c. A) Assume 3j>! sΔy^m.

b)) | S { G J ) ) ; | /to, W>.

ba)) Vf(fe=s-**e*2.)>) /baA-*bab. baA) Vf! ίGs.

bab) ί e s2>> /&#A, A.

bb)) Vf(fe*2.y->fes) IbbA-^bbd. bbA) V*! fe*2.y.

bbb) 3#! t^u'Δy /bbA. bbc) # = s /££&, A, assumption for 2.

bbd) ί E s /^6, 6^, (14.1).

c) |S{GΞ J ) G W | /^, A, (11.3).

Now by (15.8), we can introduce the term symbol {t \

|S{G J ) G W | } } , which can be also expressed as {t \tΔ^m\} by virtue of the

above proof.

Thus the axiom of replacement holds in our set theory, because every

set-theoretical relation can be expressed in the form of 2.

(15.10) Fundierung. By reductio ad absurdum, we can prove in our set

theory that any non-vacant set x has a member which is disjoint with x.

Namely,

Proof of V#(#em->#3*e#2)-»#2 = 0 /A-*g.

A) Assume V#(# e m-+x3*e nί) Λ wφ 0.

b) 33>! J>GΞ™ /A, (2.1)*, (15.5). c) m^m /A, (8.1)*.

d) yίm Ib, (7.3)*, (13.7). e) mp*Ξϊ*dm /c, b, d.

f) -7jo(m) /e, (8.1)*. g) contradiction //, (14.8).

(15,11) By (15.2H15.10), we see that SF (the Fraenkel set-theory without

the axiom of choice) can be imbedded in OF.

Naturally, we can also introduce term symbols such as x U y, xΠy, <#, jy>,

xxy, etc., or we can construct a theory of ordinal numbers with recursive

functions or recursively defined relations. In this work, however, we do not

discuss the matter in detail. (Compare OZ-(6.9.15).)
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