A STRONGER SYSTEM OF OBJECT THEORY
AS A PROTOTYPE OF SET THEORY

KATUZI ONO

Introduction

We have introduced in our former work [1] a theory of mathematical
objects which can be regarded as a prototype of set theory. We have been
successful to imbed the Zermelo set-theory [3] without the axiom of choice in
our system. However, it seems impossible to imbed the Fraenkel set-theory [4]
in our system even without the axiom of choice. In this work, we introduce
another system of object theory in which we can imbed the Fraenkel set-
theory without the axiom of choice. We shall denote our former system by OZ
(object theory in the manner of the Zermelo set-theory) and the new system
we are going to introduce in this work by OF (object theory in the manner of
the Fraenkel set-theory). We shall also denote the Zermelo set-theory without
the axiom of choice by SZ and the Fraenkel set-theory without the axiom of
choice by SF.

As for description of our theory, we illustrate some notions and leading
ideas properly important for OF in ordinary sentences to give vivid images of
them. Concerning proofs, our reasoning can be formulated in the so-called
classical predicate-logic of the first order, such as the logical system LK formu-
lated by Gentzen [6]. As it is advisable to minimize careless mistzkes in our
real deductions by formulating our theory in a formal system, we have formu-
lated our proofs in the way of describing formal deductions introduced in our
former work [2]. In the following, we denote our logical system, the
combination of the logic and our way of description, by PLK (practical system
of logic equivalent to Gentzen’s LK). It should be also remarked here that
our system assumes existence of some objects. In fact, any proposition of the
form 3x(A(x) -~ A(x)) is provable in LK. For the most part of theorems and

meta-theorems in this work, however, we indicate their logical basis only. We
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give exact formal proofs described in PLK only for theorems and meta-theorems
properly important for OF.

Originally, we do not need any special term-symbols such as 0, {0}, {x, y},
f(x), etc. All the symbols denoting objects can be taken as variables. For
convenience’ sake, however, we introduce a special kind of term symbols in
the set theory described in Section (15), because we can show that there is
no danger of appearing new contradictions caused by introducing these term
symbols. (We do not give further any detailed proof of it in this work.)
Variables for objects in general are denoted by capital Latin letters. In Section
(11), however, we ntroduce set variables denoted by small Latin letters which

are used especially for sets.

Just as the system OZ, the new system OF is also an extremely simple
system. It has only one primitive notion “membership” (notation “=”) and
assumes only one axiom scheme. OF is a system closely related to SF in the
sense that the only one axiom scheme of OF resembles the axiom of replacement
of SF, just as OZ is closely related to SZ in the sense that the only axiom
scheme of OZ resembles the aussonderung axiom of SZ. OF is a system
stornger than OZ in the sense that we can imbed OZ in OF (See (14.6)".),
whereas it seems impossible to imbed OF in OZ. The main purpose of this
work is to introduce the system OF and to prove further that a theory of sets
equivalent to SF can be established in OF quite naturally.

Just as in OZ, we describe the axiom scheme of OF by making use of the
satellite notion. The satellite notion of OF is a modification of the satellite
notion of OZ, but we must admit that the definition of the latter seems slightly
simpler than that of the former. So, we can not say that OF is an improved
system of OZ. However, the imbedding process of SZ as well as of SF in OF
is much simpler than that of SZ in OZ. Moreover, the Fraenkel set-theory
looks like a better ground than the Zermelo set-theory to construct mathematical
theories in it. So we believe that it is an important problem to seek for a
theory as simple as possible in which we can construct the Fraenkel set-theory.
Our new system OF is a trial system intended to be a basic system of this

kind. In this work too, we discuss nothing concerning the axiom of choice,

1) In the numbering of the forms () and (a, b) in this work, @ and b denote the
numbers of a section and a paragraph respectively.
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but it may be possible to prove consistency of the axiom by following Goédel’'s
proof, [5].

OF has the only one primitive notion ‘“membership”, naturally a binary
relation denoted by “=”. In OZ, we have succeded to establish a set theory
equivalent to SZ by restricting our object field to producible objects (See OZ-
(3.2.1)” and 0Z-(5.2.1) together with 0Z-(2.2.1) and 0Z-13.1.1).) and at the
same time by defining membership “ € ” in terms of proto-membership €, the
only one primitive notion of OZ. (See OZ-(4.9.1) together with OZ-(4.6.1).)
To imbed SF in OF, we have also to restrict our object field to sets (defined
in (11.1)), but it is not necessary to modify our primitive notion membership
€ any more. We can really develop a set theory in OF in a simpler way
than in OZ because of this situation. Anyway, membership & of OF corresponds
to proto-membership € of OZ.

In developing the two systems of our object theories OZ and OF, essential
difference lies in the notion of unit objects. In OZ, unit objects are defined in
connection with identity = of OZ, while in OF, unit objects are defined in
connection with equality = of OF which is defined as X = Y=VS(S€ X=SeY)?
and consequently which corresponds to proto-equality = of OZ. (See (2.1),
0Z (1.2.3), 0Z-(1.2.5), and OZ-(1.4.3).) However. it should be noticed here
also that these notions coincide if they are properly interpreted in set theories

such as the system SF.

In OF too, the notion of satellites is essentially important. Also the satellite
notion of OF coincides with the satellite notion of OZ, if they are properly
interpreted in SF. However, they show an apparent difference in development
of our object theories by the difference between the unit-object notions of the
two systems or, in other words, by the difference between identity of OZ and

equality of OF.

In describing OF, we employ further two kinds of meta-symbols for denoting
conditions and relations. First kind of such symbols are special symbols such

as = used for abbreviations of long expressions. Examples of notations

2 The numberings of the forms OZ-(a), OZ-(a, b), and OZ-(a, b, ¢) denote (a’, (a, b),
and (@, b, ¢) of our former work [1], respectively.
" % Any formula of the form A<V is read “¥U is defined by B”, which means that the
notation U stands for the proposition 9.
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expressed by symbols of this kind are X=Y, X<V, X0Y, XY, 9(X), o(X),
etc. XCY means YS(Se X—>SeY) and #(X) means VS-S& X respectively.
(See Definitions (2.15) and (6.1).) Symbols such as 0 and ¢ are used for
denoting conditions on a single variable as well as for denoting binary
relations. For example, 0(X) is expressed also as X0Y when the condition
P(X) is regarded as a binary relation. (See Definition (6.1).) Usually, the
condition and the binary relation denoted by a common symbol are closely
related to each other. ILet us take up now another example 4. Just as in
07, we define also in OF the condition ¢(P) at first and define the relation
XoY thereafter by making use of the notation ¢(P). (See 0Z-(1.1.3), (1.4),
and (1.5.).) The conditions and relations denoted by these special symbols can
be of course defined in terms of membership €, the only primitive notion of
OF.

Another kind of meta-symbols are used for denoting forms of formulas.
For this purpose, we use capital German letters together with capital Greek

letters which are used especially for binary relations. For example,
(A) IPYX XeP=-UX)NXs M
is a proposition scheme corresponding to the aussonderung axiom, and
(B) VXYZY(XIZNYTZ+ >X=Y)-»>3PVX\XeP=3Z(XIZNZ= M))

is a propoistion scheme corresponding to the axiom of replacement.

As we express the forms of propositions mostly by symbols for binary
relations of this kind, it looks convenient to introduce here some combinations
and operations of binary relations.

Together with the relation products of binary relations (See OZ-(1.1.1).),
we use the logical combinations of the forms I'CG4 of 1" and 4, which are
defined by X(I'C 4)Y € « XI'Y'{> X4Y, where <> stands for any one of A, V,
-, and =. Similarly, we can define the negation —~ 7" and the inverse relation
I’ (or I"™') of I' in a natural way. Notations such as &, =, =, 2, etc. can

be also used if adequate. By the way, we use also expressions such as

4 In describing axioms and theorems, we usually omit universal quantifiers of a
formula standing at its top and having the whole formula as their scope.

5) Quantifiers of the forms vX..-Z and 3X..-Z naturally stand for vX-..-vZ and
3X--. 3Z respectively.
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XI'YdzZ, XI'YAZOW, etc. in case of need, which naturally stand for XI'Y A Y4Z,
XI'YNYAZNZOW, etc., respectively. Naturally, the relation product is as-
sociative in the sense that any relation of the form (I'4)8 is equivalent® to
I'(40). Accordingly, we usually omit parentheses denoting the order of
multiplications. Moreover, the relation product is monotone in the sense that
the relation I'4 implies” the relation @4 if I" and 4 imply 6 and 4 respectively.
So, any relation of the form I'(4A®) implies I'4 as well as I'®, and any
relation of the from (I'A4)® implies 7® as well as 46. Also, the relation
product is distributive over the combination V in the sense that any relation
of the form I'(4V @) is equivalent to 74V I® and any relation of the form
(I'V 4)6 is equivalent to 16V 46.

Further, we define the comprehension operator {I') by
(C) X{rYy=VS(Se X=S8I'Y),

where S is a variable which does not occur in /. We denote the inverse
relation of {I") naturally by (I't. We have introduced the operaor “{ )”
already in our former work [2], although we did not give it the name “com-
prehension operator” there (See PD-(3)¥). This operation makes our descrip-
tion amazingly simple. For example, equality = of OF is denoted simply by
{ &) and the unit-object relation is denoted simply by {=). Namely, X{=)Y
means that X is a unit object of Y. (See (2.26).)

Concerning equality in OF, we can not expect that any relation of the
form =1 as well as any relation of the form I"= is equivalent to I. Any
relation I" which is equivalent to =1 (or to I"=) is called left invariant (or
right invarient). 1If a relation is left invariant as well as right invariant, we
call it invariant. (See Definition (2.2).)

Although the satellite notion of OF is really somewhat different from the
satellite notion of OZ, the interpreted satellite-notions of these two systems
coincide in the system SF, so we have no need to give further explanation for

the purpose that one should have a vague image of the satellite notion of OF.

® Any two binary relations @ and © are called equivalent if and only if
vXY+«X(0=60)Y holds.

" We say that the binary relation I” implies the binary relation 4 if and only if
vXY+X([ —>4)Y is provable.

8) We refer to Section (a) of our former work [2] by PD-(a).

https://doi.org/10.1017/50027763000011077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011077

124 KATUZI ONO

(Detailed illustration is given in (1.7).) Here we would like to show a feature
of our system OF from a rather imaginative side.

The axiom scheme of OZ is a form of formulas obtained by replacing a
membership relation of the aussonderung axiom by the satellite relation of OZ.
There is a good reason to expect that one may obtain another nice generating
principle by replacing a membership relation of the axiom of replacement by
a suitably defined satellite-relation. Because the axiom of replacement is
somewhat stronger than the aussonderung axiom, one may expect that an
object theory stronger than OZ can be established on the basis of this generating
principle regarding it as a sole assumption of the theory. Compared with the
aussonderung axiom or with the axiom scheme of OZ, however, the usual
expression of the axiom of replacement seems too complicated, having the
assumption of uniqueness of the mapping. For example, compared with the
formula (A), the feature of (B) looks too complicated, because it has the
uniqueness assumption VXYZ(XIZANYIZ- - X=7).

By virtue of the comprehension operator, we know a very extensive type
of unique mappings having a simple form. Namely, we can easily show that
any relation of the form {I') defines a unique mapping (regarding Y{I)X as
a mapping X to Y) with respect to equality = ie. { ). (See (2.7).) Although
it seems impossible to express every unique mapping 4 in the form {I'), we
can express any left invariant unique mapping 4 in the form {I). Because,
in SF, every relation can be regarded as invariant, we need not afraid that
this restriction may cause any essential difficulty. By the way, how can we
express every left invariant unique relation 4 in the form {I')? If there is an
object Z satisfying Z4X, Y4X is equivalent to Y{ € 4)X. However, if there is no
such Z, we can make use of the well-known Russell paradox. Namely, let us
define I" by

(D) Urve-Ue VN (7AW W4V i NUE D).

Then, we can prove that 4 is equivalent to the relation {I'). An exact proof
of this fact is given in (2.31) at the end of Section (2). In this connection,

it should be particularly noticed that the whole theory of Sections (2) and (3)

can be developed without assuming any axiom. (Compare PD-(3).)

In fact, the formula
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(E) Ap- PN e)M ie. 3IPVX(XeP=:3Z-X{INZeM)

is a special case of the proposition scheme (B), the proposition scheme cor-
responding to the axiom of replacement, but it is a proposition scheme of so
extensive character that we are apt to regard it as a substitute of the axiom
of replacement. Attracted by the extremely simple form of the formula (E),
we have attempted to define the satellite relation ¢ in such a way that the

modified formula
(F) ArP- P{INe)M

of (E) will be a sole axiom scheme of an object theory called OF which can
be taken as a prototype of the set theory SF.

We have been successful to do this only by modifying the satellite notion
of OZ in accordance with the modification of the unit-object notion. The
modification of the unit-object notion seems indispensable to our plan, because
we can regard all the binary relations of the form {I') as unique mappings
only since we take the relation { ) as equality. (See (2.7).) In accordance
with this modification, we define at first XCY by VS(S{e)eX-S{e)eY)
as a modification of the relation X< Y which literally corresponds to the
relation XS Y of OZ. We define next 4(P) by VS(SeeP=SCeP). Then,
we define XsY by VP(s(P) A Yee P - XecP)”, (See (1.2), (1.3), (1.4), (1.5),
and (2.15).) Anyway, the interpreted satellite-notions of OZ and of OF coincide
in SF. As pointed out in OZ-(7), we can prove in SF that there is a set formed
by all the interpreted satellites of any set. This leads to the result that OF
is consistent if SF is so. Our new system OF is formally introduced in Section
(1), and a short sketch of a consistency proof of OF relative to SF is given
in (1.7).

Sections (2)-(15) are devoted to show that we can really establish the
object theory OF on the basis of the only one axiom scheme (F) which is
strong enough to establish a set theory equivalent to SF (so, according to OZ-
(7) and 0OZ-(6), also an object theory equivalent to OZ and a set theory
equivalent to SZ) in it. (See especially (14.6) and (15.11).) Only in Section

(10), we take a somewhat long way round by developing a theory of natural

9 In OZ, we can define XoY also as VP(6(P)ANY € €P*—>X€ €P).
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numbers in our object theory OF. To take a shorter course, we have only to
give an example of infinite sets. Anyway, it is really a long series of trouble-
some work to develop the object theory OF starting from the sole axiom
scheme (F).

As our primitive notion & seems only right-invariant (See (2.5). It seems
impossible to prove that & is left-invariant.), we can expect only for a special
kind of objects X that X contains as its members every object which is equal
to a member of X. Such objects X are called normal (formally defined in
(2.27)). One can easily see that the axiom of extensionality is equivalent to
the assertion that all the sets are normal. It should be particularly remarked
here that every object genei‘ated by an axiom of the form (F) is normal.
(We can prove this by (2.8), (2.10), and (2 29).)

In OF too, we define regularity. However, regularity of OF is slightly
different from that of OZ. To define regularity, we use the notion of descendents.
We call any object X satisfying a condition of the form X=&:-:- &Y (the
number of €’s is 0,1, 2, ...) a descendent of Y. (The descendent relation
is formally defined in (7.1). See also (7.7).) By making use of the descendent
notion, we define regularity of OF also in such a way that, for any regular
object X, there may be no infinite descending chain X2 X, 2X,> - - -
(Compare (8.1) and 0OZ-(2.2.1). See also (8.2), illustration.) Any object
whose descendents are all normal is called totally normal (formally defined in
(9.1)). We can establish the theory of OF exclusively in the field of regular
and totally normal objects which we simply call sets. (See (11.1).) The main
result of this work is that the set theory SF is nothing but an object theory
established exclusively in the field of sets. (See especially Section (15). Compare
Gandy [71.)

The relation between OF and SF resembles to the relation between the
theory of natural numbers without complete induction and the theory of natural
numbers with complete induction. (We denotes these two systems hereafter by
N, and N respectively.) OF and SF have the common generating principle of
the form (F) just as No and N have the common generating principle that
every number is followed by another number. Possibly there may be many
systems OF of object theory having (F) as their sole generating

principle, just as that there may possibly be many systems N, of natural-

https://doi.org/10.1017/50027763000011077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011077

A STRONGER SYSTEM OF OBJECT THEORY 127

number theory having the same generating principle that every number is
followed by another number. The ordinary natural-number system N can be
regarded as the minimum system of these systems of natural numbers.
Similarly, the ordinary set theory SF looks like the minimum system of the
object theories having the same generating principle (F).

The complete induction of N positively asserts that N is really the minimum
system among those systems No,.  The system SF, however, has no principle
literally corresponding to the complete induction. In fact, it seems impossible
to confirm by axioms of SF that the system SF is really the minimum system
among those systems which have the same generating principles as that of SF.
So, it might be possible that a sufficiently small system of object theory having
certain generating principles can be regarded as a system of set theory by
suitable interpretation. This was the case for OZ, because a sufficiently small
system of objects, the system of producible objects, can be regarded as SZ if
we define membership and equality suitably for the system. In OF too, we
can construct a theory equivalent to SF by restricting the field of objects to
the field of sets, i.e. the field of regular and totally normal objects. (See
Definitions (8.1), (9.1), and (11.1). See also Section (15).) However, regularity
and total normality can never be proved to be characteristic of objects belonging
to the minimal system among those systems OF having (F) as their sole
generating principle.

By the axiom scheme (F), we can prove existence of suitably defined unit
objects, sum objects, and power objects of any object (See (5.3), (5.2), and
(5.4).), and also existence of suitably defined pair objects of any two objects
(See (6.11) and also Definition (6.9).). However, it is extremely remarkable
that we can prove these theorems even when we replace our satellite relation
by the literal interpretation of the satellite relation (denoted here by ¢) of OZ.
Namely, ¢ is the relation defined by

(G) XoYEVPUP)ANYecP - XseP)”,

where ¢(P) stands for VS(Se€P=SceP).

Now, for convenience’ sake, let us denote by OH the system of object
theory having

10) See the foot-note 9).
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(H) 3IpP- P{Da)M

as its sole axiom scheme. The satellite notion of OH is surely simpler than
that of OF. Moreover, we can prove existence of unit objects, sum objects,
power objects of any object, and also existence of pair objects of any two
objects in the system OH. We can further show in OH that membership &
implies the relation ¢, so the example proof of PD-(3) is also valid for OH.
Hence, in OH too, there exists no object containing all the objects as its
members. Because any object R defined by R{{ € )¢)M (proved to be existing
by the axiom scheme of OH) contains all the objects X satisfying XoM (we
can prove reflexivity of { €) without any assumption), X¢M can not hold for
all objects X. Hence, ¢(P) must hold for some P. Since reflexivity of the
relation < can be proved also without any assumption, there is surely a non-
vacant object P in the system OH which satisfies YS(Se P-Se e P). At
the first glance, one might suppose that this object P is an example of infinite
objects, but in reality, we have never been able to confirm by the axiom scheme
(H) only that P contains infinitely many members. We can prove in our
system OF that there is surely an object formed by all the natural numbers
(defined in (10.4)) which is an example of infinite objects in all respects, so,
our modification of the satellite notion has been effective for our purpose
anyway. (See (10.5), (10.7), and (10.15).)

(1) The system OF

In this Section, we introduce the system OF formally at first ((1.1)-(1.6)),

and next we give an illustration for the system.

(1.1) The binary relation € (membership) is the only primitive notion of
the system OF.

(1.2) DF. XeY<X{e)eY. The binary relation € is called the gener-
alized membership. Any object X satisfying XE Y is called a generalized
member of Y.

(1.3) DF. XCYSVS(SEX->SEY). The binary relation € is called the
generalized inclusion. Any object X satisfying XC Y is called a generalized
subobject of Y.

(1.4) DF. ¢(P)=VS(SeeP=SceP).
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(1.5) DF. XoY ®VP(e(P)NYs€P+>XcseP). The binary relation ¢
is called the satellite relation. Any object X satisfying XsY is called a satellite
of Y.

(1.6) Axiom scheme. All the formulas of the form
3p- PN a)M

and formulas of this form only are axioms of our system OF, where any

number of free variables other than P may occur in the binary relation I
(1.7) Illustration. 3P+ P{{I")s)M can be also expressed as
APVX(Xe P= X{IeM)

and X{I')eM can be expressed as 3Y(VS(Se X=SI'Y) A YoM). Accordingly,
X{I"'oM means that X is an object formed by all the objects bearing the
relation I with a satellite Y of M, and P{{I")¢)M means that P is an object
formed by all the objects X satisfying the condition X{I')¢M. In OZ, the
satellite notion is introduced in such a way, that any proto-member as well as
any subobject as well as any unit object of an object is a satellite of the
object, and that the satellite relation is reflexive and transitive. (See OZ-(1.2.11),
0Z-(1.2.12), 0Z-(1.4.9), 0Z-(1.2.13), and OZ-(1.2.14).) Each axiom of OZ
asserts that all the satellites of an object satisfying a certain condition form a
new object. (See 0Z-(1.1.4).) We wish to introduce the satellite notion of
OF similarly to the satellite notion of OZ but at the same time in a form
suitably modified for the axiom scheme of OF.

It is not necessary in OF to draw any distinction between proto-membership
and membership. According to the axiom scheme of OF, any member of an
object generated by an axiom is characterized by their members, so the proto-
equality of OZ looks like a better example for defining equality in OF rather
than identity of OZ. Just replacing “€” in the definition of proto-equality of
0Z by “e7”, we define equality = of OF. Thus equality notion of OF deviates
from identity of OZ in some extent. (Compare Definition (2.1) with OZ-(1.2.5)
and OZ-(1.2.3).) In accordance with this deviation, the notion of unit objects
has to be slightly changed. Moreover, in defining satellites, inclusion has to
be replaced by a new notion, the generalized inclusion € which is a little

weaker than inclusion. According to Definitions (1.4) and (1.5), in OF too,
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membership &, the generalized inclusion <, and the unit-object relation { =)
(defined in (2.26)) implies the satellite relation ¢. Also, the satellite relation
s is reflexive and transitive. (See (3.2), (3.3), (3.4), and (3.1).)

If we interpret “objects” of OF as “sets” of SF and “<” of OF as “€”
of SF, we can easily see that “Z” of OF is interpreted as “C” of SF and the
satellite relation ¢ of OF is interpreted as the relation “3”, which is defined
by

2y 2P (P) Ayeep »xsep)t,

where 5(p) is a condition on p defined by 5(p)=Vs(secp=scep).
Namely, the relation 5 of SF is the same relation “5” that is defined in OZ-(7).

In SF holds that, for any set m, there is a set # formed by all the satellites
(in the interpreted sense) of m. (This is shown in OZ-(7).) For any binary
relation I" in SF, the relation x{I")y (defined naturally as Vs(sex=slv)) is
evidently a unique mapping » to x, because SF has the axiom of exten-
sionality. As p{{INs)m expresses Vx(xcp=:3y-x{Iysm) and further
Vy(yen = yom) holds, so 3p+p{{IN5)m can be also expressed as
IpVx(xsp=:3y-x{INyesn). This is a special case of the axiom of re-
placement of SF, because x{/")y is a unique mapping y to . Accordingly, the
interpreted proposition of every axiom of OF is provable in SF.

Thus the system OF can be imbedded in SF, so our object theory OF is

consistent as far as the Fraenkel set-theory is so.

(2) Equality and inclusion

In this Section, we define two binary relations, equality = and inclusion
C, and also the notion normality. We describe also some elementary properties
of these notions in connection with membership &, the generalized membership

€, and the generalized inclusion C.
(2.1) DF. The relation { &) is denoted by = and is called equality.

(2.2) DF. Any binary relation is called right (or left) invariant if and
only if "= (or =17 is equivalent to the relation I. If I' is right invariant

as well as left invariant, it is simply called invariant.

1) See the foot-note 9).
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(2.3) Equality = is reflexive, symmetric, and transitive. Also, equality

is invariant. (Proof.” By (2.1).)

(2.4) Any binary relation I" is right (or left) invariant if the relation I'=
(or =T) implies I Consequently, I" is invariant if the relation =1 = implies
I'. (Proof. By (2.2) and (2.:).)

(2.5) The membership € is right invariant. (Proof. By (2.1) and (2. 4).)

(2.6) The membership  implies the generalized membership €. (Proof.
By (1.2), (2.1), and (2.3).)

(2.7) Any relation of the form {I)(I'} implies equality =. In other
words, any relation of the form {I') is umigue with respect to equality =,
regarding X{I")Y as a mapping Y to X. (Proof. By (2.1).)

(2.8) Any binary relation of the form /'4 is right invariant if 4 is so, and
it is left invariant if I" is so. Consequently, the relation I'4 is invariant if I”

is left invariant and 4 is right invariant. (Proof. By (2.2) and (2.4).)

(2.9) If two binary relations I and 4 are both right (or left) invariant,
the binary relations I"'A 4 and I'V 4 are both right (or left) invariant. (Proof.
By (2.2) and (2.4).)

(2.10) Any relation of the from {I'") is left invariant. (Proof. By (1.2),
(2.1), and (2.4).)

(2.11) For any right invariant relation, I" the binaty relation {I") is invariant.
(Proof. By (2.2), (2.3), (2.4), and (2.10).)

(2.12) The generalized membership € is invariant. (Proof. By (1. 2),
(2.5), (2.8), and (2.10).)

(2.13) The generalized inclusion < is reflexive and transitive. (Proof. By
(1.3).)

(2.14) The relation €Z is equivalent to the generalized membership &.
(Proof. By (1.3) and (2.13).)

(2.15) DF. XCYRVS(SeX->SeY). The binary relation < is called
inclusion. Any object X satisfying X< Y is called a subobject of Y.

1) In any proof of this type, we indicate its logical basis only.
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(2.16) The inclusion < is reflexive and transitive. (Proof. By (2.15).)

(2.17) Equality = is equivalent to the relation < A D, where 2 is the

inverse relation of inclusion . (Proof. By (2.1) and (2.15).)
(2.18) The inclusion < is invariant. (Proof. By (2.4), (2.16), and (2.17).)

(2.19) The relation =< is equivalent to the membership . (Proof. By
(2.15) and (2.16).)

(2.20) XCY->VS(SeX->S&Y). (Proof. By (2.6) and (2.19).)

(2.21) XCY=VS(SeX-S&Y). (Proof. By (1.2), (1.3), (2.1), (2.2),
(2.6), (2.12), and (2.14).)

(2.22) The inclusion < implies the generalized inclusion . (Proof. By
(2.20) and (2.21).)

(2.23) The generalized inclusion & is invariant. (Proof. By (2.4), (2.13),
(2.17), and (2.22).)

(2.24) The relation {€) implies the generalized inclusion €. (Proof. By
(2.21).)

(2.25) The inverse relation of {£) ie. the relation (&€} implies inclusion
C. (Proof. By (2.6) and (2.15).)

(2.26) X{=)Y->YeX. Namely, the inverse relation of {=) ie. the
relation ( =} implies membership €. (Any object X satisfying X{=)Y is
called a unit object of Y. The relation { =) is called the wunit-object relation.
Proof. By (2.3).)

(2.27) DF. Any object X satisfying X{E)X is called normal.

(2.28) Any object X is normal if VS(SEX->S< X). (Proof. By (2.6)
and (2.27).)

(2.29) X{I')Y- X{€)X holds for any left invariant binary relation I
(Proof. By (1.2), (2.1), (2.2), (2.27), and (2.28).)

(2.30) The relation {€) is transitive. (Proof. By (2.12) and (2.29).)

(2.31) Any left invariant relation 4 can be expressed in the form {I"), if

44 implies equality =, in other words, if the relation 4 is unique.
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Proof™ /A-c, d.
A) Assume that 4 is left invariant and that 44 implies =.
B) Define I' by UI'Ve-Uc AV (=3AW- W4V AU & U).

¢)) 4 implies {I) /cA~cd. cA) VXY!™ X4Y.
cb)) VS(S=X->SI'y) /cbA-cbe. cbA) VS! SeX.
cbb) Sed4Y /cbA, cA. cbe) SI'Y /cbb, B.

ce)) VS(SI'Y-SeX) /ccA-ceg. ccA) VYS! Sry.

ecb) S€dYV (- 3IW-WAY: NS&ES) /ecA, B.

cce) IAW-WAY /cA.

ced) S€d4Y /ech, ccc. cce) 3AZ! SeZ4Y /ccd.
cef) Z=X /cA, cce, A.

ceg) S X Jece, ccf, (2.5), (2.2).

ed) XY /cb, cc.

d)) (I implies 4 /dA - dh. dA) VYXY! XXDY.
db)) 3IW-WAY /dbA - dbe (reductio ad absurdum).
dbA) Assume —3AW- W4Y.

dbb)) VS(SeX->S&S) /dbbA - dbbe. dbbA) VYS! SeX.
dbbb) SI'Y /dbbA, dA.

dbbe) Sed4YV(=3W-W4Y: NS&S) /dbbb, B.

dbbd) —+Sed4Y /dbA. dbbe) S€& S /dbbe, dbbd.
dbe)) VS(S&S->SeX) /dbcA- dbcd. dbcA) VS! S&S.
dbeb) —Z3IAW-WAY:ANS&ES /dbA. dbcA. dbee) SI'Y /dbceb, B.

dbed) S<=X /dbce, dA.

dbd) VS(SeX=S&S) /dbb, dbe.

dbe) contradiction /dbd (the Russell paradox).

de) 3T! T4Y /db.

dd)) VS(SeX->SeT) /ddA-ddg. ddA) VS! SeX.
ddb) SI'Y /ddA, dA.

dde) SedYV(=3AW-W4IY:ASES) /ddb, B.

ddd) Sed4Y /dde, db.

B) Any proof of this type is a formal proof described in PLK.
14) Nominating quantifiers (See PD-(1).) of the forms vX..-Z! and 3IX.-..
naturally stand for vX-..vyZ! and 3X..- 3Z! respectively.
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dde) 3Z! SeZ4Y /ddd. ddf) Z=T /dde, dc, A.
ddg) SeT /dde, ddf, (2.5).

de)) VS(SeT->SeX) /deA-ded. deA) VS! SeT.
deb) Se4Y /deA, dec.

dec) SI'Y /deb, B. ded) SeX /dec, dA.

dfy X=T /dd, de, (2.1). dg) X=4Y /df, de.

dh) X4Y /dg A, (2.2).

(3) Fundamental properties of the satellite relation o.

(3.1) The satellite relation ¢ is reflexive and transitive. (Compare OZ-
(1.2.18) and OZ-(1.2.14). Proof. By (1.5).)

(3.2) The membership € implies the satellite relation o.

Proof /A-b. A) VXY! XeY.

b)) XoY /bA-bl, (1.5). bA) VP! 4(P)ANYeseP.

bb) YS P /bA, (1.4).

be) XeCeP /A, bb. bd) Xee€P /be, (2.21).

be) X=ece€P /bd, (1.2), (2.1). bf) 3Z! X=Zc<P |be.
bg) ZZeP /bf, bA, (1.4). bh) XcZ /bf, (2.17).

bi) XCZ /bh, (2.22).

bj) XcSeP /bi bg. bk) X<SeP /bj, (2.13).

bl) XeeP /bk, bA, (1.4).

(3.8) The generalized inclusion & implies the satellite relation ¢. (Com-
pare OZ-(1.2.12). Proof. By (1.4), (1.5), and (2.13).)

(3.4) The unit-object relation { =) implies the satellite relation o.
Proof /A-b. A) YXY! X{=)Y.

b)) XoY /bA-be, (1.5). bA) VP! ¢(P)ANYEEP
bb) 3Z! YeZe P /bA.

be)) XCZ [bcA-bed, (2.21). bcA) VS! SeX.
beb) S=Y /A, bcA. bee) S=e&Z /bch, bb.

bed) SEZ /bee, (1.2), (2.1).

bd) XZeP /be, bb. be) XeeP /bA, bd, (1.4).

(8.5) The satellite relation ¢ is invariant. (Proof. By (2.4), (2.17), (2.22),
(3.1), and (3.3).)

https://doi.org/10.1017/5S0027763000011077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011077

A STRONGER SYSTEM OF OBJECT THEORY 135

(4) Generating principles

In connection with the axiom scheme of OF, some generating principles,
including those corresponding to the axiom scheme of OZ or to the aussonderung
principle of OZ, hold in OF. (See OZ-(1.3.1).) As they seem very powerful for

the later exposition, we describe them in this Section.

(4.1) >VYT-Te M. (There is no object formed by all the objects.)

This theorem is really important. However, we can prove this theorem
by a slight modification of the example proof given in PD-(3), employing (2.1),
(2.2),(2.3), (2.5), (8.2), and the axiom scheme (1.6). (See the foot-notes 4) and
5) of PD i.e. [2])

(4.2) 3P P{=T'AN¢)M. (This is a meta-theorem of OF corresponding to
the axiom scheme of QZ. Propositions of the form IP+ P{"A¢)M in general
seem unprovable in OF. Even when we take up this proposition scheme, we
can not regard it as a literal interpretation of the axiom scheme of OZ,
because the definition of the satellite relation ¢ of OF is not a literal interpreta-
tion of the satellite relation of OZ. (Compare OZ-(1.1.4). Compare also (1.2),
(1.3), and (1.4) with 0Z-(1.1.2) and 0Z-(1.1.3).)

Proof /A -1 A) Define 4 by X4dY=R - YI'M->Xe<Y.

b) 3P! P{4)e)M /axiom. ¢) VI(TeP=T{4)¢M) |[b.
d) VI(TeP=3ZNUWUe T=U4Z)NZsM)) .

e) VI(TeP=3zZVU(UeT=-ZITM-UecZ)\NZsM)) /d, A.

f)) VI(TeP->T(=I'No)M) [fA-fi. fA) VT! TeP

fb) 32! YU(UeT=-ZITM-U<sZ)NZsM /e, fA.

fe)) ZI'M  /fcA - fee (reductio ad absurdum). fcA) Assume - ZI'M.
feb) YU-U<T /fb, fcA. fee) contradiction /fcb, (4.1)

fd) YUUeT=sUeZ) [fb, fe fe) T=Z [fd, (2.1).

ff) T=IM |/fe fe. fg) ToZ [fe, (2.17), (2.22), (3.3).

th) TeM /fg, 15, (3.1). fi) T(=TANo)M /ff, fh.

g)) VYT\I(=I'Ne)M->TeP) [gA-gh. gA) VT!T=TMATeM.

gb) 3AS! T=SI'M /gA.

ge)) YU(UeT=-STM-U<S) /gea, gcb.
gea) VUWUeT=UeS) /gb (2.1).

geb) VYU(UsS=:-SIM-U<sS) /gb.
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gd) SoT /gb, (2.17), (2.22), (3.3). ge) SoM /gd, gA, (3.1).
gf) YUUeT=-STM-U<sS)ANSeM /gc, ge.

gg) IZVYU(UeT=+-ZIM-UcZ)\NZsM) /gf.

gh) TP /e gg

h) VI(TeP=T(=TI'No)M) /f, & i) P{=T'Ao)M /h.

(4.3) AP+ P{=I"'ANS)M. (Compare OZ-(1.3.1). Proof.” We can take
an object, say P, satisfying P{= (I'NC)Ag)M by (4.2). P{=TI'AZS)M can
be proved by (2.2), (2.3), (2.23), and (3.3).)

(4.4) AP P{=(I'AN € ))M. (A meta-theorem of OF corresponding to the
aussonderung axiom of 8Z. Compare OZ-(1.3.1). Proof. We can take an
object, say P, satisfying P{=(I'N € )Aa)M by (4.2). P{=(I'AN €))M can
be proved by (2.17), (2.22), (3.1), (3.2), and (3.3).)

(4.5) AP- P{I"'e)M. (A meta-theorem of OF corresponding to the axiom
of replacement of SF.)

Proof /A-d. A) Define 4 by X4Y=X{NeM.

b) 3Q! Q{IN¢)M /axiom. e¢) 3P P{=4AN€eE))Q /(4. 4).

d)) P{D)e)M /da, db.

da)) VX(XeP-X{I'e M) /daA-dad. daA) VX! XeP.

dab) X=4Q /daA, c. dac) X={INeM /dab, A.

dad) X{IN'eM /dac, (2.10), (2.2).

db)) VX X{IN'eM->XeP) /dbA- dbf. dbA) VX! X{I')e M.

dbb) X{INeM /dbA, (3.2). dbe) XeQ /dbb, b.

dbd) X4Q /dbA, A. dbe) X=(4AN€)Q /(2.3), dbd, dbc.

dbf) Xe P /dbe, c.

(5) Objects formed by satellites of an object

In this Section, we prove at first existence of objects formed by satellites
of an object (defined in (5.1)). Next, we show existence of power objects of
an object (defined in (5.2)), existence of sum objects of an object (defined in
(5.3)), and existence of unit objects of an object (defined in (5.4)). We can

prove that any object formed by satellites of an object, any power object of

15) In any proof of this type, we give a short sketch of a formal proof originally
described in PLK together with its logical basis,
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an object, any sum object of an object, and any unit object of an object are
all normal by (2.29) together with (8.5), (2.18), (2.12), (2.3), and (2.8). At
the end of this Section, we prove further a proposition which can be regarded

as a generalization of complete induction. (See (5.8).)

(5.1) 3P+ P{s)M. (The relation {s) corresponds to the relation § of OZ.
Compare 0Z-(1.8.2) and 0Z-(2.8.1). Accordingly, P{s)M is read “P is an
object formed by satellites of M”. Proof. We can take an object, say P,
satisfying P{=(€ » €)A¢)M by (4.2). P{c)M can be proved by (2.3).)

(5.2) AP P{S)M as well as AP« P{S)M. (P{c)M is read “P is a power
object of M”, as it means VI(T€ P=Tc< M). The first formula asserts
existence of power object of any object. Compare OZ-(1.4.6). Proof. We can
take two objects, say @ and R, satisfying Q{=cAZ)M and R{=CAS)M
by (4.3). Q{<)M and R{S)M can be proved by (2.2), (2.18), (2.22), and
(2.23).)

(5.3) AX- X{€e)Y. (X{&e€)Y is read “X is a sum object of Y.
3AX-X{ee)Y seems unprovable in OF. The theorem asserts existence of
sum objects of any object. Compare OZ-(1.4.5). Proof. We can take an object,
say X, satisfying X{=€€ A¢)Y by (4.2). X{E )Y can be proved by (1.2),
(2.1), (2.2), (3.1), (3.2), and (3.5).)

(5.4) AX-X{=)Y. (X{=)Y is read “X is a unit object of Y”. This
interpretation may be natural, because X{=)Y means VI(TeX=T=Y).
However, it should be remarked here that X{=)Y is not a literal interpreta-
tion of X{Y} of OZ, as equality = of OF is rather more closely related to
proto-equality = of OZ than identity = of OZ. (Compare (2.1) with OZ-
(1.2.3) and 0Z-(1.2.5).) The theorem asserts existence of unit objects of
any object. Compare OZ-(1.4.4). Proof. We can take an object say X,
satisfying X{==A0)Y by (4.2). X{=)Y can be proved by (2.1), (2.3),
(2.17), (2.22), and (3.3).)

(5.5) X{=)YAU{=)V*>+X=U=Y=V. (The relation { =) is unique
in both directions. Proof. Assume X{ =)Y and U{ = )V. Then, X = U implies
Y=V by (2.2), (2.10), and (2.26); and Y=V implies X = U by (2.2),
(2.3), (2.7), and (2.11).)
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(5.6) 3X-X{€)Y. (Proof. By (1.2) and (4.5).)

(5.7) The relation {s)s(s} implies inclusion <. Namely, X{s)sZA Y{s)Z~
- Xc Y. (Compare OZ-(2.3.5). Proof. Assume X{s)UsZ and Y{s)Z. Then,
holds X< Y by (2.15). Namely, for any member T of X, holds T¢U, so also
TsZ by (3.1), hence T Y.)

(5.8) VXY - XUUITNVeeVIV{=)'>INY:i>U(s6->T)V. (Generalized
complete induction: If membership € as well as the generalized inclusion C
as well as the unit-object relation { =) implies a transitive relation I, the
satellite relation ¢ implies the relation I. Compare OZ-(1.6), especially OZ-
(1.6.1) and 0Z-(1.6.4).)

Proof /A-c.
A) Assume VXY+-X(UTVeVZV{=)--I)Y, ie. assume that IT

implies I" and that € as well as € as well as { =) implies 7.

b)) I is left invariant /bA-bd, (2.4). bA) VXY! X=TY.
bb) XCTI'Y /bA, (2.17), (2.22). be) XITY /bd, A.

bd) XI'Y /be, A.

¢)) o implies I' /cA—cl cA) YUV! UgV.

cb) 3P P{=I'ANo)V /(4.2). ce) P{I'No)V Jeb, b, (2.2).
ed)) VS(SeeP->SSeP) /[cdA-cdi. cdA) VS! SseP.
edb) 3IT! SeTe P /cdA. ede) TI'VATeV [edb, cc.
edd) SI'T /cdb, A. cde) SI'V /edd, cde, A.

cdf) SoT /cdb, (3.2). edg) SoV /edf, cde, (3.1).

cdh) Se P /cde, cdg, cc. edi) SSe€P /cdh, (2.13).

ce)) VS(SCeP->SeeP) /ceA -cem. ceA) VS! SceP
ceb) 3AT! SCTEP /ceA. cec) TI'VATeV /ceb, cc.

ced) SI'T /ceb, A. cee) SoT /ceb, (3.3).

cef) 3AR! R{=)S /(5.4). ceg) RIS /cef, A.

ceh) RsS /cef, (3.4). cei) RI'V /ceg, ced, cec, A.

cej) RoV /ceh, cee, cec, (3.1). cek) Re P /cei, cej, cc.
cel) SeR /cef, (2.26). cem) Sce&P /cel, cek.

cf) o(P) /cd, ce, (1.4).

cg)) VeeP /cge cgd. cga) IAW! W{=)V /(5.4).
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cgb) WIV /cga, A. ege) WoV /cga, (8.4).

cgd) We P /cgb, cge, cc. cge) VeEW /cga, (2.26).
ch) UeseP /c¢f, cg cA, (1.5).

ei) 3IZ' UeZ<s P /ch. e¢j) ZI'V /ci, cc.

ck) UI'Z Jci, A. cl) Ur'v /ck, cj, A.

(6) Null objects and pair objects

We can define null objects in OF in such a way that they have all the
essental properties of the null set in ordinary set theories.

In OF, we can further prove existence of suitably defined pair objects of
any two objects. (See (6.9) and (6.11).) Of course, the definition of pair
objects in OF turns out to be something different from the literal interpretation
of the definition of pair objects in OZ. It seems impossible in OZ to prove
existence of pair objects of any two objects generally, neither in the sense of
the definition of OZ-(3.2.9) nor in the sense of the literal interpretation of
Definition (6.9).

(6.1) DF. POQ=<VYS:S<E P, and 9(P)< 3@ PYQ. (Compare 0OZ-(1.4.1).
POQ as well as §(P) is read “Pis a null object”. It should be noticed here
that PO is independent of @ by definition. We introduce the relation ¢
because it seems sometimes convenient that we can denote the condition to

be a null object in a form of a binary relation.
(6.2) -(X<0Y). (Proof. By (6.1).)
(6.3) X0Y=X0Z. (Proof. By (6.1).)

(6.4) The relation § implies inclusion <, so holds 9(X)~> X< Y. (Proof.
By (2.15) and (6.1).)

(6.5) AP-9(P). (Existence of null objects. Compare OZ-(1.4.2). Notice
that the following proof is quite different from the proof of OZ-(1.4.2).)

Proof /A-g. A) Denote the relation € - € by I.

b) 3P P{DNe)M /axiom. (M being an arbitrary object.)

¢) VS(SeP=S{I'sM) /b d) VS(SepP=:3Z-S{NZsM) Jec.
e)) —AZ(S{INZsM) |eA-ee (reductio ad absurdum).
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eA) Assume 3Z! S{I")ZsM. eb) VI(TeS=1TTZ) /eA.

ec) VI(TeS=T(e -»e)Z) /A, eb. ed) VT-TeS /ec.
ee) contradiction /ed, (4.1).
f) VYS-S«¢P /de g) 0P /f, (6.1).

(6.6) =X(OA{=))Y, ie. —~3IAXYWXAX{=)Y). (Any null object
can never be a unit object of an object. Proof. By (2.26) and (6.1).)

(6.7) The relation @ is invariant, and X= Y- = 0(X) =0(Y). (Proof. By
(2.1), (2.4), and (6.1).)

(6.8) O(X)ANB(Y)»»X=Y and X0UAYOV+->X=Y. (Proof. By (2.1)
and (6.1).)

(6.9) DF. Z{X, Y)SVI(T€Z=+T=XNVT=Y). (ZX, Y}isread “Zis
a pair object of X and Y”. Compare OZ-(3.2.9). Notice that Z{ = )X can be
also expressed as Z{X, X}.)

(6.10) Z{X, Y)» X ZANY<EZ (Proof. By (2.3) and (6.9).)

(6.11) 3Z - Z{X, Y. (Existence of pair objects of any two objects.
Compare 0Z-(3.2.10). By virtue of this theorem, the theory of OF can be
developed remarkably simpler than the theory of OZ.)

Proof /A, B-c¢, d, e; (6.9). A) YM!
B) Define I' by UI'VE - (Us XAH(V)V(Us YA =H(V)).
e¢) 37! Z{INe¢)M /axiom.

d) VINTeZ-»T=XNT=Y) /dA- dh. dA) VT! TeZ
db) T{INeZ [dA, c.
de) 3S! T{I)SsZ /db. dd) YU(UeT=UrS) |/de.

de) YUIUeT=-(UsXANI(S)V(UsYAN—~-9(S))) /B, dd.
df)) 09(S)-T=X /dfA- dfe. dfA) Assume 0(S).

dfb) VYUWUeT=UsX) /dfA, de. dfe) T=X /dfm, (2.1).
dg)) —=0(S)-T=Y /dgA- dgc. dgA) Assume —~0(S).
dgb) YU(UeT=UcY) /dgA, de. dge) T=Y /dgb (2.1).

dh) T=XNVT=Y /df, dg.
e)) VINT=XNT=Y+->T&Z) /ea, eb.
ea)) VI(T=X-TecZ) /eaA-eaj. eaA) VT! T=X

https://doi.org/10.1017/5S0027763000011077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011077

A STRONGER SYSTEM OF OBJECT THEORY 141

eab) 3S! H(S) /(6.5).
eac) YUWUesT=UeX) /ead, (2.1).
ead) YU(UeT=-(UeXANIS))V(UcsYAN~0(S))) /eab, eac.

eae) VYUWUeT=UIS) /ead, B. eaf) TXINS /eae.
eag) SCM /eab, (6.4).

eah) SoM /eag, (2.22), (3.3). eai) T{I)oM |/eaf, eah.
eaj) T<Z /eai c.

eb)) VI(T=Y->T<Z) |ebA-ebj. ebA) VT! T=Y.
ebb) 3S! S{=)M /(5.4). ebe) —O(S) /ebb, (6.6).

ebd) VYUWUesT=UecY) /ebA, (2.1).

ebe) YU(UsT=-(UsXANI(S))V(UseYAN—~-0(S))) /ebc, ebd.
ebf) YUWUeT=UIS) /ebe B. ebg) T{INS /ebf.

ebh) SoM/ ebb, (3.4). ebi) TXINoM /[ebg, ebh.

ebj) T<=Z /ebn, c.

(6.12) Z{X, Y}—»2Z{€)Z. (Any pair object is normal. Proof. By (1.2),
(2.1), (2.3), and (6.9).)

(6.13) AZVT(TeZ=+TEXVTEY). (Any object Z satisfying VINT=Z
=+TEXVTEY) can be regarded as a union object of X and Y. Compare
0Z-(3.2.11). Although it seems impossible to prove generally for any X and
Y existence of an object U in OF such that VI(TeU=-TeXVTeY), we
can develop the theory of OF in a remarkably simpler way than the theory
of OZ because we can prove this theorem easily in OF. Proof. We can take
a pair object, say U, of X and Y by (6.11). We can further take a sum
object, say Z, of U by (5.3). Then, VINT€Z=+TEXVTEY) can be
proved by (2.12), (6.9), and (6.10).)

(6.14) Z{X, YIANW{U, V}+ 5> :Z=W=-(X=UANY=V)V(X=VAY=U).
(Proof. By (2.3), (2.5), (6.9), and (6.10).)

(6.15) X=YAX{U, V}-->Y{U, V}. (Proof. By (2.1) and (6.9).)

(7) Descendents

Just as the notions of constituents and ancestors in OZ, the notion of
descendents is of particular importance in OF. By employing the notion of

descendents, we can adequately define the notions, regularity and total
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normality, which are essentially important in OF. (See Sections (8) and (9).)
In this Section, we define the notion of descendents (in (7.1)) and describe

some fundamental properties of it. (Compare OZ-(1.5).)

(7.1) DF. X0YSVP(VS(SeesP-»SeP)-»(YEP->XEP)). Any object
X satisfying X0Y is called a descendent of Y.

Illustration. The notion of descendents of an object Y in OF is a modifi-
cation of the notion of descendents x of a set y in ordinary set-theories,
which satisfy a condition of the form x=---=y. The descendent relation ¢
is defined in such a way that X0Y holds if and only if X and Y satisfy a
condition of the form X=e& - - - Y for a finite number of €’s, including the
case of no €’s. The adjustment is carried out in such a way that the relation
0 becomes invariant. (See (7.6). Compare 0OZ-(1.5.1).)

(7.2) The descendent relation ¢ is reflexive and transitive. (Proof. By

(7.1))

(7.3) The generalized membership € implies the descendent relation ¢.
(Proof. By (1.2), (2.1), (2.2), (2.5), and (7.1).)

(7.4) Equality = implies the descendent relation . (Proof. By (2.2),
(2.12) and (7.1).)

(7.5) The descendent relation ¢ implies the satellite relation ¢. (Proof.
Assume X0Y. To prove XoY by (1.5), take any object @ satisfying ¢(@) and
Ye< Q. We can take an object R satisfying R{=C € Ag)Q by (4.2). We
can prove R{S€)Q by (2.2), (2.23), (8.1), (3.2), and (3.3). We can further
prove VYS(SeeR-SeR) by (1.2), (1.4), (2.1, (2.2), (2.6), (2.14), and
(2.23); and YER by (1.4) and (2.6). Hence X&R by (7.1), which implies
Xee@ by (1.2), (1.4), (2.1), (2.2), and (2.23).)

(7.6) The descendent relation § is invariant. (Proof. By (7.4), (7.2), and
(2.4).)

(7.7) The descendent relation ¢ is equivalent to the relation d& V =.
(Compare 0Z-(1.7.1). Proof. To prove that ¢ implies §=V =, take any
descendent X of Y. We can take an object P satisfying X =(d€V =)Aa)Y
by (4.2). We can prove P{6eV =)Y by (2.2), (2.17), (2.22), (3.1), (3.2),
(3.3), and (7.5), because 6 V = is left invariant by (2.3), (2.9), and (7.6).
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We can further prove VS(See P-Se P) by (2.6), (7.2), (7.3), and (2.5);
and YEP by (2.3) and (2.6). Hence holds X& P by (7.1) which implies
X(e V =)Y by (1.2) and (2.1). On the other hand, we can prove by (2.6),
(7.3), (7.2), and (7.4) that § V = implies 4.)

(8) Regularity

We wish to call any object M regular, if and only if M has no infinite
descending chain M X;=2X.> - - -. However, our formal definition turns out

to have a peculiar form by technical reason. (See (8.2), illustration.)

(8.1) DF. MoN®VYX(XoMAXeN-->X>e&N), and o(M)Z ~Mo oM.
Any object M satisfying o(M) is called regular. (Compare OZ-(2.2.1).)

(8.2) Illustration. In ordinary set theories, x0m can be interpreted as
that x and m satisfy a condition of the formx -+ -m. (See (7.1), illustra-
tion.)  Our Definition (8.1) of regularity may be justified, because, in the
interpreted sense, ¥Ym=p(m) is equivalent to the fundierung axiom assuming
that the aussonderung axiom holds. = This is shown informally as follows.

Namely, let 2 be a set theory in which the aussonderung axiom holds.
Then, we can take for any pair of sets m and #n, a set » defined by p =
{x; xdmAx=n}. If xdm and x=n ie. x=p, then x> =n implies x> p
because t < dom implies tdm. Hence, mpn is equivalent to Vx(xsp-»x> € p).
On the other hand, if the fundierung axiom holds in 2, then mpn can be true only
when p is a null set. As n = dm implies that p is not a null set, mp>dm can
never hold. Thus, Vm+p(m) can be proved. Next, let us assume conversely
Ym=p(m). Then, for any p, p>dp implies —ppp. Evidently, p > dp means
that p is non-void, and —ppp implies that the set p has a member disjoint

with p. Hence, we have the fundierung axiom.

(8.3) 0(M)-p(M). (Null object is regular. We can prove the theorem
by reductio ad absurdum employing (6.1), (8.1), (7.7), and (6.7).)

(8.4) KOMAo(M) = »p(K). (Any descendent of a regular object is regular.
Compare 0Z-(2.2.5).)

Proof /A-j. A) Assume KoMA —p(K).
b) 3NS! KoN>S0K /A, (8.1).
¢) VYVX(XoKANXeN-->X3eN) /b (8.1).
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D) Define I" by XI'Y = XoK. e) 3L! L{=(I'ANe))N /(4.4).

£)) ML /fA-fk (8.1). fA) VX! XoMAXelL.

fb) 3AY! X=Y(I'AEIN /fA, e fe) YOKAYe<EN /D, fb.

fd) 37! Y=Z N /e, fe fe) ZeX /fb, fd, (2.3), (2.5), (2.2).
ff)y Z0Y /fd, (2.6), (7.3). fg) ZoK /ff, fe, (7.2).

fh) ZI'N /fg, D. fiy Z=WU"ANe)N /(2.3), fh, fd.

fj) Ze<L /e, fi. fk) X>e<L [fe, fj.

g)) SeL /gb, e ga) SI'N /b, D.

gb) S=('Ae)N /(2.3), ga, b.
h) SsM /b, A, (7.2). iy Mp=oM /f, g h.
) —o(M) /i, (8.1).

(8.5) KEMAo(M)+ »o(K). (Any generalized member of a regular object
is regular. Compare 0Z-(2.2.5). Proof. By (8.4) and (7.3).)

(8.6) M =N-+p(M) =p(N). (Regularity is a property modulo equality."”
Compare 0Z-(1.2.6) and 0Z-(2.2.5). It should be noticed here that M= N in
OF literally corresponds to M=N in OZ. Proof. By (8.4), (7.4), and (2.3).)

(8.7 VX(Xe M- o(X)) - o(M). (Any object formed by exclusively
regular objects is itself regular. In OZ, we have nothing corresponding to this
particularly powerful theorem.)

Proof /A-h. A) Assume —p(M).

b) 3ANS! MoN=SoM /A4, (81).

¢) VX(XoMAXeN:->X>3&N) /b (81). d) 3IT! S=sTeN /cb.
e) SoeMNS=M /b (7.7).

£)) SteM-->VX(XeM-o(X)) /fA-fTf

fA) Assume IU! SsU= M.

fb) UM /[fA, (2.6), (7.3).

fe)) UpN /feA-fee, (8.1). fcA) VX! XoUANX€EN.

fcb)  XoM /fcA, fb, (7.2). fee) XN /e, feb, feA.

£fd) Up=0U /fc, b, fA. fe) —o(U) /fd, (81).

ff) UeMA =p(U) /fA, fe.

g)) S=M-+>VX(XoM-o(X)) /gA-gj. gA) Assume S=M.

18) In the interpreted sense of OZ-(5.1.1).
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gb) T6S /d, (2.6), (7.3). ge) TOM /gb, b, (7.2).

gd)) ToN /gdA- gde, (8.1). gdA) VX! XeTAXeN.
gdb) XoM /gdA, ge, (7.2). gde) X>e N /gdA, gdb, c.
ge) T>&N /e ge, d. gf) N36T /ge (2.6), (7.3).
gg) To>0T /gd, gf.

gh) —o(T) /gg (8.1). gi) TeM /d g4, (2.5), (2.2).

gi) TeMA—=oT) /gi gh.
h) »VX(X&eM-o(X)) /e f, &

(8.8) KCM No(M)+ »p(K). (Any generalized subobject of a regular
object is regular. Compare 0Z-(2.2.5). Proof. By (2.21), (8.5), and (8.7).)

(8.9) K{=)MAp(M)+ »p(K). (Any unit object of a regular object is
regular. Compare OZ-(2.2.6). Proof. By (8.6) and (8.7).)

(8.10) KoM AN o(M)+ -»p(K). (Any satellite of a regular object is itself
regular. Compare 0Z-(2.2.7).)

Proof /A - g A) Define I'by XI'Y= = p(Y) - o(X).

b) VXY:-X(Ur-nvYy /A ¢) VXY-X(e-INY /(2.6), (85), A.
d) VXY-X(C-DY /(8.8),A. e) VXY-X({=)-DNY /(89),A.
f) VXY:X(g-I)Y /bc,d e, (58). g) KoMAo(M)- - o(K) [f, A.

(8.11) K{o)M N p(M)* -~ p(K). (Any object formed by satellites of a
regular object is itself regular. Compare OZ-(2.3.2). In OF, we can prove

this important theorem very easily by (8.10) and (8.7).)

(8.12) R{P, Q} A o(P) Ap(Q) » - o(R). (Any pair object of any two regular
objects is itself regular. Proof. By (6.9), (8.6), and (8.7).)

(9) Totally normal objects

Together with regularity, total normality is a notion of particular importance
in OF. We call an object totally normal if and only if all the descendents of
it are normal. (See (9.1).) In this Section, we show some elementary pro-

perties concerning total normality.

(9.1) DF. »(P)RVX(XoP-»X{€)X). Any object P satisfying »(P) is
called totally normal.
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(9.2) »(P)—» P{€)P. (Totally normal objects are also normal. Proof. By
(7.2) and (9.1).)

(9.3) P=Q- =v(P)=2(Q). (Total normality is a property modulo equality.
Proof. By (9.1), (7.6), and (2.3).)

(9.4) Q3PAv(P)* >1(Q). Especially, QEPAp(P)* >»(Q). (Any de-
scendent of a totally normal object is also totally normal. Especially, any
generalized member of a totally normal object is also totally normal. Proof.
By (7.2), (7.3), and (9.1).)

(9.5) YX(XeEM-»(X)) NAM{EYM- - v(M). (Any normal object formed

exclusively by totally normal objects is totally normal.)

Proof /A-b. A) VM VX(Xe M-»(X))NM{E)M.

b)) (M) /bA-be, (9.1). bA) VX! XoM.

bb) XeesMVX=M [bA (7.7).

be)) XoeM-X{(E)X [bcA- bee. beA) Assume Xo< M.
beb) 3Y! XoYeM /bcA.

bee) 2(Y) /beb, A. bed) v(X) /bch, bee, (9.4).

bee) X{E)X /bcd, (9. 2).

bd)) X=M-X{E)X /[bdA- bdec. bdA) Assume X=M.

bdb) X={&)=X /bdA, A, (2.3).
bde) X{£)X /(2.2), (2.11), (2.12), bdb.
be) X{&)X /bb, bc, bd.

(9.6) Q{E) ST PAu(P)» >3(Q). (Any normal generalized subobject of a
totally normal object is also totally normal.  Naturally, @{&)< P implies
Q{E)Q by (2.12) and (2.29), and the same condition implies also @ S P by
(2.24) and (2.13). Proof of the theorem. For any totally normal P and Q
satisfying @{&)Q and @ Z P, we can prove YX(X€ @ -»(X)) by (2.14) and
(9.4), so @ is totally normal by (9.5).)

(9.7) 9(P)>»(P). (Any null object is totally normal. Proof. By (1.2),
(2.27), (2.28), (6.1), and (9.5).)

(9.8) R(P, Q} Nv(P)Ap(Q) = » »(R), especially R{=)PAp(P)* > v(R).
(Any pair object of any two totally normal objects is totally normal; especially,

any unit object of a totally normal object is totally normal., We can prove
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the first formula by (6.9), (6.12), (9.3), and (9.5). As noticed in (6.9),

R{P, P} is equivalent to R{ = )P, so the first formula implies the second one.)

(9.9) 3P-P{{&)S)M. (For any object M, there is an object formed by
all the normal generalized subobjects of M. Proof. We can take an object P
satisfying P{={=)SAES)M by (4.3). We can prove P{{E)E)M by (2.2),
(2.8), (2.10), (2.13), and (2.24).)

(9.10) P{S)SI)MAv(M)- -»2(P). (Any object formed by all the normal
generalized subobjects of a totally normal object is also totally normal. Proof.
By (2.8), (2.10), (2.29), (9.5), and (9.6).)

(9.11) »(M) >+ Plee)M=P{c=)M. (For any totally normal object M,
Plee)M and P{e <)M are mutually equivalent. Proof. By (9.4), (9.2), and
(2.6).)

9.12) Plee)MAv(M)- >»(P). (Any sum object of any totally normal
object is also totally normal. Proof. By (2.6), (2.8), (2.12), (2.29), (9.4), and
(9.5).)

(10) Natural numbers

Although it is not indispensable to establish a full theory of natural
numbers as a preparation for establishing a set theory, it seems adequate to
introduce here a theory of natural numbers in our system OF by the inter-
pretation that any null object is regarded as the number zero and any unit
object of any natural number X is regarded as the number following X. From
this point of view, we write down here again a few propositions already stated.
(See (10.8) and (10.9).) By proving that there is an object formed by all the
natural numbers, we know that the axiom of infinity holds in OF in the sense
that there is an object formed by infinitely many objects. To prove that we
can construct a theory of sets in which the axiom of infinity in its original
sense holds, we have to define the notion of sets in OF and to show that any
natural number as well as any object formed by all the natural numbers is a
set. (See (11.13) and (11.14).)

Informally speaking, any object X is called a natural number (notation
“#(X)”) if and only if we can find X in an infinite sequence Xy, Xi, . . ..
where X, is a null object and Xu+:1{ =)X, holds for all » (The notion of
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natural numbers is defined formally in (10.4).) For convenience’ sake, we
introduce a binary relation “#” before defining natural numbers. The relation
Z is naturally a relation closely connected with the notion of natural numbers.
Namely, X2 Y means that we can find X in an infinite sequence Z,, Zi, . . .,
where Z, is equal to Y and Zp:.:{=)Z, holds for all n. (See (10.1).)
Accordingly, X is a natural number if and only if X% Y holds for a null object
Y. (See (10.4) and (6.1).)

(10.1) DF. XzY=RVP(VS(S{=)e P»~SeP)>(YEP->XeEP)).

(10.2) The relation £ is reflexive and transitive. It is also invariant.
(Proof. By (2.3), (2.4), (2.12), and (10.1).)

(10.3) Equality = implies the relation #. (Proof. By (10.1), (2.2) and (2. 12).)

(10.4) DF. #(X)=<:3Y-X%0Y. Any object satisfying £(X) is called a

natural number.

(10.5) 0(X)->z(X). (Zero is a natural number. In this Section, any null
object is called “zero” for the purpose to make the interpreted images of our
natural numbers vivid. Proof. By (6.1), (10.2), and (10.4).)

(10.6) The relation { = )% implies the relation £. (Proof. Assume X{=)zY.
For any P satisfying VS(S{=)& P-SeP) and YEP, we can prove XEP
by (1.2), (2.1), (2.2), (2.3), (2.6), (2.11), and (10.1). So, XzY by (10.1).)

(10.7) Y{=)XAN#%(X)* >2(Y). (Any unit object of a natural number is
also a natural number. In this Section, we call any unit object of a natural
number X “a natural number following X for the same purpose as mentioned
in (10.5). Proof. By (10.4) and (10.6).)

(10.8) U{=)XAWV{=)Y>+X=Y=U=V. (See (5.5). Especially, in
the field of natural numbers, any two numbers are mutually equal if and only
if a natural number following one of them is equal to a number following
the other.)

(10.9) 0(X) - +»—>X{=)Y. (Zero follows no natural number. See (6.6).)

(10.10) VX(O(X)~> NA(X)) and VYZ((Z=YV Z{=)Y) AAY) - A(2Z))
imply VW(E(W) - A(W)). (This theorem corresponds to the complete

induction.  Evidently, the second assumption of the theorem can be replaced
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by YYZ(Z{=)Y AA(Y)* - A(Z)) for any condition N(T) on T modulo
equality. Compare OZ-(1.8.11) and 0Z-(6.9.10).)

Proof /A-b.

A)  Assume Y X(0(X)~>A(X)) and YVYZ(Z=YVZ{=)Y)AN(Y)« >AU(2)).
b)) YWEH(W)-AW)) /bA-bd. bA) VW! 2(W).

bb) 3UV! WiULOV /bA, (10.4).

be) VPVS(S{=)eP->SeP)»(UsP-WeP)) /bb, (10.1).

bd)) WW) /[bdA-bdk. bdA) Define I by FIG=ZA(F).

bdb) 3P! P{=T AU [(4.2).

bde)) VS(S{=)ec P-S=P) /bdcA- bden. bdcA) VS! S{=)eP.
bdchb) 3T! S{=)TeP /bdcA. bdee) T =TUANToU /bdch, bdb.
bded) 3R! T=RIU /bdee. bdee) 3Q! Q{=)R /(5.4).

bdef) S=Q /bdch, bdce, bdcd, (10.8). bdeg) A(R) /bdcd, bdA.
bdech) U(Q) /bdcg, bdce, A. bdei) QI'U /bdch, bdA.

bdej) S=TU /bdef, bdci.
bdek) S={=)=0U /bdcf, bdce, bdcd, bdcc, (2.3).
bdel) SoU /bdck, (2.8), (2.11), (2.2), (3.4), (3.1).

bdem) S(=I'Ag)U [bdcj, bdcl. bden) SeP /bdem, bdb.

bdd)) U<P /bddg, (2.6).

bdda) 0(U) /bb, (6.1). bddb) () /bdda, A.

bdde) UTU /bddb, bdA. bddd) U=TU /bddec, (2.3).

bdde) UsU /(3.1). bddf) U(=TINg)U /bddd, bbde.

bddg) U< P /bddf, bdb.

bde) WEP [be, bde, bdd. bdf) 3IM! W=MecP [bde, (1.2), (2.1).
bdg) M=rIU /bdf, bdb. bdh) W=IU /bdf, bdg, (2.3).

bdi) 3K! W=KI'U /bdh. bdj) U(K) /bdi, bdA.

bdk) U(W) /bdi, bdj, A.
(10.11) 2(W) - p(W). (Every natural number is regular.)

Proof /A-d. A) Assume #(W). b) VX(O(X)-pe(X)) /(8.3).
e) VYZ((Z=YNZ{=)Y)No(Y)* »p(Z) /(8.6), (89).
d) (W) /A, b, ¢, (10.10).

(10.12) 2(W)->»(W). (Every natural number is totally normal.)
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Proof /A-d A) Assume Z(W). b) VXW0(X)-»p(X)) /(9.7).
¢) VYZW(Z=YVZ{=)Y)Au(Y) ->u(Z)) /(9.8), (9.8).
d) (W) [A, b, ¢, (10.10).

(10.13) Z-relation implies o-relation. (Proof. For any X and Y satisfying
X2V, take an object P satisfying P{s)Y by (5.1). Then, we can prove
VS(S{=)eP-Se P) by (3.1) and (3.4). Since YEP by (3.1) and (2.6),
we can prove XoY by (1.2), (2.1), (2.2), (3.5), and (10.1).)

(10.14) 3P- P{2)M. (Proof. By (2.2), (4.2), (10.2), and (10.13).)

(10.15) 3P- P{£0)M, ie. IPVS(SeP=4(S)). (There is an object formed
by all the natural numbers. Compare OZ-(1.8.5) and OZ-(6.9.6). Proof. By
(6.5) and (10.14), we can take objects U and P satisfying §(U) and P{%)U.
For this P, we can prove P{z0)M and VS(Se P=%(S)) by (2.2), (6.1), (6.3),
(6.8), (10.2), and (10.4).)

(10.16) P{z0)M- o(P). (Any object formed by all the natural numbers

is regular.)

Proof /A-g. A) Assume P{z0)M. b) 30! H(U) /(6.5).
¢) 3Q! QU /(5.1).

d) Pc@ /dA-df, (2.15). dA) VT! TeP

db) Tz0M /A, dA. de) Tz0U /db, (6.3).

dd) TooU /de, (10.13), (6. 4), (2.22), (3.3).

de) ToU /dd, (3.1). af) TeQ /c, de.

e) p(U) /b, (83). f)  olQ) /c, e (8.11).

g) olP) /d f, (2.22), (8.8).

(10.17) P{$0)M-»(P). (Any object formed by all the natural numbers

is totally normal.)

Proof /A ~d. A)  VYPM! P{30)M.

b)) VX(XeP-u(X)) /bA-bd. bA) VX! XeP.
bb) Xz0M /bA, A.

be) £(X) /bb, (10.4). bd) »(X) /bc, (10.12).

¢c) PP /A, (10.2), (2.8), (2.29). d) (P /b ¢, (9.5).

(10.18) VoW A2(W) = ->#(V), ie. the relation 650 implies the relation £0.

https://doi.org/10.1017/5S0027763000011077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011077

A STRONGER SYSTEM OF OBJECT THEORY 151

(Any descendent of a natural number is also a natural number. Since the
second statement can be easily deduced from the first formula by (6.3) and

(10.4), we prove here the first formula formally.)

Proof /a—f.

a)) VX(0(X)->VITsX~£(T))) /aA- ab. aA) VX! g(X).
ab)) VYT(TéX->z(T)) /abA- abf. abA) VT! TéX.

abb) TéeXVT=X /abA, (7.7). abe) —~T6€X /a4, (6.1).
abd) T=X /abb, abc. abe) O(T) /aA, abd, (6.7).

abf) £(T) /abe, (10.5).
b)) VYZ(Z=YAVYT(T3Y-4(T)) >VT(T6Z-4(T))) [bA—bb.

bA) VYZ! Z=YAVT(T3Y - 4(T)).
bb)) VT(TSZ-#(T)) /bbA- bbd. bbA) VT! ToZ.

bbb) Td8=Y /bbA, bA. bbe) ToY /bbb, (2.2), (7.6).
bbd) #(T) /bbe, DA.

¢) VYYZ(Z{ =)YAVT(ToY->£(T))» >VT(ToZ-4%(T))) /[cA-cb.
cA) VYZ! Z{i=)YAVT(ToY~1(T)).

cb)) VT(TSZ-%(T)) [cbA~ cbe. cbA) VT! ToZ

ecbb) TésZNT=Z [cbA, (7.7).

cbe)) TosZ-2(T) /cbcA - chbee. cbeA) Assume 3S! T6Se=Z.
cbeb) S=Y /cbcA, cA. ebee) To=Y /cbcA, cbeb.

cbed) TOY /ebee, (2.2), (7.6). cbee) H(T) /ebed, cA.

cbd)) T=Z-#T) [cbdA- chde. cbdA) Assume T =/Z.

cbdb) YOV /(7.2).

chde) 2(Y) /cA, cbdb. cbdd) #(Z) /cbde, cA, (10.7).

cbde) #(T) /cbdd. cbdA, (10.2), (10.4), (2.2).

cbe) £(T) /cbb, cbe, cbd.

d) VYZUZ=YVZ{=)Y) AVNT(ToY - 2(T)) - >N T(T6Z-#(T))) /b,ec.
e) HBW)->VYT(ToW-2(T)) /a, b, (10.10).

£) VSWAREW) - -5(V) e

(10.19) Remark. The relation & can be regarded as the relation “<” in

the field of natural numbers. However, we do not discuss the matter here in
detail. (Compare 0Z-(6.9.14).)
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(11) Sets and set variables

To construct a set theory in OF, our field of objects has only to be restricted
to a special field, the field of sets. Just as in OZ or in other theories of classes,
it seems adequate to introduce set variables also in OF. In this Section, we

try to define sets in such a way that a theory of sets can be imbedded in OF.

(11.1) DP. $(X) = :p(X)Ap(X). Any object X satisfying $(X) i.e. any

object which is regular and totally normal is called a set.

(11.2) Set variables. We use small Latin letters for denoting sets. Expres-
sions of the forms Vs-:&(s) and 3s-F(s) naturally denote VS($(S) - F(S))
and 3S($(S) A F(S)) respectively. Simple nominations of the form
Qs! F(s) in PLK naturally denote QS! $(S)AF(S). General nominations of
the form VsQit;- - - Qutr! §F(s, t, . . ., 1) and general nominations of the form
AsQuitr- - - Qrtr! F(s, t, .. ., 1) in PLK naturally denote the series of expres-
sions defined recursively by WVS! &(S), Qit;- - - Qete! F(S, ty, ..., t) and
AS! $(S)A Qutr- - - QeteF (S, t, o v, te), Qutre - - Qete! F(S, by oo, 1),

respectively. Here in these expressions, the variables s and S are assumed to

occur only in the indicated places; each one of Q, Q;, ..., Q: denotes either
of the quantifier symbols ¥ or 3; and f;, ..., t% may be set variables or
object variables (k=1). Qity + - - Qit; Qs » Fy, ..., 15, s) and Qit;- - -
QitiQsQjiitjrr -+ » Qjrrtivr! FUy o ooyt S tjsy, - - ., i) (4, B=0) are called

the expressions obtained by restricting the quantifiers QS of Qut:i- - - Q;1;QS+
5, ..., 1, S) and Quiy- - - Qi QSQj1tjrr =+ » Qiertive! Tty o o o, 17, Sty
.« ., 1jtx) to the set range, respectively. (Compare OZ-(5.2.1) and see PD-(1).
Notice that ¥s! & (s) does not denote ¥S! S(S)->F(S), but does denote VS!
S(SYAF(S).)

Obviously, VS-3(S) implies Vs+=J(s) and s+ F(s) implies 3S-F(S). In

the following, however, we do not expressly refer to this Paragraph when we
make use of this property.

(11.3) The set-theoretical images of formulas and the set-theoretical
images of special predicates and relations. Just as in OZ, we introduce notations
of the form ||, which denotes the formula obtained by restricting all the
quantifiers (including nominating quantifiers) of the formula ¥ to the set range,

and we call |¥%| the set-theoretical image of the formula %. (Compare OZ-
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(5.8.2) and 0Z-(5.3.5).) If I' is a special symbol such as “<” or “p”, we
denote sometimes | XI'Y| by XI"' Y and |I'(X)| by I"(X). For example | X<Y]|
as well as XZ Y denotes the same formula Vs(s€ X—>s< Y). We can regard
I as a special relation or a special predicate when I" denotes a special relation
or predicate. Relations or conditions of this type are expressed simply by
attaching the word “‘set-theoretical”. For example, “XC V" is read “X is a
set-theoretical subobject of Y” or “X is set-theoretically included in Y” and
“BD(X)” is read “X is set-theoretically regular”.

We have some obvious rules for constructing set-theoretical images of
formulas such as “|AAB| is |UIA[B]”, “IVX-AX) | is Vx| A(x)|, assuming
that no more X’s and «’s occur in A(7T)”, etc. However, we do not discuss
the matter here in detail. (Compare 0Z-(5.3.4).)

(11.4) $(x), p(x), and »(x). (Any set is a set. Any set is regular and
totally-normal. Proof. By (11.1) and (11.2).)

(11.5) 9(P)~> $(P). (Any null object is a set. Accordingly, null objects
can be called also null sets. Proof. By (8.3), (9.7), and (11.1).)

(11.6) X=y-> $(X). (Any object which is equal to a set is also a set.

Namely, the condition $(7) is a condition on T modulo equalty. Compare
0Z-(5.1.5).)

Proof /A-d. A) Assume X=3y. b)  o(»)Ap(y) /(11 4).
e) olX)ANu(X) /A, b, (8.6), (9.3). d) $X) /e (11.1).

(11.7) XEy-> $(X). (Any generalized member of a set is also a set.
Compare 0Z-(5.1.14).)

Proof /A-d. A) Assume XEy. b) o3 An(y) /(11.4).
e) o(X)AN»(X) /A, b, (85), (9.4). d)  $X) /e (11.1).

(11.8) X{ =)y $(X). (Any unit object of a set is also a set. See (11.11).)

Proof /A-d. A) Assume X{=)y. b) o(y)Ap(y) /(11.4).
) p(X)Au(X) /A, b, (8.9), (9.8). 4  $(X) /e, (1L1).

(11.9) P{{€)S)m— $(P). (Any object formed by normal generalized
subobjects of a set is also a set. Compare 0OZ-(3.2.5).)
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Proof /A-h. A)  Assume P{{E)T)m.
b)  elm)ANw(m) /(11.4).
¢) 3AQ! Qo)m /(5.1). d) o(@ /e b, (8.11).

e)) PCQ /eA-ee (2.15). eA) YT! TeP

eb) T{E)Tm /A, eA.

ec) Taom [eb, (2.24), (3.3). ed) Tom J/ec, (3.1).
ee) TeQ Jc ed

£f)  o(P) /e d, (2.22), (8.8). g) »(P) /A, b, (9.10).

h) $(P) /1, g (AL1D).

(11.10) Plec)m-> $(P) and @cs)m > $(Q). (The second formula
asserts that any sum object of a set is also a set. Since Q{&E<)m is equivalent

to @{=<)m by (9.11) and (11.4), we have only to prove the first formula.
Compare OZ-(3.2.5).)

Proof /A-h. A) Assume P{le<)m. b)) olm)Av(m) /[(11.4).
¢) 3AR! R{o)m /(5.1). d) o(R) /e, b, (8.11).

e)) PCR /eA-ee (2.15). eA) VYT! TeP.

eb) Tcem /A, eA. ec) Taom /eb, (3.2).

ed) Tom Jec, (3.1). ee) T&R /e ed

) o(P) /e d, (2.22), (8.8). g) »(P) /A, b (9.11), (9.12).

h) $(P) /f, g (11.1).

(11.11) R{p, q}~ $(R). (Any pair object of any two sets is also a set.
According to (6.9), (11.8) is a special case of this theorem. Compare OZ-
(3.2.11).)

Proof /A-d. A) Assume R{p, q).
b)  o(p)Ap(p) and o(g) Ap(g) /(11.4).
¢) o(R)Ap(R) /A, b, (8.12), (9.8). d)  $(R /e (11.1).

(11.12) Xoy -~ $(X). (Any descendent of a set is also a set.)

Proof /A-d. A) Assume Xdy. b)  o(») Ap(y) /(11.4).
e) o X)Ap(X) /A, b, (8.4), (9.4). d)  §(X) /e (11.1).

(11.13) 2(W) - $(W). (Any natural number is a set. Proof. By (10.11),
(10.12), and (11.1).)
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(11.14) P{gd)M~- $(P). (Any object formed by all the natural numbers
is a set. Proof. By (10.16), (10.17), and (11.1).)

(11.15) VX(Xe M~ $(X)) ANM{EYM - - $(M). (Any normal object
formed exclusively by sets is itself a set.)

Proof /A-f. A) Assume VX(Xe M- $ (X)) A M{E)M.
b) VX(XeM-p(X)) /A, (11.1). e) o(M) /b, (87).
d) VX(XeM-uX)) /A, (11.1). e) (M) /d, A, (9.5).

) $(M) Jc, e (11.1).

(12) Extensionality

To construct a set theory in OF, it is desirable that sets of the same
extent can be regarded as equal to each other. In this Section, we describe
some theorems concerning the extensionality of sets in preparation for con-

structing a theory of sets. (See especially (12.4) and (12.9).)

(12.1) X=Y->Vp(Xep=Yep). (Equal objects are either simultaneously
members of a set or simultaneously non-members of a set.)

Proof /A-d. A) Assume X=Y.

b)) Vp(Xep->Yep) /[bA-be. bA) Vp! Xep.

bb) »(p) /(11.4). be) p{&)p /bb, (9.2).

bd) YeEp /A, bA, (2.3), (1.2), (2.1). be) Yep /be, bd.

¢) VYplYep-»>Xep) /similarly to &.
d) Vp(Xep=Yep) /b, c.

(12.2) VP(XeP->YeP)»X=Y. (If Y is a member of every object

containing X as its member, X and Y are mutually equal.)

Proof /A-e. A) Assume VP(Xe P->Y e P).
b) Q! Q{=)X /(5.4). ¢) Xe@ /b, (2.26).
d) YeQ /A, c. e) X=Y /bd (2.3).

(12.8) ¥Vplxep->Yep)>x=Y. (If Y is a member of every set containing

a set x as its member, ¥ and Y are mutually equal.)

Proof /A-f. A) Assume Vp(xep->Yep).
b) 3Q! @{=)x /(5.4).
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¢) x=Q /b, (2.26). d)  $(@) /b, (11.8).
e) YeEQ /A ¢ d (11.2).
f) x=Y /b e (2.3).

(12.4) x=y=Ypxep=ysp). (Two sets are equal to each other if and
only if they are either simultaneously members or simultaneously no members
of every set. Proof. By (12.1) and (12.3).)

(12.5) Xey=XEy. (Broadly speaking, membership € is equivalent to
the generalized membership € for sets. Proof. By (9.2) and (11.4).)

(12.6) X{€)y=X=y. (Broadly speaking, the relation {€) is equivalent
to equality = for sets. Proof. By (2.1) and (12.5).)

(12.7) Equality = implies set-theoretical equality =. (Proof. By (2.1)
and (11.3).)

(12.8) Set-theoretical equality = imples equality

for sets. Namely,
Vs(sesx=scy)>x=y.

Proof /A-d.

A) Assume xZy ie. Vs(sex=sey) by (2.1) and (11.3).

b)) xCy [bA-be, (2.15). bA) VT! Tex.

bb)  $(T) /bA, (2.6), (1L.7). be) Tey [A, bA, bb, (11.2).

¢) ycCx /similarly to &. d x=y /b ¢ (2.17).

(12.9) Set-theoretical equality = is equivalent to equality = for sets.

(Proof. By (12.7) and (12.8).)

(12.10) Set-theoretical equality = is reflexive, symmetric, and transitive.
(Proof. By (2.1) and (11.3).)

(12.11) XCy=XcCy. (Any object is a generalized subobject of a set if
and only if the object is a subobject of the set. Proof. By (2.15), (2.21), and
(12.5).)

(12.12) Inclusion < implies set-theoretical inclusion €. (Proof. By (2.15)
and (11.3).)

(12.13) xS Y->xC Y. (Proof. By (2.6), (2.15), (11.2), (11.3), and (11.7).)

(12.14) xS Y =xC Y. (Any set is a set-theoretical subobject of an object
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if and only if the former is a subobject of the latter. Proof. By (12.12) and
(12.13).)

(12.15) Set-theoretical inclusion & is reflexive and transitive. (Proof. By
(2.15) and (11.3).)

(12.16) x0Y = 207. (Proof. By (2.6), (6.1), (11.2), (11.3), and (11.7).)

(12.17) Z{x, v} - |Z{x, y}|. Especially, Z{=)x-|Z{ =)x|. (Proof. By
(6.9), (11.3), and (12.9).)

(13) Set-theoretical satellites and set-theoretical descendents

In this Section, we describe some properties of the set-theoretical satellite-

~

relation 7 and the set-theoretical descendent-relation 3. To make our descrip-
tion simpler, we introduce the notation for set-theoretical products of binary

relations at first.

(13.1) DF. X(I'*4)Y<:3s+XI'sdY. The relation I'*4 is called the set-
theoretical product of the two binary relations I" and 4.

(13.2) | XIr4Y|=X(I'*4)Y. (Proof. By (11.3) and (13.1).)

(13.3) The set-theoretical relation-product I"*4 of any two binary relations
I’ and 4 implies the relation product I'4 of them. The set-theoretical relation-
product is monotone in the sense that the relation I'*4 implies the relation
0*4 if I’ and 4 implies @ and A respectively. Also, the set-theoretical relation-
product together with the relation product is associative in the sense that the
relations I'(460), I'*(40), I'(4%0), and I'*(4*@) are equivalent to the relations
(rd)0, (r*4)0, (ra)*e, and (I'*4)*e, respectively. Accordingly we usually
omit the parentheses denoting the order of combinations.

Any relation of the form I'*(4A®) implies I'*4 as well as I'*@, and any
relation of the form (I"A 4)*0® implies I'*@ as well as 4*6. Also, the set-
theoretical relation-product is distributive over the combination V in the sense
that any relation of the form I'*(4V @) is equivalent to I"™*4VI*® and any
relation of the form (I"V 4)*0 is equivalent to I'*®V 4*6. Further, any relation
of the form I'*4 is, just as the relation I'4 in (2.8), rightl invariant if 4 is so,
it is left invariant if I" is so, and it is invariant if I" is left invariant and 4 is
right invariant. (Proof. By Definition (13.1).)
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(13.4) XI'ey+=+-XI""€y, X'=y+ =+X*=y, and x=TY+ = »x="*TY.
(Proof. XI"s y—> XI"*< y can be proved by (2.6),(11.2),(11.7),and (13.1). XI'=y-
XI'* =y and x=I"Y-x =*TI"Y can be proved by (2.3), (11.2), (11.6), and (13.1).
XI*ey->XI'ey, XI'*=y—>XI'=y, and x="T'Y->x=TIY hold by (13.3).)

(18.5) XEy->XEy. (Proof. By (1.2), (2.1), (11.3), (12.7), and (13.1).)
(13.6) xEY~>xEY. (Proof. By (1.2), (2.1), (11.3), (12.8), and (13.1).)

(13.7) Membership <, the generalized membership €, and the set-
theoretically generalized membership & are mutually equivalent for sets.
(Proof. By (12.5), (18.5), and (13.6).)

(13.8) XCy->XCTy.

Proof /A-b. A) VXy! XCy.
b)) XCy [bA-bd, (1.3), (11.3). bA) Vs! sEX.
bb) sEX /bA, (13.6). be) sEy /bb, A, (2.14).

bd) sEy /be, (18.5).

(13.9) xS Y->xCY.

Proof /A -b. A) VxY! xC Y.
b)) xCY /bA-be (1.3). bA) VYS! Sex.
bb) $(S) /bA, (11.7). be) SEx /bA, (13.5).

bd) S&Y /A, bb, be, (1.3), (11,2), (11.3).
be) SEY /bb, bd, (11.2), (13.6).

(18.10) Inclusion <, the generalized inclusion C, the set-theoretical inclu-

A

sion €, and the set-theoretically generalized inclusion < are mutually equivalent
for sets. (Proof. By (12.11), (12.14), (13.8), and (13.9).)

(13.11) X{&)y~|X{E)y]. (Proof. By (11.3) and (13.7).)

(13.12) |x{S)y| »> x{&)y. (Proof. By (2.6), (11.2), (11.3), (11.7), and
(13.7).)

(13.13) |x{€)yl=x=y. (Proof. By (12.6), (13.11), and (13.12).)
(13.14) o(p) > 5(p). (Proof. By (1.4), (11.8), (11.7), and (13.10).)

(13.15) The set-theoretical satellite-relation & implies the satellite relation

o for sets.
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Proof /A-c. A)  Vxy! x5y.

b) Vp(3(p)Aye*ep--xe*ep) /A, (1.5), (11.3), (13.2).
¢)) xoy [cA-cr. cA) Define X by XIY = $(X).

cb) 3IP! P{=3 No)y [(4.2).

ce)) VT(TeP->$(T)) /ccA-ccd. ccA) VT! TeP
cch) 3S! T=S3y /ccA, cb. cee)  $(S) /ceb, cA.

ced) $(T) /cce, (11.6), (11.2).
ed) PEYP /cb, (2.3), (2.8), (2.9), (3.5), (2.29).

ce) $(P) Jee, cd, (11.15). cf) Jp! p{=3INa)y /cb, ce, (11.2).
cg)) Vs(se*ep->sTrep) /cgA-cgg. cgA) Vs! se*ep.

cgb) 3t! sctep /cgA, (13.1). cge) toy /cgb, cf.

cgd) soy /cgb, cge, (3.1), (3.2). cge) s=s53y /(2.38), (11.4), cA.

cgf) sCsep /(13.10), (2.13), cgd, cge, cf.
cgg) sC*ep /cgf, (13.1).

ch)) Vs(sS*ep->se*cp) /[chA-chi chA) Vs! sS*ep.
chb) 3t! sCtep /chA, (13.1), (13.10).

che) 3Fu! u{=)s /(5.4), (11.8), (11.2). chd) toy /chb, cf.
che) wuay /che, chb, chd, (3.1), (8.3), (3.4).

chf) u=uly /(2.3), (11.4), cA. chg) wu<p /che chf, cf.
chh) seu /che, (2.26). chi) se*ep /chh, chg (13.1).
ci) G(p) /cg, ch. (1.4), (11.3), (13.2).

cj) 32! z{=)y /(5.4), (11.8), (11.2). ck) yez /cj, (2.26).
cl) z=23y /(2.3), (11.4), cA. em) zgy /cj, (3.4).

en) ze€p /el cm, cf. co) yve*ep /ck, en, (13.1).

ep) 3Fw! xeswep /ci, co, b, (13.1). eq) woy /cp, cf.

er) xay /ep, cqg, (3.1), (3.2).

(13.16) |[VS(Sesep > Sep)| =VS(Sessp->Sesp). (Proof. By (2.6),
(11.2), (11.3), (11.7), (13.1), (13.2), and (13.3).)

(13.17) Xoy—>X3y. (Proof. By (7.1), (11.3), (13.5), (13.6), and (13.16).)

(13.18) %0y —>x0y.

Proof /A-1. A)  Vaxy! x0y.
b) Vp(Vs(se*ep->sep) > (yep->xep)) /A, (7.1), (11.3), (13.2),
(18.7).
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¢) 3P P{=05Na)y /[(4.2).
a) P{o)y /e (7.6), (7.5), (2.2).

e)) VYT(TeP-$(T)) /eA-ec. eA) VT! TeP
eb) Toy /eA, d. ec) $(T) /eb, (11.12).

f) PE)P /d, (2.29), (7.6). g) $(P) /e f, (11.15).
h)  3p! p{6)y /d, g (11.2).

i)) Vs(se*ep->sep) /iA-ie. iA) Vs! se*ep.
ib) 3t! setep [iA, (18.1). ic) 8y /ib, R

id) soy /ib, ic, (2.6), (7.3), (7.2).
ie) sep /id, h.
i) yep /h (7.2). k) x€p /i j, b. D x0y /& h

(13.19) The descendent relation ¢ and the set-theoretical descendent-rela-
tion ¢ are equivalent for sets. (Proof. By (13.17) and (13.18).)

(14) Set-theoretical images of axioms and theorems

In this Section, we prove that the set-theoretical images of axioms and
theorems (without capital-letter free-parameters) are provable in OF. (See
(14.3) and (14.4). Compare OZ-(6.1).) By virtue of this proof, we can see
also that OZ can be imbedded in OF. (See (14.6).)

To prove the above meta-theorem, we make use of a theorem, which can
be regarded as the set-theoretical image of a presumably unprovable proposition
in OF. (See (14.1).) By virtue of this theorem, we can also introduce term
symbols in our theory of sets. (See (15.1).) In addition to this theorem,
there are some important theorems of this kind, a couple of which are

described in this Section.

(14.1) xZy-|A(x) =A(y)|, where any number of free set-variables may
occur in A(#). (We can prove this meta-theorem by making use of (2.1),
(11.3), (12.4), and (12.9).)

(14.2) Any relation of the forms =1, =, and =I = as well as any
relation of the forms Z*, I'*Z, and Z*I™*Z is equivalent to the relation
I for sets. In other words, any relation of the form I is set-theoretically

invariant. Here, any number of free set variables may occur in /. (Proof.
By (12.8), (13.1), and (14.1).)
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(14.3) |3P- P{{o)m|, where P should not occur in I" but any number of
free set-variables may occur in I. (The set-theoretical image of any axiom
of OF is provable in OF. Compare 0Z-(6.1.1).)

Proof /A-Fk. A) Define 4 by X4Y<= X =*"*=Yom.
b) 3P! P{{d)s)m [axiom.
e)) VT(Te P->$(T)) [cA-ce. cA) VT! TeP

cb) 3U! T{HUsm /cA, b.

ce)) VW(WeT->$(W)) /ech - cce.

ccA) VYW! WeT. ccb) WAU /ecA, cb.

cce) S(W) Jeeh, A, (11.6), (13.1).

ed) T{E)T /eb, A, (13.3), (2.3), (2.29). ce) $(T) /ec, cd, (11.15).

d) P{E)P /b, (2.8), (2.10), (2.29). e) $(P) /e d, (11.15).

£) 3! p{{do)m /b, e, (11.2).

g)) VYitep- |HD)em|VO(D)) /gA-gk. gA) Yt tepA -0(2).
gb)  HDem /gA, f. ge) 3AY! H{d)Yom /gb.

gd) 3AS! Set /gA, (6.1). ge) S4Y /gd, gc.

gf) S=T*=Yom /ge, A.
gg)  S(Y) /gf, (2.3), (11.6), (13.1).
gh)) Vs(set->sT'Y) /ghA-ghd.

ghA) Vs! set ghb) sd4Y /ghA, ge.

ghe) s="T*=Y /ghb, A. ghd) sT'Y /ghe, gg, (14.2).

gi)) Vs(sTY->set) /giA- gic. giA) Vs! sI'Y.

gib)  sdY /A, giA, gf, gg, (2.3), (11.2), (13.1). gic) s=t /gib, ge.
gi) [t{DY| /gh, g, (11.3). gk) (H{Deml| /gj, gg &, (11.2).
h)) Vi(lH{Doem|->tsp) /hA->hg. hA)  VYi! [HMoml.

hb) 3! [{DylAysm /RA, (13.2), (13.1).

he)) VS(Set->Sdy) /hcA- hed. heA) VS! Set.

heb)  $(S) /heA, (2.6),(11.7). hee) STy /heA, heb, b, (11.2),(11.3).
hed) Sdy /hee, hed, hd, A, (2.3), (11.2), (13.1).
hd)) VS(Sd4y->S<t) /hdA- hde.

hdA) VS! S4y. hdb) S=**=y /ndA, A.

hde) $(S) /hdb, (11.6), (13.1). hdd) STy /hdb, hdc, (14.2).
hde) Set /hde, hdd, hb, (11.2), (11.3).

he) #d4)y /he, hd. hf) t{d)om [he, hd, (13.15).
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hg) t€p /1, f.

i) 3n0(n) Nn{Dom)) > |p{{MNa)m| [iA-ib.
iA) Assume In! O(n) Al n{loml.

ib)) |p{{o)m| /iba, h.

iba)) Vitep-|H{MNoml|) /ibaA- ibad. ibaA) Vit! tep.

ibab) |[HDem|VO(t) /[ibaA, g.

ibac)) O)->|H{IMom| /ibacA - ibacc. ibacA) Assume 0(f).
ibacb) t=n /ibacA,iA, (6.8). ibace) | HIMom| /ibacd,iA, (14.1).

ibad) |t{Iom| /ibab, ibac.

i) 7 3An0(n) N n{em|) - 3qlgl{Ma)m| /jA- jb.

iA)  Assume — 3An(F(n) A |n{Nom]).

jb))  3glq{lMao)m| /jbA - jbi. jbA) Define 6 by X0Y = - 0(X).
ibb)  3Q! Q{=(OAE)p /(4.4).

ibe)  Q{&)Q /jbb, (2.3), (2.8), (2.29).

ibd)) VI(TeQ-$(T)) /jbdA- jbdd. jbdA) VT! TeQ.
jbdb) IW! T=W(@BOAE)p /[jbdA, jbb.

jbde)  S(W) /jbdb, (2.6), (11.7).

jbdd)  S(T) /jbdb, jbde, (11.2), (11.6).

jbe)  $(Q) /jbe, jbd, (11.15).

jbf)  3q! ¢{=(OANE))Dp [jbb, jbe, (11.2).

jbg)) Viteq--tepN—=0(t)) /jbgA- jbge, jbef.

jbgA) Vi tegq. jbgb) t=(OAE)p [jbgA, jbf.
jbge) tep /jbgh, (12.1). jbgd) 3IW! t=W6p /jbgb.
ibge) = O(W) /jbgd, jbA. jbgf) = 0(t) /ibge, jbgd, (6.7).

jbh)) Vi(tepN—-0@)->tsq) /jbhA - jbhd.

jbhA) Vit! tepA\ = 0(t).

jbhb) tOp /jbhA, jbA. jbhe) t=(BA<)p [jbhb, jbhA, (2.3).
jbhd) teq /jbhe, jbf.

jbi))  [q{D)oIm| [jbia, jbib, (11.2), (11.3).

jbia)) Vi(te g-|HMom|) /jbiaA - jbiac. jbiaA) Vi! teq.
jbiab) tepA ~0(t) /jbiaA, jbg. jbiac) |H{IMom| [jbiab, g.
jbib))  Yt(HDem|->t<q) /jbibA - jbibd. jbibA) V! [HD)oml|.
jbibb) tep [jbibA, h. jbibe) = 0(t) /jbibA. jA.

jbibd) teq /jbibb, jbibc, jbh.
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k)  3qlgiDa)ym!l /i ;.

(14.4) Remark. (14.3) implies that the set-theoretical image of every
theorem of OF is provable in OF. (Compare 0Z-(6.1.2).) Of course, we
regard hereby that all the parameters seemingly free in the theorem as bound
variables which are bound to the removed universal quantifiers standing at
the top of the theorem.

With respect to free set parameters, we can now talk of the set-theoretical
image of a proposition without assigning its special expression, because the
set-theoretical images of any two equivalent propositions are equivalent to
each other. (Compare OZ-(6.1.4).)

(14.5) By (14.4), we can regard the set-theoretical image of every theorem
as a new theorem. In the following, we refer to the set-theoretical image of
a theorem (a, ) by (a, D)™

It should be remarked here that we must be careful when we make the
set-theoretical image of a theorem seemingly containing free set-variables.
For example, the first formula of (11.4)* is not the formula | $(x)|, which
means VX($(X) -] $(X)]), but it means Vx(| $(x)|—>|$ (x)]) since the first
formula $(x) of (11.4) is an abbreviation of ¥.X($(X)~ $(X)). (See (11.3),
(14.4), (11.4), and also (14.8)-(14.10).)

(14.6) We can imbed OZ in OF by the interpretation that we regard
proto-membership “€” of OZ as membership “=” of OF and the field of objects
X of OZ as the field of sets x of OF, accordingly, we regard the satellite
relation “s” of OZ as the set-theoretical satellite relation “5” of OF. (Proof.
By 0Z-(1.1.2), 0Z-(1.1.3), (1.4), (1.5), (2.15), (11.3), (13.1), and (13.10).
See foot-note 9).) Accordingly any axiom of OZ is interpreted as a proposi-
tion of the form Vu - - - wmIApVx(xcp=+ A(x) Axam) which contains no

more free variables.
Now, let A(X) be the formula obtained by replacing all the variables in

A(x) other than #, ..., w, and m by their corresponding object variables,
and let I" be the binary relation defied by XI'Y =U(X), where Y is a variable
which does not occur in A(X). Then, evidently holds ¥xy(«I"y = % (x)) in OF.

By (4.2)*, Yu- - -wm3p! [p{ =T"'Aos)m|. For this p, we can further prove
Vx(xep=-U(x) Axsm) by making use of (11.3), (13.1), and (14.2). Thus
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OZ can be imbedded in OF.

(14.7) |x{€)x| (Any set is set-theoretically normal. Proof. By (11.4),
(9.2), and (13.11).)

(14.8) »(x). (Any set is set-theoretically totally-normal. Proof. By (14.7),
(9.1), and (11.3).)

(14.9) o(x). (Any set is set-theoretically regular.)

Proof /A-h (reductio ad absurdum). A) Assume —p(x).
b) xp*>%5x /A, (8.1), (11.3), (13.2).

¢) 3yl x5y=2*5x /b, (18.1).

d) y>30x /e (13.1), (13.18).

e) Vi(tdxANtey>ta*ey) /¢ (8.1), (11.3), (13.2).

£))  xoy /fA-rd, (8.1). fA) VT! ToxANTey.

fb)  S(T) /fA, (2.6), (11.7). fe) Tox /fA, (13.17).
td) T>sey [fA, fb, fc, e, (11.2), (18.3).

g)  —olx) /f, d, (8.1). h) contradiction /g, (11.4).

~

(14.10) $ (x). (Any set is a set-theoretical set. Proof. By (11.1), (11.3),
(14.8), and (14.9).)

(15) A theory of sets

In this Section, we show that the Fraenkel set-theory SF (without the
axiom of choice) can be imbedded in OF. To prove this, we show that all
the axioms of SF hold in the field of sets in OF. In the proofs of these
interpreted axioms, we make use of (11.2), (11.3), and (13.1) without notice.
For convenience’ sake, we introduce term symbols in our theory of sets,

although they are not indispensable for our system.

(15.1) Term symbols. 1f there is a set p satisfying Vs(sep=A(s)),
then Vs(seqg=9%(s)) implies g=p; so, according to (14.1), we do not have
to draw any distinction between these sets p and ¢ in our set theory, since
= can be regarded as equality. We denote the set p by the term symbol
{s; A(s)} as in OZ or in other ordinary set-theories. (See OZ-(6.3). Concerning
the meaning of the set-theoretical images of propositions, in which term symbols

occur, see 0Z-(6.3.4).) For any term symbol t holds evidently $(1). In the
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following we make use of this fact without notice.

(15.2) Unit sets and pair sets. By (6.9)* and (6.11)*, we can introduce
the term-symbol {x, y} (pair set of ¥ and y) which denotes {s; s=yVsZy}.
{x, x} is denoted by {x} (unit set of x) as usual. By (6.9)* hold se{x, y}
=+s=2xAs=y and s<{x)=s=x. (Compare 0Z-(6.5).)

(15.8) Sum sets. By (5.3)*%, we can introduce the term symbol &(m)
(sum set of m) which denotes {s; s€*em}. By (13.7) holds s€S(m) =se*em.

(Compare 0Z-(6.7.10).)

(15.4) Power sets. By (5.2)* we can introduce the term symbol ()
(power set of m) which denotes {s; s&m). Evidently, holds s€ R(m) = sCm.
(Comdare 0Z-(6.7.8).)

(15.5) Null set. We can introduce the term symbol § (null set) which
denotes {x; x+x}. We can show by (2.3)% (6.1)* and (6.5)% that {x; % Fx)
is an admissible term symbol. Evidently holds Vs-s& 0. (Compare OZ-(6.4).)

(15.6) Infinite sets. By (10.15)* we can introduce the term symbol %
(set of all the natural numbers) which denotes {s; % (s)}. By (15.2), (15.5),
(6.1)*% (10.5)* and (10.6)* we can prove easily

0esz, and rei->{x)et.

These formulas show that the axiom of infinity holds in our set theory.
(Compare 0Z-(6.9).)

(15.7) Equality. Concerning equality in our theory of sets, hold
x=x x=y->Vpxep=yesp), and Vs(scx=scy)->x=y
by (2.1)% (12.10), (12.9), and (12.4). The third formula can be regarded as

the axiom of extensionality. (Compare OZ-(6.2).)

(15.8) Aussonderung. By (4.4)*, we can introduce the term symbol
{s;ls=("'Ne)ml|}. If we define I' by XI'Y=A(X), we can see by (14.1)
and (12.9) that the term symbol can be also expressed as {s: |A(s)|AsEm).
Accordingly, the aussonderung axiom holds in our set theory, because any
set-theoretical condition on s can be expressed in the form of |U(s)|. (Compare
0Z-(6.7.4).)
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(15.9) Replacement. Let x4z be a relation satisfying Vay(xdzAydz-+
»>x2y). By (4.5)* we can introduce the term symbol {s ; [s{€ 4)= m|}.

We prove now that |s4 € m| implies |s{e 4)e m|. Namely.

Proof of |sdem| »|s{ed)em| /A-c. A) Assume 3y! sgysm.
b)) |s{e dy| /ba, bb.

ba)) ViHtes-te*4y) /baA-bab. baA) Vil tes.

bab) tesdy /baA, A.

bb)) Vite*dy->tes) [bbA-bbd. bbA) Vi! te *Jy.

bbb) 3u! t=udy /bbA. bbe) #=s /bbb, A, assumption for 4.

bbd) tes /bbb, bbc, (14.1).
e) lsledHem| /b, A, (11.3).

Now by (15.8), we can introduce the term symbol {¢; |[tdem|ANte{s;
|s{e 4)= m|}}, which can be also expressed as {¢ ; |td m|} by virtue of the
above proof.

Thus the axiom of replacement holds in our set theory, because every

set-theoretical relation can be expressed in the form of 4.

(15.10) Fundierung. By reductio ad absurdum, we can prove in our set

theory that any non-vacant set ¥ has a member which is disjoint with «x.
Namely,

Proof of Va(xem-x>*em)-m=0 /A-g

A) Assume Vx(xcm—ox2 e m) Am+ 0.

b) 3yl yem /A, (2.1)F (15.5). e) mim /A, (8.1
d) y&im /b, (7.3)% (18.7). e) mp*s*im /¢ b, d.
f)  —»5(m) /e (8.1)* g) contradiction /f, (14.8).

(15.11) By (15.2)-(15.10), we see that SF (the Fraenkel set-theory without
the axiom of choice) can be imbedded in OF.

Naturally, we can also introduce term symbols such as xUy, xNy, <x, »,
x Xy, etc, or we can construct a theory of ordinal numbers with recursive
functions or recursively defined relations. In this work, however, we do not

discuss the matter in detail. (Compare 0Z-(6.9.15).)
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