
ON A THEOREM CONCERNING THE PROLONGATION
OF A DIFFERENTIAL SYSTEM

YOZO MATSUSHIMA

E. Cartan has proved that the prolonged system of a Pfaffian system ϊn

involution is also in involution.11 But he has treated only the case of a Pίaίϊlan

system of some special type. On the other hand in his book [3] he has reduced

the solution of any differential system to the solution of a Pfaίΐlan system of

the type mentioned above, and this reduction is precisely the method of the

prolongation of a differential system.2* Therefore it seems to be disirable to

establish the above mentioned theorem in the case of an arbitrary different?;!l

system.

§ 1. In this section we mention some definitions and theorems from the

theory of differential systems which shall be used later. We use freely the

notations and terminologies in Bourbaki Q ] and Chevalley L Q.

1) Let Mn be an analytic manifold of dimension n and l e t / ! ? . . . . /, be

a system of analytic functions which are defined on a neighbourhood U of a

point a&Mn such that/ i (#) = . . . =Λ(«) - 0 . The system of equations

(1.1) /i = 0, . . . , / s = 0

is said to be regular of dimension m at the point a if the following conditions

are satisfied:

a) There exists a system of coordinates (yι, . . . , yn) on Mn at the point a

and a coordinate neighbourhood V of a with respect to this system of coordi-

nates such that VC.U and the set of all the points pE: V such that flip) = . . .

=/,(_£) = 0 coincides with the set of all the points p&V such that y"ι+1(p)

= . . . =y»(p)=o;
p) the rank of the differentials (dt\)a? . . . , (dj\)a is equal to n — m.

If the system of equations (1.1) satisfies the condition (a) only, we call

it semi-regular of dimension m at the point a.

If the system of equations (1.1) is regular of dimension m at the point a

and if the differentials (dfι)a* . . - (dfn-m)a are linearly independent, then

(dfj)a (i-n — m + 1, . . . , s) are linearly dependent of (dfι)a . . . , (dfn-m)a.

Received February 4, 1953.
J) Cartan [2], Chapitre I.
'2> See Cartan [3], Chapitre VI.
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2 YOZO MATSUSHIMA

2). Let Vm be a linear space of dimension m over a field K and 7^ a
subspace of Vm of dimension p and let V*"* and V*1' be the dual spaces of
Vm and V̂  respectively. Denote by rt the identity mapping of Vp into Vm

and by *TJ the linear mapping of F*'" onto F*P which is the transposed of τ?.3)

The elements / \ . . . . fr of F* w are said to be linearly independent on Vp if
V/ 1), » V / r ) are the linearly independent elements of F*^.

3) Let Dn be a domain in the euclidean space of dimension n. Let B be
a differential system,

α 2 )

)

where 0ίΓ denote analytic differential forms of order r on Dn. In particular 0io>

are analytic functions on Dn. We denote also by o the set of the differential
forms appearing in the equations (1.2). The differential system 3 is called
closed if dθ{Γ^ o for any θΐ? G. 2. We may always assume that 3 is closed.

4) We denote in the following by Ep(a) (p^O) a contact element of Dn

of dimension p and of origin a. In particular En(a) is the tangent space of Dn

at the point a and E°(a)=a. Let E°(a)-=a be an integral point ( = integral
element of dimension 0) of the system 3, i.e. d^ia) =0. The linear functions
on En(a) defined by

(1.3) <L(a), (0«υ)α>\ L(a)GEn(a), a = 1, . . . , m,

where (θ)a denotes the value of the differential form θ at the point a7 are called
the polar functions of the integral point E°(a). We denote by t(E°(a)) the rank
of the polar functions of E°{a). Let Ep(a) (p>0) be an integral element of
dimension p of the system S and Zi(αh . . . , Lp(a) be a base of Ep(a). The
linear functions on En(a) defined by

(i .4) <LiL(a)A. . .ALit .

are called the polar functions of the integral element Ep(a) with respect to the
base Lι(a\ . . . , Lp(a) of Ep(a). Denote by t(Ep(a)) the rank of these polar
functions. t(Ep(a)) is independent of the choice of the base of Ep{a).

5) Let Ep(a) be an integral element of the system e> and let

3> Bourbaki [1], Chapitre II, p. 56.
4 For the notation < , > and Λ» see Bourbaki [1], Chapitre II, p. 42 and Chapitre III § 5.

Notice that the value of a differential form of order r at a point a is an element of / rE{a)*n,
where E(a)*n denotes the dual space of En{a). See Chevalley [4].
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PROLONGATION OF A DIFFERENTIAL SYSTEM

(1.5) /v= Max t(E\a)) (v = 0, 1, 2, . . . , p-1).

Then it can be proved that U^ti^ . . . ^£/>-i and that there exists a chain

E°(β)C£' 1 (β)C. . .CEp"\a)(ZEp(a) of subspaces of Ep(a) such that *„

= t(E\a)) for Ϊ; = 0, 1, . . . , p- 1. Let

(1.6)

The integers s0? . . . , s/»-i are called the characters of the integral element
Ep(a).5)

If Ep(a) is an ordinary integral element6 of the system £ and if E*(a)
C.E1(a)(Z . . . <ZEp~1(a)(ZEp(a) is a chain of the regular integral elements6'
contained in Ep(a), then U = UKE*(a)) U = 0, 1, . . . , p-1).

6) Let Afn be an analytic manifold of dimension n and Sn,p{Mn) the
analytic manifold of all the sets of p linearly independent tangent vectors (p-
frames) of Mn and Gn,p(Mn) the analytic manifold of all the contact elements
of dimension pot Mn. Let π(Ep(r)) = r for Ep(r)^Gn,p(Mn). Then the map-
ping Tris an analytic mapping of Gn,p(Mn) onto Mn.

Let υp(r) = (Li(r), . . , Lp{r))&Sn,p{Mn), where L, (r) are the linearly
independent tangent vectors of origin r and let Ep(r) = {Zri(r), . . . , Lp(r)} be
the contact element of dimension p spanned by Lx{r), . . ., Lp{r). Then the
mapping aivPir)) =Ep(r) is an analytic mapping of Sn,p(Mn) onto Gn,p{Mn).
Let U be a neighbourhood of Ep(a) in the manifold Gn,ρ(Mn) and ̂  an analytic
mapping of U into Sn,p{Mn). The mapping ψ is called an analytic cross section
defined on U if

5 ) In the case where (dx1)a. . . . , (dxp)a are linearly independent on En(a) the values of the

characters of En(a) coincide with those of "caracteres reduits." See Cartan [3] , p. 90.
6> For the definition of ordinary and regular integral elements of a differential system, see

Cartan [3], Chapitre IV. The definition of regular integral element in Kahler [5], p. 23 is

different from that of Cartan. It follows that a regular integral element in the sense of

Cartan is also regular in the sense of Kahler. Cf. Schouten and Kulk L6], Chap. VIII.

We give here the definition of regular element in the sense of Kahler using our notations.

An integral element of the system (1.2) is called regular in the sense of Kahler, if the

following conditions are satisfied

(α) The systems of equations

Ha

0(EP{r))=0 (α = l f . . . , t t o )

H*tl...i8(Epir)) = 0 <<%= 1 , us, s = 1. 2,. . . , l s £ / i < . . .<i*£p)

are regular at the point EP(a) respectively (cf. (1.7), (1 .8 ) ; ;

iβ) There exists a neighbourhood V of the point Ev(a) in the manifold Gn.p(Dn) such

that, if Ev(r) is an integral element of the system (1.2) which is contained in V, then

E

It must be noted that the rank of the differentials of the functions #β* j . . .* β at Ev{a)

is independent of the choice of the analytic cross section ψ which is used to define the

functions / / ^ . . t / . (cf. 6)).
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4 YOZO MATSUSHIMA

for anyEp(r)<ΞΌ. Now let Mn = Dn and ψ(Ep(r)) = vp( r) = KLx(r\ . . . . Lp(r)).

We define the analytic functions on U as follows:

(1.7) H(*0)(Ep(r)) = {θT°

(1. 8> i / S . . . / , ( £ / J ( r ) ) - < L ί ί ( r ) Λ . . . ALls(r), dι

a

s)(r)>,

/a = l, 2, . . . , Us s = 1, 2, . ./a = l, 2,

U^ίi<ι2

where 0«A>) e S.

A contact element Ep(r) in U is an integral element of the system 3 if

and only if all the functions (1.7)., (1.8) vanish at Epir).

Suppose that Ep(a) is an integral element of the systems S. Then it can

be proved easily that the rank of the differentials of the functions (1.8) at

the point Ep(a) is independent of the choice of the analytic cross section ψ

defined in a neighbourhood of Ep(a).Ί)

7) Let Ep(a) be an integral element of the system S. Then Ep(a) is

ordinary if and only if the following two conditions are satisfied;

1) the system of equations H^ = 0 is regular of dimension vo at the

point Ep(a)

2) the system of equations HL0) = 0, Ha%... iH - 0 is regular of dimension

M a t the point Ep{a), where

(1.9) M = p(n-p)-lpso+(p-l)s1+ . . . +s^-J

cind Si are the characters of the integral element Ep(ά)?)

8) Let Ep(a) be an integral element of the system S and let s0, . . . . sp-\

be the characters of Ep(a). Then there exist at least ps0 + (p - 1 >Si -h . . . + s^-j

functions (1.8) whose differentials at the point Ep(a) are linearly independent.

We may choose these psQ -f (p — l)si -f . . . + s/>-i functions in the following way.

Let (x1, . . . , xn) be a system of coordinates defined on D n . We may assume

that the differentials {dx1)α, . . . . (dxp)α are linearly independent on Ep(α).

Let Ep(α)'DEp~1(α)D . . . D ^ ( f l ) D ^ ° ( β ) = f l b e a chain of subspaces of Ep(α)

such that t(Eyj(α)) = ί v = s 0 + . . . + 5 v ( ^ = 0, 1, . . . , ί - 1 . Replacing ΛΓ1, . . . .

.r^ by a suitable linear combinations with constant coefficients, if necessary, we

may assume that

v = l , 2, . . . r / > -

7) Let ΰ be an another cross section defined on U. We can define analogously the functions

Ή{αi\... ίb by using the cross section φ. Then

B a i t . . . i s ~ - Γji. .jg ' tlaji. - J S »

where Fyt... js are analytic functions on U.
s) Cartan [3], p. 91 and Kahler [5], pp. 40-44.
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PROLONGATION OF A DIFFERENTIAL SYSTEM 5

Let ψo be the analytic cross section defined on Ί)λ by (1.15) and (1.16) (see 9)

below). The tangent vectors Lι(a), . . . , Lpia) defined by (1.16) form a base

of Ep(a) such that Lι(a), . . . . LΛa) spann the subspace E*(a). We define the

polar functions of Ep(a) with respect to this base by (1.4). Then the linear

functions (1.4) such that 5 = 1 or iι< . . . <is-i^v in case s > l are the polar

functions of is V(Λ) with respect to the base LΛa), . . . , LΛa). Smcet*~tJE*(a))

we may choose tp-ι = So -f . . -f Sp-i linearly independent polar functions F]( L{a>).

... ? Ft^iLia)) in such a way that Fu . - . , F/v are the polar functions of

E\a). (z; = 0, 1 , . . . J - l ) . Let **=fv and let

(1.10) ^•(L(β))=<L i l(β)Λ. . .ALj^(a)AL(a), (dίs))a>

Let

(1.11) Hi^l){Ep{r))^<Lh(r)A. . . ^Lj^(r)ALv+Λr)9 (dι*s))r>,

where Lj(r) are defined by (1.16).

Thus for each F, , i^U, we obtain an analytic function Hί'^i] in (1.8)

defined on ΦiV. Then

(1.12) /7}(v+1) ( ί ^ ί v , v = 0, 1, . . . - i > - l )

are the disired functions.

Proof. By (1.11) (Ji^/V""1})^(«) are linear combinations of the differentials

a\ (.7 = 1, . . . , w) and {dll)κi\a) such that ^^z^ + 1. Let

where Ωψ'+1) are the linear combinations of (dxJ)^(a) and (dll)Fi'{a) such that

1 and J2;v+υ are the linear combinations of (dll+i)^^). Then

λ - p +1

Hence by (1.10),

We show that J2/v+1)(z^ = 09 . . . , p - 1 , z = 1, . . . , U) are linearly independent.

Since the differentials (d/v+i)^) are linearly independent it is clearly sufficient

to show that Ω{χ+1\ . . . . Ω%λΛ) are linearly independent. We apply Lemma 2,

§2 in the case where m = w, Vm = £ n ( β ) , F ^ - £ / ; ( β ) , f ^{dx{)a and the set

ftf1, . . . . ^ s ) is equal to the set (Fu . . . , F/v). Since the subspace En~p(a)

of the tangent space E"(a) consisting of all the L{ά)E:En(a) such that <L(a),

(dxl)ay~0 (i = 1, 2, . . . ? β) is spanned by ί ~r r ) a n < ^ since Fj, . . . . F/v are

linearly independent, we see easily that u<2ίv+1)

? . . . , Ωt[' are linearly inde-
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6 YOZO MATSUSHIMA

pendent. Since £ί v + 1 ) are linearly independent, it is clear that

are linearly independent, q.e.d.

It must be noted that if ^Σλι(dH^+1))E^(a) is a linear combination of {dx3)Ev{a)

i = l

and (dlic)EP(a) such that h<vJr 1, then λ* = 0. This follows from the linear inde-

pendence of #Γ+ 1 ).

In particular if Ep(a) is an ordinary integral element of the system ©,

then any (dH{*i)

ι...is)EV(a) is a linear combination of idHΪ*+1))EV{a) modulo
(dHa )κV(a) .

We use these properties of the functions H{

i

v+1) in the proof of Lemma

1, §2.

9) We denote in the following by ix1, . . . , xn) a system of coordinates

defined on Dn. Let SDiV be the subspace of Gn,piDn) consisting of all the contact

elements of dimension p on which the differentials idx^a, . . , (dxp)a are

linearly independent, where

(1.13) N=n+p(n-p)

is the dimension of the manifold Gn,p(Dn). Then Φ* is a connected open set

of Gn,p(Dn) and analytically homeomorphic with the manifold DnxRp{n'p\

where Rp{n~p) denotes the euclidean space of dimension pin —p).

Let Epir)^.%N. Then there exists a system of pin-p) real numbers

l)(Ep(r)) (λ =p + 1, . . . , n, *"= 1, . . . , p) uniquely determined by Epir) such

that

where ηr denotes the identity mapping of Ep(r) into the tangent space En(r).

Then // are analytic functions on ^f and

= {L£ΞEnir)\<L, (dxλ)r -JϊlKEHrMdxΊrϊ = 0,

λ=p + l, . . . , n)

Let τz(Ep(r))=r for each Ep(r)^^>N and let

(1.14) Xk = x*oπ (* = l, . . . , Λ ) .

Then the functions X1, . . . , JYM, l}U =p+l, . . . , nl i = 1, . • . , p) constitute

a system of coordinates on %N, and the mapping of ^f into Sn,p(Dn) defined by

(1.15) ψ,(Ep(r)) = (L1(r), . . . , Lp(r)),

where

(1.16) Ur) =

is an analytic cross section defined on © .̂ Hence we can define by using the
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PROLONGATION OF A DIFFERENTIAL SYSTEM

cross section ψo the functions (1.7) and (1.8) which are analytic on <S)N.
Now we consider a closed differential system © defined on ΦΛ

?

MO,)

^s, s = 1,2, . . . \

(1.17) © :
Cf = 0

The differential system © is called the (total) prolongation of the differential
system ©.

10) Let Ep(a) be an ordinary integral element of the system © such that
Ep(a)E:c£)N. Then there exists at least an integral element of dimension p and
of origin Ep(a) of the prolonged system <S on which {dXι)F?\a), . . . , (dXp)κP(a)
are linearly independent. For, by the existence theorem of Cartan-KahlerS)

there exists an integral manifold Mp of the system © containing the point a
such that the tangent space to the manifold Mp at the point a is Ep(a). Since
(dxx)a9m. . . , (dxp)a are linearly independent on Ep(a), we can represent the
manifold Mp in a neighbourhood of the point a by a system of equations

χλ = ψHx\ . . . , xp), (λ=p + l, . . . ,n),

where φx are the analytic functions defined in a neighbourhood of (xι(a), . . . ,
xp(a)).

Then the system of equations

xλ = ψ\χ\ . . . , χp)

represents clearly an integral manifold Wp of the prolonged system (1.19) con-
taining the point Ep(a). Then the tangent space to the manifold 971̂  at the
point Ep(a) is clearly an integral element of the prolonged system © on which
(dXι)κPwh - 9 (dXp)EP{a) are linearly independent.

Definition™ ' The differential system (1.2) is called in involution with
respect to the variables xx, . . . , xp, if there exists an ordinary integral element
Ep{a) of the system on which (dx1)a, . . . , (dxp)a are linearly independent.

§2. We denote in the following by &p(Ep(r)) a contact element of the
manifold ΦiV of dimension p and of origin Ep(r) and by 2(Ep(r)) the tangent
vectors of ^N of origin Ep(r).

9> Kahler [5], p. 26, Cartan [3J, Chapitre IV, Schouten and Kulk [6], Chapter VIII.
10) Cartan [3], p. 89.
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8 YOZO MATSUSHIMA

THEOREM 1. Let Ep(ao) be an ordinary integral element of dimension p

and of origin ao of the system (1.2) on which (dx1)^, - - . , (dxp)a^ are linearly

independent and lei Qp(Ep(ao)) be an integral element of dimension p and of origin

Eo(aϋ) of the prolonged system (1.17) on which {dX^E^a^, . - - ? {dXp)F^aQ)

are linearly independent. Then $p(Ep(ao)) is ordinary. Lei s0? . . . , sp-i and

So. . . . , Sp-i be the characters of Ep(ao) and &o(Ep(ao)) respectively. Then

Sv = Sv + 5v+i+ . . +Sp, (ϊ/ = l,2, . . . , jf>~l),

where sp = (n —p) — (so -f . . . + Sp-χ).

From Theorem 1 and § 1, 10) we obaΐn immediately

THEOREM 2. If the differential system (1.2) is in involution with respect

to the variables x1, . . . , xp, then the prolonged system (1.17) is in involution

ivith respect to the variables X1, . . . , Xp.

The remaining part of this paper is devoted to the proof of Theorem 1.

Let GNtP{%N) be the analytic manifold of all the contact elements of Φ"v

of dimension p and let ® be the subspace of GΛv,/,(®Λ) consisting of all the

contact element of dimension^? on which dX1, . . . , dXp are linearly independent.

Then Φ is a connected open set of GN}p(^) and analytically homeomorphic

with the manifold ^yxRpiy'p\ where Rp{N~p) denotes the euclidean space of

dimension p(N~p). We may define as in §1, 8) the analytic functions t}, tli

(λ-p + l, . . . , n\ i, k-1, . . . ,p) on © as follows. Let -η be the identity

mapping of &p(Ep(r)) into the tangent space G?XEp(r)), where

Then
V

(2.1)

(2.2)

where &p = &p(Ep(r)).
The mapping Ψo of © into &v, /»(®*v) defined by

where

(2.4) 2/(^(r)) = ( - ^ T ) ? -j- Σ

Σ

is an analytic cross section defined on ©.

Further let H(&p{Ep{r)) ^Ep(r), Making use of 7/ and Ψo we define the

analytic functions on 5) corresponding to (1.7) and (1.8),

https://doi.org/10.1017/S0027763000016925 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016925


PROLONGATION OF A DIFFERENTIAL SYSTEM

is) r τr~ o /α = 1, . . . , w5f s = 1, 2, . . .
oTI0 \

(2.5)

Hail...t8oTI-0

(2.6) V;

(2.7) <&(£*(*-)), (<*#$. . .* W>> =

(2.8) ^ λ

Λ r - l

(2.9) <2!(£i(r))A2y(£/>(r)), Σ(^V i r ) Λ (<*Λ:'V)> = 0

Since Ep(aύ) is ordinary, the systems of equations R[*] = 0, i/α/i... /* = 0 is
regular of dimension z o + M a t the point Ep(a0). Hence the system of equations
(2.5) is regular of dimension v^Λ M at the point $Q(EO(CIQ)). TO prove that
&o(Eo(ao)) is ordinary, it is sufficient to show that the system of equations (2.5)

. . . (2.9) is regular of dimension VQΛ- M-Y M, where

M = p(N-p) -

Let Ep(a) be an integral element of the system (1.2) which is in a suf
ficiently small neighbourhood of Eo(ao). Then Ep{a) is ordinary and the values
of the characters of Ep(a) are the same with those of EP{UQ). Further since
there exists always at least an integral element of the system (1.17) whose
origin is Ep(a) and on which dX1, . . . , dXp are linearly independent and since
the functions which appear in the left sides of the equations are linear in the
variables t] = tϊ(<§?(Ep{r)), tli = tli(&p(Ep(r)), it is sufficient to show that the
rank of the linear forms in the p(N-p) variables t}, t)j which are defined as
follows is equal to pSQ-\- (p - l)Sι+ . . . +S>-i.

oXλ

(α: = l, . . . , UQ7 *' = 1, . . . . p)

( 2 n )

(2.12)

(2.13)

n p // 3

fa = 1, . . . , Us, s = 1, 2, . . . \
\1 ^ ίi < . - . . < <s ̂  A i = 1,2, . . . , p)

LEMMA 1. The rank of the "linear forms (2.10), (2.11), (2.12) and (2.13)

is equal to ^ &* (n-p) + U + 2h+ . . . Λ-ptp-x, where U = s0 + . . . + 5V.
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Proof. We first notice that the characters of Ep(a) are s0, . . . , sp-i.

We choose ps() -f (p-l)s{ + . . . -f sp-i functions H{ϊ\v = 1, 2, . . . , p - 1 /^ίv-i>

from the system of functions ϋΓ« J.. ., β as in § 1, 8). Since any (dH(<ϊi\. ,.is)F?{a)

is a linear combination of (dHj^)^^) modulo (dX1)^^), . - . , (dXn)κt\a), we

may replace (2.11) mod (2.12) by

(2.14) Σ

Let i? be the rank of (2.14) mod (2.13). Then it is sufficient to show that

R + p(n -p) + -£ί.^l!l(

i.e.

Let the variables ^/ in (2.14) be symmetric in the lower indices, i.e. tfa = iϊk.

Then R is equal to the rank of the linear forms (2.14) of the variables tki = iϊk -

Since by the definition <yίΉψ (&& 8)9 §1) Hψ are functions of X\ . . . ,

Xn and Ik such that &ί=7;, (2. 14) may be written in the form

(2.15) Σ

Since <ff^r) , idHψ) \ = {-^χHγ]) , it follows from a property

of (dHljy))EP(a) mentioned in §1, 8) that if S^-A^ does not contain the variable

tί , then λj = 0 for / = 1, 2, . . . , ί,-t.

ΊSίovv let Σ be a set of A{jΫ such that l^i^v, j = 1,. . . , fv_i, ^ = 1,. . . , ί .

^ consists of ίo + 2 ί i+ . . . -rptp-ι linear forms Aft and we show that these

are linear independent. Suppose that an A%0 in ^ is a linear combination of

the other elements of Σ and let

(2.16) Aι&=Hλ$A}Γ.
μ, j , i

Let /«i be the highest value of μ such that λjia)^O. Suppose μι>v and let

/i be the highest value of *' such that λjtι) # 0. Since Aj^ is a linear combination

of the variable tlυ = tlu such that u, v^μ and since in (2.15) the variables ^

can appear only in the term "Σλjiϊ Aj\[, it follows that ^Σi^jh Aul does not
3 J

contain the variables tx

Mh and hence $? = 0 O* = l,2, . . . , fμι-i). Thus λ^

= 0 for /i> ẑ . Then since in (2.15) the variables tli = ί/v (^ ̂  0 appears only in

the term Σ^-A//* it follows as above that ΛJί0 = 0. This is a contradiction since

A%)0 contains the variables tli0.
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PROLONGATION OF A DIFFERENTIAL SYSTEM Π

Next we show that any AuJ is a linear combination of A/̂ GΞΣ by induction
en ;ι. For simplicity we use the notations ( )n and < , >0 instead of ( )r:f\a\
and < , >F?'«n respectively. Now let /J = 1. Then by the definition of H[k\
there exists a. ^ £ 5 such that HP = <Ldr), {0(

a

1})r> and <Z,(r), (^ υ ), > - //«v).
Then

^. Suppose that any 4̂«y such that /.î Λτ —1 is a linear combina-
such that i;>/r. We first treat the case wh

5 such that Hu}^<Lκ(r), (0«υ)r>. Then

lience ^4«y^
tion of A/i ε Σ . We take an ^4^ such that i;>/r. We first treat the case where

Then there exists a

Since , ^
Next let HLKj = <L/1(r)Λ - - Λ ^ - I W Λ - E Λ Γ ) , (C) r X where

</,-i<yr. Then HT --=<LiL(r)A . . . ALia^(r)/,Lv(r)9 (θls)),\
Let

aκ/ = Σ ί i / ( - J χ ) α = i , 2 , . . . , ί )

Then Aiϊi = <mv, (dH^])o> AKS1 - <MK, (dH[Γ)o>. We show that

A!£ϊ - A S - Σ ( - Όs-*<2R/k,(2.17)

d<LL(r)A . . . Λ £ l

where the symbol A over L indicates that the appropriate L is to be omited.
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12 YOZO MATSUSHIMA

<LiSr)A . . . ALik^(r) ALκ(r) ALik+1(r)

R/w d<Lil(r)A . . . A£k

λ 1 = 1.. .3-1 V Oί

. . . A€k(r)A . . . ALκ(r) ALv(r),

Now the second term is zero. For, the coefficient of t},ik = t)kiι is

W A ΛLh(r)A . . . A£k(r)A . . . , (θι

a

n

(O« =0

Now (LiL(r)A - . Λ £ I * M Λ . ALκ(r)λLv(r), (0(

α

s))r> = #«•!...?*.. .κυ.
Let

Then

(2.18) <sFι;, ^

If ik^v, then Λy^GΣ. If 7><4, then since 4<AΓ, A ϊfc is a linear combination

of Λ / Γ e Σ by the assumption of induction. We then see from (2.17) and (2.18)

that AM is a linear combination of Aβ E Σ , Thus Lemma 1 is completely

proved.

LEMMA 2, Let F'Vί be a linear space of dimension m over a field ϋf and

Vp a subspace of F ; 7 ί of dimension p and F*?" the dual space of Vm. Let g\

• j έ/S be the elements of F**" such that <«, g?> = 0 ( / = 1 , . . . , 5) for all
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PROLONGATION OF A DIFFERENTIAL SYSTEM 13

and let /*, . . . , fp be the elements of V*w such that f\ . . . , fp are
linearly independent on Vp. Denote by Vm~p the subspace of Vm of dimension
m —p consisting of all the elements uE: Vm such that <w, /*> = 0 (*" = 1, 2, . . . ,
p). Let V be the identity mapping of Vm~p into Vm. Then the rank of the
elements gι

9 . . . , gs is equal to the rank of the elements * η9(gι)9 . . . , tif(gs)
of the linear space V*m P, where V is the transposed mapping of r/ and V*w P

is the dual space of Vm~p.

This may be easily seen from the fact that Vm is the direct sum of the
subspaces Vp and Vm'p.

LEMMA 3. Let £p(a0) be an integral elementΠ) of dimension p of the
differential system (1.2) on which (dxι)a, . . . , (dxp)a are linearly independent
and let &P(EP(OQ)) be an integral element of dimension p and of origin Ep(a)
of the prolonged system (1.17), on which (dXι)t*{ao) , . . . , {dXp)Fvm) are
linearly independent Further let s0, Si, . . . , sp_ι and So, Si, . . . , Sp~ι be
the characters of Eξ(a) and &$(Eί!(a)) respectively.
Then

S1 + 2Ss+ . . . +pSp^p~££-*^-(n-p)~(to + 2t1+ . . . +ptp-i),

where Sp = (N-p) - (So+ . . . + S/,_i) and fv = s 0+ . . .+Sv.

Let

where ί = l ,2 ί and e ^ β f t i S ί W ) and *,\ f*,- are variables. Then
(2?, . . - , 2p) is a base of 6^ and we denote by So the subspace of &p spanned
by 8ι, . . . , 2v (» = 1, . . . , p-1) and by eS the origin E$(ao) of 6?. Let
Γ(6o) be the rank of the polar functions of the integral elements @o of the
prolonged system S. We substitute 2i(Ep(r)) by 2v and Ep(r) by Eξ(a0) in
(2.6), (2.7), and (2.8) and" 8/(jE*(r)) by S/« = l, . . . , v-\), 2j(Ep{r)) by 2v
and ^ ( r ) by Ep(aQ) in (2.9) respectively. Then we obtain a system of linear
equations of the variables t)9 tl» U =i> + 1, . . . , n\ k = 1, . . . , p). Applying
Lemma 2 in the case where m = N, V^&'ίEtia*)) = &y, Vp = 6?, /'"
= (tfZMEj'ίββ) and #\ . . . , g* are the polar functions of So and considering the

fact that the space 6*v~* consisting of all the elements 2e@* such that <2,

^^y^O (ί = l, . . . 9 p) is spanned by ('̂ yλ"jβf(ββ) a n ^ (̂ /Γ/«?<«•) (̂  =

. . , n\ k = l, . . . , / > ) , we see that the rank of this system of linear

1 1 > We do not assume here that E$ (a0) is ordinary.
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14 YOZO MATSUSHIMA

equations of the variables tl, fjL is equal to ΓCQcίΓ1) (v = 1, 2, . . . , p). Now

the homogeneous parts of these equations are

(2.19)

(2.20)

H" 2 J -ΣJ^VI "^rΓ^iif^ίΛ ALi8(τ)9 (̂ α

(α = 1, . . . , uSf 5 = 1, 2, . . . ,

(2.21) /ί U=£+l, . . . , n).

ί o o o \ f λ i' "i jy i 1 Ή i
lώ.ώώ/ Γ/v VΛ ~ y τ L, . . , 7Ϊ, * •

Now let

( 9 9 0 \ ^ ^ "̂ sΓ̂  fh I / T . (γ\ T { γ\ (β'S^\

We denote by i?v the number of the linear forms in (2.23) which are linearly

independent mod (2.22). T h e n Rv + Kn-p) + KP - l )(w ~i>) = Γ t δ ϊ " 1 ) . Now

we consider the linear forms in (2.23) such t h a t is = v. Since Ϊ I < . . . <is-ι<v

(mod (2.22)),

where ij(αo) = ( " § | r ) β + λ Σ/*(J5f( f lo))(-^r) β (* = 1 , . . . , ί ) forms a base

of Eo(ao). Let ZS(tf0) be the subspace of Eo(a^) spanned by Lj(β0), . . . , Zr?(α0).

if necessary replacing xι, . . . , xp by suitable linear combinations of them with

constant coefficients, we may assume that iso(tfo) (v - 0. . . . , p- 1) have the

properties that ίv = 5 0+ . . . + s v = f(2?o(α)). Applying Lemma 2 in the case

where m = n9 Vm = En{a,), Vp^E^{a0). f'^idxι)a0 and g\ . . . , gs are the

polar functions of Ei{a0) and considering that the subspace En~p(ao) consisting

of all the elements LGEnian) such that <L, (dx')a^> = 0 (i = 1, . . . , ̂ ) is spanned

\ ox / a
(A =jf>-f 1, . . . . « ; , we see that the rank of the linear forms of

the variables tU which are obtained above is equal to the rank of the polar

functions of El"1 which is equal to So-r . . . 4-5v_i. Hence we obtain 5 0 + . . .

+ Sv_i linear forms in (2.22) which are linearly independent mod (2.22). Next

we consider the linear forms in (2.23) such that is = v -h 1. Then we can show

https://doi.org/10.1017/S0027763000016925 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016925


PROLONGATION OF A DIFFERENTIAL SYSTEM 15

as above that these are reduced mod (2.22) to the forms

or

according as is-ι<v or is.ι-v. The rank of the linear forms in the variables

ίv+iv which appear in the above linear forms is equal to the rank of the polar

functions of Elia) which is equal to so-t . . . -4-Sv. Hence we obtain so-f . . .

4- 5 v linear forms in (2.23) which are linearly independent mod (2.22) and are

linearly independent mod (2.22) to So4- . . . -fsv-i linear forms already obtained.

Continuing these considerations, we obtain

. . +Sv) 4- . . . +Uo-f . .
= fv-l "f - "f tp-1

linear forms in (2.23) which are linearly independent mod (2.22). Hence

ί and therefore we get the inequality

(2.24)

Now let So = T(g?)? Sv = Γ(eβ

v)-T(eΓ1) (n = l, 2, . . . , ί - 1 ) and

= (iV-ί)-(S>+ . . . 4- §/>-i). Then

(2.25) Si4-2§24- . . . +pSp=p(N-p)-(T(®*o)+ . . .

In the same way

(2.26) Si4-2S24- . . . +pSP=p(N-p) - (Ά+ . . . 4-

where Γv = So 4- . . 4- Sv = Max Γ(g") ^ T((5O

V). Hence

(2.27) &4-2S24- . . . +pSp^Sι + 2S2+ . . . +p§p.

From (2.24) and (2.25) we get

(2.28)

Since N-n+{n~p)p, we obtain

^ - . . . +ptp-i).

q.e.d.

Now we show that the rank R of the linear forms (2.10), . . . , (2.13) is
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16 YOZO MATSUSHIMA

equal to pSo + (p — l)Si-f . . . + S/>_i. Let us consider the differentials at the

point 6o> = @o(£'o'(«o)) of the functions which appear in the left sides of the

equations (2.6), . . . , (2.9). Applying the result of 8)3 §1 in our case, we see

readily that there exist at least pSo + (p - l)Si-f . . . + S/>_i ones among these

differentials which are linearly independent modulo d(X*oIT)$v, (f = 1, . . . , p),

d(lk°TI)®p Q -p+ 1, . . . , n, k = 1, . . . , p). If we replace in the linear forms

(2.10), . . . , (2.13) t}, t)j and Ep(a) by (rf*/)<SJ, (dt}j)®p and Eΐ(a*) respec-

tively, we obtain linear expressions in (dt))^9 (dt}j)$p which are equal to the

differentials at the point (?£ which we have considered above. Hence if we apply

Lemma 1 in the case Ep(a)^E§{aQ)9 we get pSo+(p-l)Sι + . . . +S/>.i

g.P&+J±(n_p) + to + 2ti + . . . +ptp-χ. On the other hand we get by

Lemma 3, p(N-fi) - (Si + 2S> + . . . + pSp) ^ ^γ^-(n-p) + U + 2 h + . . .

-i, hence ί S o + ( 0 ~ l ) S i + . . . + S ^ ^ p(p^l-(n - ί ) + ίo

-i. Thus we obtain the equality pSQ + (p - 1 )Sk -f . . . + S/,_i = — ^ ^ - (*

- ί ) + fc+2fi+ . . . +ptp-ι. Hence by Lemma 1 R=pSo+ (p - DSi-f . . .
-fS/>_i. Thus ©f is ordinary.

Now it follows from (2.27) and (2.28) that Si-f 2S2+ . . . +p
+ . . . +pSp. Hence we get from (2.25) and (2.26) the equalties
(v = 0, 1, . . . , p — 1). Since it holds the equality in (2.28), it must hold also
the equalities in (2.24), Therefore we have

So-f . . . +Sv = Γv = ( * - H ) ( Λ - ί ) + f v + +tp-ι.

Then we have, S , = in -p) - fv-i = 5V+ . . . +$/,. Thus Theorem 1 is com-
pletely proved.
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