ORDERED SEMIGROUPS

PAUL CONRAD1)

1. Introduction. In this paper order will always mean linear or total order, and, unless otherwise stated, the composition of any semigroup will be denoted by +. A semigroup S is an ordered semigroup (notation o.s.) if S is an ordered set and for all a, b, c in S

$$a < b$$
 implies $a + c < b + c$ and $c + a < c + b$.

If in addition a+a>a for all a in S, then we call S a positive ordered semigroup (notation pos. o.s.). In particular an o.s. S is cancellative, and hence if e is an idempotent element of S, then e is the identity for S. Moreover, for a. b, c in S and n a positive integer we have the following rules

$$a > b \longleftrightarrow a + c > b + c \longleftrightarrow c + a > c + b.$$

 $a > b \longleftrightarrow na > nb.$
 $a > b$ and $c > d \to a + c > b + d.$

Let Γ be an ordered set, and for each $\gamma \in \Gamma$ let S_{τ} be an o.s. such that $S_{\alpha} \cap S_{\beta} = \square$ (the null set) if $\alpha \neq \beta$. Consider $a \in S_{\alpha}$ and $b \in S_{\beta}$ where $\alpha \leq \beta$. Define a < b if $\alpha < \beta$ or $\alpha = \beta$ and a < b in S_{α} . Define a + b = b + a = b if $\alpha < \beta$ and use the addition in S_{α} if $\alpha = \beta$. Then $Q = \bigcup_{\tau \in \Gamma} S_{\tau}$ is an ordered set and a semigroup—the ordinal sum of the S_{τ} . The S_{τ} are the components of Q.

In section 3 we give a necessary and sufficient condition for a semigroup S to be the ordinal sum of pos. o.s. (Theorem 3-1). We also show that if S is a pos. o.s., then there exists a rather natural o-homomorphism of S onto an ordinal sum of pos. o.s. each of which is o-isomorphic to a semigroup of positive real numbers. Cheheta [2] and Vinogradov [9] use an example of Malcev to show that an o.s. cannot necessarily be embedded in a group. Ore [8] has shown that if every pair of elements in a semigroup S has a common right multiple, then S can be embedded in a group $G = \{a - b : a, b \in S\}$. G is called

Received October 14, 1959.

¹⁾ This work was supported by a grant from the National Science Foundation.

the difference group of S. We show that if S is an o.s., then the order of S can be extended to an order of G in one and only one way. In section 5 we show that the order type of the set of all convex normal subgroups of G is determined by S.

2. Embedding theorems. Throughout this section S will denote an o.s.

Theorem 2-1. Suppose that S satisfies: (*) for each pair a, b in S there exists a pair x, y in S such that a+x=b+y. Then there exists an o-group G such that $G=\{a-b:a,b\in S\}$ and a-b is positive in G if and only if a>b in S. Moreover, if H is an o-group that contains S as an ordered subsemigroup and is generated by S, then there exists an o-isomorphism π of G onto H such that $s\pi=s$ for all $s\in S$. We call G the difference group of S.

This theorem is a corollary of a result of Ore [8] for integral domains. We outline the construction of an o-group G' that is o-isomorphic to G. Let $T = S \times S$ and define that $(a, b) \sim (c, d)$ if there exist x, y in S such that a + x = c + y and b + x = d + y. Then \sim is an equivalence relation. Denote the equivalence class containing (a, b) by [a, b], and define that [a, b] + [c, d] = [a + x, d + y] where b + x = c + y. Then the set G' of all equivalence classes is a group, [a, a] is the identity, [b, a] is the inverse of [a, b], and the mapping τ of s upon [s + x, x] is an isomorphism of S into G'.

 $[a, b] = [a+x, x] - [b+x, x] = a\tau - b\tau$. Thus there is at most one way of extending the order of S to an ordering of G'. Namely, define that [a, b] is positive in G' if a > b in S. Let $\mathscr P$ be the set of all positive elements in G'. If $[a, a] \neq [b, c]$, then b > c or b < c in S, and hence $[b, c] \in \mathscr P$ or $-[b, c] = [c, b] \in \mathscr P$. If [a, b] and [c, d] belong to $\mathscr P$, then a > b and c > d, and [a, b] + [c, d] = [a+x, d+y] where b+x=c+y. Thus a+x>b+x=c+y > d+y, and hence $[a, b] + [c, d] \in \mathscr P$. If $[a, b] \in \mathscr P$ and $[c, d] \in G'$, then X = [d, c] + [a, b] + [c, d] = [d, c] + [a+x, d+y] = [d+u, d+y+v] where b+x=c+y and c+u=a+x+v. To show that $X \in \mathscr P$ it suffices to show that u>y+v. Pick x and x in x such that x in x

Finally suppose that H is an o-group that is generated by S. Let $[a, b]\pi' = a - b$ for all $[a, b] \in G'$. If [a, b] = [c, d], then a + x = c + y and b + x = d + y.

Thus a-b=a+x-x-b=c+y-y-d=c-d, and hence π' is single valued. $([a, b]+[c, d])\pi'=[a+x, d+y]\pi'=a+x-y-d$, where b+x=c+y. Thus x-y=-b+c and $a+x-y-d=a-b+c-d=[a, b]\pi'+[c, d]\pi'$. If $0=[a, b]\pi'=a-b$, then [a, b] is the identity of G'. If $[a, b] \in \mathscr{S}$, then a > b in S and hence in H. Thus $[a, b]\pi'=a-b$ is positive in H. $S \leq G'\pi' \leq H$ and, since H is generated by S, $G'\pi'=H$. Therefore π' is an o-isomorphism of G' onto H. This completes the proof of the theorem.

COROLLARY I. S satisfies (*) if and only if S can be embedded in an ogroup $G = \{a - b : a, b \in S\}$.

For suppose that $G = \{a - b : a, b \in S\}$ and that a and b belong to S. Then $-a + b \in G$ and hence -a + b = x - y for some $x, y \in S$. Thus b + y = a + x.

COROLLARY II. Suppose that S satisfies (*) and let G be the difference group of S. Then for a, b, c in S

- (a) a-b=c-d if and only if there exist x, y in S such that a+x=c+y and b+x=d+y.
 - (b) a-b+c-d = a+x-(d+y) for all x, y in S such that b+x=c+y.
- (c) a-b>c-d if and only if there exist x, y in S such that a+x>c+y and b+x=d+y.

The equivalence of (i) and (ii) in the following corollary is well known and has been proven by Tamari, Alimov, and Nakada ([4] p. 309).

COROLLARY III. For a commutative semigroup A the following are equivalent.

- (i) A can be embedded in an o-group.
- (ii) A can be ordered.
- (iii) A satisfies the cancellation law, and na = nb implies that a = b, for all a, b in A and all positive integers n.

Proof. Clearly (i) implies (ii), and since any commutative o.s. satisfies (*), (ii) implies (i). An easy argument shows that (ii) implies (iii). Finally assume that A is cancellative, and let $G = \{a - b : a, b \in A\}$ be the difference group of A. If $x = a - b \in G$ and nx = 0, then 0 = nx = na - nb, and hence na = nb. Thus by (iii) a = b, and 0 = a - b = x. Therefore (iii) implies that the difference group G of A exists and is abelian and torsion free. But this means that G can be ordered (see for example [7]).

Suppose that A is a cancellative commutative semigroup with identity 0. Then if A can be ordered, it is torsion free, but the converse is false. For consider the semigroup $B = N \oplus N$, where N is the additive semigroup of nonnegative integers. For (a, b) and (c, d) in B define that $(a, b) \sim (c, d)$ if $a \equiv c \mod 2$, $b \equiv d \mod 2$ and a+b=c+d. Then it is easy to show that \sim is a congruence relation. Let [a, b] be the congruence class that contains (a, b). $B/\sim =\{[a, b]: a, b \in N\} = \{[2n, 0], [2n+1, 0], [0, 2n+1] \text{ and } [2n+1, 1] \text{ for all } n \in N\}$ is a commutative semigroup with identity [0, 0]. It is easy to show that B/\sim satisfies the cancellation law and is torsion free, but 2[1, 1] = 2[0, 2] and $[1, 1] \neq [0, 2]$. Thus (iii) of the last corollary is not satisfied, and hence B/\sim cannot be ordered.

Let $P = \{x \in S : x + x > x\}$ and $N = \{x \in S : x + x < x\}$. The following five propositions are easy to verify (or see [1] for proofs).

- 1) $P = \{x \in S : x + s > s \text{ for all } s \in S\} = \{x \in S : s + x > s \text{ for all } s \in S\}.$
- 2) $N = \{x \in S : x + s < s \text{ for all } s \in S\} = \{x \in S : s + x < s \text{ for all } s \in S\}.$
- 3) P and N are subsemigroups of S.
- 4) N < P. That is, n < p for all $n \in N$ and all $p \in P$.
- 5) If S does not have an identity, then $S = N \cup P$ and an identity 0 can be adjoined to S so that $T = S \cup \{0\}$ is a semigroup. Moreover, the order of S can be extended to an order of T in one and only one way, namely N < 0 < P. If we adjoin an identity to a pos. o.s we shall call the result a pos. o.s. with zero. An o.s. S is naturally ordered if for all a, b in S
 - (R) a > b implies a = b + x for some x in S, and
 - (L) a > b implies a = x + b for some x in S.

Note that a pos. o.s. P satisfies (R) if and only if $b+P=\{a\in P:a>b\}$ for all b in P.

Theorem 2-2. If S satisfies (R), then S satisfies (*) and hence S is an ordered subsemigroup of its difference group G. If S is naturally ordered, then S contains the semigroup of all positive elements of G. A pos. o.s. P is the semigroup of all positive elements of an o-group if and only if P is naturally ordered.

Proof. Consider a, b in S. If a > b, then a = b + x for some x in S. Thus a + b = b + (x + b). Similarly if $a \le b$, then a + u = b + v for some u, v in S. Therefore S satisfies (*). Suppose that S is naturally ordered, and consider a

positive element y in the difference group G of S. y = a - b, where $a, b \in S$ and a > b. Thus a = x + b for some $x \in S$, and hence $y = a - b = x \in S$.

Finally suppose that P is a naturally pos. o.s. and let $\mathscr P$ be the semigroup of all positive elements of the difference group G of P. Then we have shown that $P \supseteq \mathscr P$. If $p \in P$, then p+p>p in P and hence p=p+p-p>0 in G. Therefore $P \subseteq \mathscr P$.

Lemma 2-1. Let a, b, c be elements of S. If a+b < b+a, then a+nb < nb+a and $na+nb \le n(a+b) < n(b+a) \le nb+na$ for all positive integers n, where the equalities hold if and only if n=1.

This follows by a simple induction argument or see [6] for a proof.

COROLLARY. If p and q are positive integers and pa = qb, then a + b = b + a.

For if a+b < b+a, then (p+1)a = a+pa = a+qb < qb+a = pa+a = (p+1)a, a contradiction.

Note that Lemma 2-1 and its corollary are true for an ordinal sum of o.s. For if a+b < b+a, then a and b belong to the same component. In [6] the following theorem (which we use later) is proven.

Theorem 2-3. For an o.s. S the following are equivalent. (i) There exists an o-isomorphism of S into a subsemigroup of the (naturally ordered) additive group R of real numbers. (ii) For each pair a < b in S, there exist positive integers m and n such that ma < (m+1)b and (n+1)a < nb.

Theorem 2-4. Suppose that the center $Z = \{z \in S : z + s = s + z \text{ for all } s \in S\}$ of S is not empty. Then there exists o.s. T such that

- 1) S is an ordered subsemigroup of T,
- 2) T contains the difference group G of Z and T is generated by S and G,
- 3) If T' is an o.s. that satisfies 1) and 2), then there exists a unique o-isomorphism π of T onto T' such that $s\pi = s$ for all $s \in S$.

We outline a proof, leaving out the straightforward computations. Let $Q = S \times Z$ and for (a, b) and (c, d) in Q define that

$$(a, b) + (c, d) = (a+c, b+d)$$
 and $(a, b) \sim (c, d)$ if $a+d=b+c$.

Then Q is a semigroup, and \sim is a congruence relation. As usual, denote the equivalence class containing (a, b) by [a, b]. For [a, b] and [c, d] in Q/\sim

define that [a, b] > [c, d] if a+d>b+c. Then $(Q/\sim, +, >)$ is an o.s. and the mapping τ of $a \in S$ upon [a+z, z], where z is a fixed element in Z is an o-isomorphism of S into Q/\sim . $G'=\{[a, b]: a, b \in Z\}$ is the center of Q/\sim and the difference group of $Z\tau$. Clearly Q/\sim is generated $S\tau$ and G'. Thus there exists an o-semigroup T that satisfies 1) and 2). Moreover G is the center of T. Finally suppose that T and T' are o.s. that satisfy 1) and 2), and consider $t \in T$. $t=s+g=s+z_1-z_2$, where $s\in S$, $g\in G$ and $z_1, z_2\in Z$. Define $t\sigma=[s+z_1, z_2]$. Then σ is on o-isomorphism of T onto Q/\sim . Similarly we define an o-isomorphism σ' of T' onto Q/\sim , and then $\pi=\sigma\sigma'^{-1}$ is the desired o-isomorphism of T onto T'.

3. Positive ordered semigroups

THEOREM 3-1. A semigroup S is an ordinal sum of pos. o.s. if and only if

- (I) S is an ordered set, and for all a, b, c in S,
- (II) if a < b, then $a + c \le b + c$ and $c + a \le c + b$,
- (III) a+a>a,
- (IV) if a+b=a+c, then b=c or a+b=a, and if b+a=c+a, then b=c or b+a=a.

Proof. It is easy to verify that an ordinal sum of pos. o.s. satisfies these four conditions. Conversely assume that S is a semigroup that satisfies (I), (II), (III) and (IV). Then S satisfies (III') $a+b \ge \max{\langle a,b \rangle} \le b+a$ for all a, b in S. For if a+b < a, then $a+2b \le a+b$. If a+2b < a+b, then 2b < b, but this contradicts (III). If a+2b=a+b, then by (IV) 2b=b or a+b=a, a contradiction. Therefore $a+b \ge a$, and by a similar argument $a+b \ge b$.

For a, b in S we define that $a \sim b$ if $a+b > \max{\langle a,b \rangle} < b+a$. Clearly \sim is symmetric, and by (III) it is reflexive. Suppose that $a \sim b$ and $b \sim c$. Then c+b > b, and thus $a+c+b \ge a+b$. If a+c+b=a+b, then by (IV) c+b=b or a+b=a. Then b+c or a+b, a contradiction. Thus a+c+b > a+b, and hence a+c>a. By symmetry it follows that $a \sim c$, and hence \sim is an equivalence relation.

Let $\overline{a} = \{b \in A : b \sim a\}$, and consider b, c in \overline{a} . We show that $a+b+c > \max\{a, b+c\}$. By symmetry it follows that $b+c \in \overline{a}$, and hence that \overline{a} is a semigroup. If a+b+c < a+b, then b+c < b, and hence b+c. Thus $a+b+c \ge a+b > a$. If a+b+c < b+c, then a+b < b, and hence a+b. If a+b+c

= b + c, then by (IV) a + b = b or b + c = c, and hence a + b or b + c. Therefore $a + b + c \ge b + c$.

We next show that \bar{a} is a pos. o.s. Consider x, y, z in \bar{a} . If x < y, then x + z < y + z. For otherwise x + z = y + z, and thus x = y or x + z = z, a contradiction. By symmetry if x < y, then z + x < z + y. Thus \bar{a} is an o.s., and since \bar{a} satisfies (III) it is a pos. o.s.

In order to prove that S is the ordinal sum of the semigroups \bar{a} it suffices to show that if a < b and $\bar{a} \neq \bar{b}$, then a+b=b and $\bar{a} < \bar{b}$. $a+b \le b$ because $\bar{a} \neq \bar{b}$, and by (III') $a+b \ge b$. Pick $a' \in \bar{a}$ and $b' \in \bar{b}$. a'+a+b=a'+b. Hence by (IV) a'+a=a' or a'+b=b. But a'+a>a because $a' \sim a$. If $b' \le a'$, then $b'+b \le a'+b=b$, and hence b'+b. Therefore a' < b', and hence $\bar{a} < \bar{b}$.

For the rest of this section we investigate pos. o.s. The information obtained will then apply to semigroups that satisfy the four properties of Theorem 3-1. For the remainder of this section let P denote a pos. o.s.

LEMMA 3-1. For all a, b in P and all positive integers m, (m+1)a + (m+1)b is greater than ma + mb and mb + ma.

Proof. (m+1)a > ma and (m+1)b > mb. Thus (m+1)a + (m+1)b > ma + mb. Suppose that $a \ge b$. If $a \ge mb$, then (m+1)a + (m+1)b > (m+1)a $= a + ma \ge mb + ma$. If a < mb, then since $mb < (m+1)b \le (m+1)a$, there exists a positive integer n such that $na < (m+1)b \le (n+1)a$. Thus (m+1)a + (m+1)b > (m+1)a + na = (n+1)a + ma > mb + ma. By an entirely similar argument if a < b, then (m+1)a + (m+1)b > mb + ma.

LEMMA 3-2. For all a, b in P and all positive integers m:

- (i) (m+1)(a+b) is greater than m(a+b) and m(b+a).
- (ii) (m+1)a + (m+1)b is greater than m(a+b) and m(b+a).
- (iii) (m+1)(a+b) is greater than mb+ma and ma+mb.

Proof. (i) (m+1)(a+b) = m(a+b) + a + b > m(a+b) and (m+1)(a+b) = a + m(b+a) + b > m(b+a) + b > m(b+a). (ii) If $a+b \ge b+a$, then by Lemma 2-1, $(m+1)a + (m+1)b \ge (m+1)(a+b)$, and by (i) (m+1)(a+b) > m(a+b) and m(b+a). If a+b < b+a, then by Lemma 3-1, (m+1)a + (m+1)b > mb + ma, and by Lemma 2-1, $mb + ma \ge m(b+a) > m(a+b)$. (iii) If $b+a \ge a+b$, then by Lemma 2-1, $(m+1)(a+b) \ge (m+1)a + (m+1)b$, and by Lemma 3-1, (m+1)a + (m+1)b > ma + mb and mb + ma. If a+b

> b+a, then by Lemma 2-1, (m+1)(a+b) > (m+1)(b+a) > (m+1)b + (m+1)a, and by Lemma 3-1, (m+1)b + (m+1)a > mb + ma and ma + mb.

Remark. Lemmas 3-1 and 3-2 remain true if P is an ordinal sum of pos. o.s. In fact, the given proofs apply.

For a and b in P we define that $a \sigma b$ if (m+1)a > mb and (m+1)b > ma for all positive integers m.

- 1) σ is a congruence relation. For clearly σ is symmetric and $a\sigma a$ because (m+1)a > ma. If $a\sigma b$ and $b\sigma c$, then (m+2)a > (m+1)b > mc and (m+2)c > (m+1)b > ma for all m. Let m=2n, then 2(n+1)a > 2nc and 2(n+1)c > 2na. Hence (n+1)a > nc and (n+1)c > na, and $a\sigma c$. Finally suppose that $a\sigma b$. By Lemma 3-2, (m+3)(a+c) > (m+2)a + (m+2)c > (m+1)b + (m+1)c > m(b+c) for all m. Let m=3m, then 3(n+1)(a+c) > 3n(b+c). Thus (n+1)(a+c) > n(b+c) and similarly (n+1)(b+c) > n(a+c) for all n. Therefore $(a+c)\sigma(b+c)$.
- 2) The semigroup P/σ is commutative. For by (i) of Lemma 3-2, $(m+1)(a+b) \ge m(b+a)$ and $(m+1)(b+a) \ge m(a+b)$ for all m. Therefore $(a+b)\sigma(b+a)$.

For the remainder of this section we shall denote the elements of P by a, b, c and the elements of P/σ by A, B, C. Moreover, m, n, p, q will always denote positive integers. If ρ is a congruence relation over a semigroup S, then ρ^* will always denote the natural homomorphism of S onto S/ρ . P/σ is an ordinal sum of pos. o.s., and this can be shown by verifying that P/σ satisfies the four properties of Theorem 3-1. But we wish to show something stronger. Namely, that P/σ is an ordinal sum of pos. o.s. each of which is a subsemigroup of positive reals.

3) If a > b, then $a\sigma^* = b\sigma^*$ or x > y for all x in $a\sigma^*$ and y in $b\sigma^*$. For suppose that there exists an x in $a\sigma^*$ and y in $b\sigma^*$ such that $y \ge x$. (m+2)x > (m+1)a > (m+1)b > my. Now let m=2n and cancel. Then (n+1)x > ny for all n and also $(n+1)y \ge (n+1)x > nx$ for all n. Thus $x\sigma y$, and $a\sigma^* = x\sigma^* = y\sigma^* = b\sigma^*$. For $a\sigma^*$ and $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ and $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ and $b\sigma^*$ in $b\sigma^*$ and $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ in $b\sigma^*$ and $b\sigma^*$ in $b\sigma^*$ and $b\sigma^*$ in $b\sigma$

LEMMA 3-3. (i) P/σ is an ordered set and A < B implies that A + C

 $\leq B+C$ for all A, B, C in P/σ . (ii) A < A+A. (iii) If A < B, then nA < nB.

Proof. (i) If $a\sigma^* < b\sigma^*$ and $b\sigma^* < c\sigma^*$, then a < b and b < c. Hence a < c and $a\sigma^* \le c\sigma^*$. If $a\sigma^* = c\sigma^*$, then $a \in c\sigma^*$, but then a > b, a contradiction. Thus $a\sigma^* < b\sigma^*$. If $a\sigma^* = b\sigma^*$, then a < b or b < a, and so $a\sigma^* < b\sigma^*$ or $b\sigma^* < a\sigma^*$. (ii) Clearly $A \le 2A$. Suppose that $2A = A = a\sigma^*$. Then $a\sigma 2a$, and hence (m+1)a > (2m)a for all m. In particular for m=1, 2a > 2a, a contradiction. Thus A < A + A. (iii) Clearly $nA \le nB$. Suppose that nA = nB where $a\sigma^* = A$ and $b\sigma^* = B$. Then $na\sigma nb$, and so (m+1)na > mnb and (m+1)nb > mna for all m. But then (m+1)a > mb and (m+1)b > ma. Thus $a\sigma b$, and hence $A = a\sigma^* = b\sigma^* = B$, a contradiction.

For A and B in P/σ we define that $A \tau B$ if there exist positive integers m and n such that mA > B and nB > A.

4) τ is an equivalence relation. For clearly τ is symmetric and by (ii) of Lemma 3-3, 2A > A. Thus $A \tau A$. If $A \tau B$ and $B \tau C$, then nA > B, pB > A, mB > C and qC > B for some positive integers m, n, p, q. By (iii) of Lemma 3-3, mnA > mB > C and pqC > pB > A. Therefore $A \tau C$.

Let $A\tau^*$ be the equivalence class that contains A. We shall show later that τ is a congruence relation, and so τ^* is the natural homomorphism of P/σ onto $(P/\sigma)/\tau$.

- 5) If A < B and $A\tau^* \neq B\tau^*$, then $A\tau^* < B\tau^*$ and A + B = B. For suppose that there exist X in $A\tau^*$ and Y in $B\tau^*$ such that $X \geq Y$. Then $nX \geq nY > B$ and $mB \geq mA > X$ for some m and n. Thus $X\tau B$, and hence $A\tau^* = X\tau^* = B\tau^*$. $A = a\sigma^*$ and $B = b\sigma^*$. Since a + b > b, (m+1)(a+b) > m(a+b) > mb for all m. Thus it suffices to show that (m+1)b > m(a+b) for all m. Now nA < B for all n, for otherwise $A \in B\tau^*$. Thus na < b for all n. (n+2)b = b + (n+1)b > (n+1)a + (n+1)b > n(a+b). Now let n=2m and cancel to get (m+1)b > m(a+b). Thus A+B=B.
- 6) If A < B and $A \tau C$, then A + C < B + C. For $A = a\sigma^*$, $B = b\sigma^*$, $C = c\sigma^*$, a < b and (n+1)a < nb for some positive integer n. By Lemma 3-3, $A + C \le B + C$. Suppose (by way of contradiction) that A + C = B + C. Then (m+3)a + (m+3)c > (m+2)(a+c) > (m+1)(b+c) > mb + mc. Therefore (m+3)a + 3c > mb for all m. Since $A \tau C$, there exists an integer h such that hA > C and hA > hB by Lemma 3-3. Let hB = hB, then hB = hB and hB = hB for hB and hB = hB and hB = hB and hB = hB for hB and hB are hB for hB and hB and hB are hB for hB for

> (k+3)(n+1)a = [(k+3)n+3]a + ka > [(k+3)n+3]a + 3c. Now let m = (k+3)n. Then mb > (m+3)a + c, a contradiction.

Theorem 3-2. For each A in P/σ , $A\tau^*$ is an ordered subsemigroup of P/σ that is o-isomorphic to an additive semigroup of positive real numbers. P/σ is an ordinal sum of the pos. o.s. $A\tau^*$.

Proof. Consider B, C in $A\tau^*$. $A = a\sigma^*$, $B = b\sigma^*$ and $C = c\sigma^*$, where a, b, $c \in P$. There exist positive integers m, n, r, s such that mB > A, nA > B, rC > A and sA > C. Thus mb > a, na > b, rc > a and sa > c. Let $q = \max{\{m, r\}}$. Then qb > a and qc > a. Thus (q+1)(b+c) > qb+qc > 2a > a, and by Lemma 3-3, $(q+2)(B+C) > (q+1)(B+C) \ge A$. Let $t = \max{\{n, s\}}$. Then ta > b and ta > c. Thus 2ta > b + c and $(2t+1)A > 2tA \ge B + C$. Therefore $B + C \in A\tau^*$, and so $A\tau^*$ is a semigroup. By Lemma 3-3, $A\tau^*$ is ordered, and thus by (6) $A\tau^*$ is an o.s. In order to prove that A^* is o-isomorphic to a semigroup of positive real numbers, it suffices by Theorem 2-3 to show that if X, $Y \in A\tau^*$ and X < Y, then there exist positive integers m and n such that (m+1)X < mY and nX < (n+1)Y.

 $X = x\sigma^*$ and $Y = y\sigma^*$ for some x and y in P. Since X < Y, nX < nY < (n+1)Y for all n. Hence nx < (n+1)y for all n. Suppose (by way of contradiction) that $(m+1)X \ge mY$ for all m. If for some m, (m+1)X = mY, then (m+2)X = (m+1)X + X < mY + Y = (m+1)Y. Therefore (m+1)X > mY for all m. Thus (m+1)x > my and mx < (m+1)y for all m. Therefore X = Y, a contradiction. Thus by Theorem 2-3 there exists an isomorphism π of $A\tau^*$ into the additive group of reals. But for $B \in A\tau^*$, B < 2B. Hence $B\pi < 2(B\pi)$. Therefore $B\pi$ is a positive real number. It follows at once from (4) and (5) that P/σ is the ordinal sum of the $A\tau^*$.

COROLLARY. τ is a congruence relation on P/σ .

Proof. Consider X, Y, Z in P/σ , and assume that $X\tau$ Y. If $Z\tau$ X, then since $X\tau^*$ is a semigroup X+Z and Y+Z belong to $X\tau^*$. Thus $(X+Z)\tau$ (Y+Z). Suppose that $X\tau^* \neq Z\tau^*$. If Z < X, then $Z\tau^* < X\tau^* = Y\tau^*$. Thus by (5) X+Z=X and Y+Z=Y. If X<Z, then $Y\tau^* = X\tau^* < Z\tau^*$. Thus by (5) X+Z=Z=Y+Z. In either case $(X+Z)\tau$ (Y+Z).

There is a natural 1-1 order preserving correspondence between the congruence relations of P/σ and the congruence relations of P that contain σ ,

Therefore τ can also be considered as a congruence relation on P, where $a\tau b$ if there exist positive integers m and n such that ma>b and nb>a. Consider X and Y in P/τ . $X=x\tau^*$ and $Y=y\tau^*$ for some x and y in P. We define that X < Y if $X \neq Y$ and x < y in P. Then P/τ is an ordered set and τ^* is an ohomomorphism of P onto P/τ . Denote the addition in P/τ by [+]. Then since $X+Y\subseteq \max[X,Y]$ in $P,X[+]Y=\max[X,Y]$ in P/τ . X is a subsemigroup of P and X/σ is σ -isomorphic to a subsemigroup of the positive reals. Thus in Clifford's terminology [3], P/τ is a semilattice and P is a semilattice of the semigroups $X \in P/\tau$. In particular, P-X is a subsemigroup of P and the number of components $A\sigma^*$ of P/σ is equal to the number of elements in P/τ which we shall denote by $|P/\tau|$.

A subsemigroup C of P is *convex* if $a \in P$, $c \in C$ and a < c imply that $a \in C$. It is easy to show that the set $\mathscr S$ of all convex subsemigroups of P is ordered by inclusion, and that if A and B are convex subsemigroups of P and $A \supset B$, then $A \setminus B$ is a semigroup. Moreover if A covers B, and $a \in A \setminus B$, then $a\tau^* = A \setminus B$. For each $a \in P$ let $P^a = \{x \in P : x\tau^* \le a\tau^*\}$. Then P^a is a convex subsemigroup of P and if C is a convex subsemigroup of P, then $C = \bigcup P^a$. Thus the order type of $\mathscr S$ is completely determined by P/τ .

Let G be an o-group and let Γ be the set of all pairs of convex subgroups G^{τ} , G_{τ} of G such that G^{τ} covers G_{τ} . Define that $(G_{\alpha}, G^{\alpha}) < (G_3, G^3)$ if $G^{\alpha} \le G_3$. Then Γ is ordered, and the order type of Γ is the rank of G.

Theorem 3-3. If P is a naturally pos. o.s., then the rank of the difference group G of P equals the order type of P/τ .

For by Theorem 2-2, P is the semigroup of all positive elements of G, and a convex subgroup of G is determined by its set of positive elements. Thus if $(G_{\tau}, G^{\tau}) \in \Gamma$, then $G_{\tau} \cap P$ and $G^{\tau} \cap P$ are convex subsemigroups of P and $G^{\tau} \cap P$ covers $G_{\tau} \cap P$. Moreover $(G^{\tau} \cap P) \setminus (G_{\tau} \cap P) = a_{\tau}^*$, where $a \in (G^{\tau} \cap P) \setminus (G_{\tau} \cap P)$.

Remark. If P is a commutative naturally pos. o.s. and the components $A\tau^*$ of P/σ are d-closed, then the c-closure C of the difference group G of P is uniquely determined by P/σ . For C is isomorphic to the Hahn group $H(\Gamma, R_{\Gamma})$, where Γ is an ordered set with order type equal to the rank of G and the R-are isomorphic to the components G^{Γ}/G_{Γ} of G (see [5] for these concepts). But Γ is determined by P/σ and the components of G are just the difference

groups of the components of P/σ .

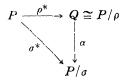
Let P be a positive o.s. that satisfies (*) and let G be the difference group of P. It should be made clear that there is virtually no relationship between the order type of P/τ and the rank of G, even if G is abelian. For example let $G = R \oplus R \oplus R$, where R is the additive group of real numbers. Define (a, b, c) in G positive if c > 0 or c = 0 and b > 0 or c = b = 0 and a > 0. Let $P = \{(a, b, c) \in G : c > 0\}$. Then G is the difference group of F, $|F/\tau| = 1$, and the rank of G is 3. By generalizing this example it is easy to see that for $|F/\tau| = 1$ the rank of G can be any given order type. But we shall show (Theorem 5-1) that F does determine the order type of the set of all convex normal subgroups of G.

4. Relationships between P and P/σ . Throughout this section let P be a pos. o.s. A semigroup Q is a t-semigroup if Q is an ordered set and ma < (m+1)a for all a in Q and all positive integers m.

Lemma 4-1. Let ρ^* be an o-homomorphism of P onto a t-semigroup Q. For a and b in P define $a \rho b$ if $a \rho^* = b \rho^*$. Then ρ is a congruence relation on P and $\rho \subseteq \sigma$.

Proof. If $a \rho b$, then $a \rho^* = b \rho^*$. Hence $(m+1)(a \rho^*) > m(b \rho^*)$ and $(m+1) \cdot (b \rho^*) > m(a \rho^*)$. Thus since ρ^* is an o-homomorphism, (m+1) a > mb and (m+1) b > ma for all m. Therefore $a \sigma b$.

Now consider $q \in Q$. $q = a\rho^*$ for some $a \in P$. Define $q\alpha = a\sigma^*$. Then by the usual arguments α is an σ -homomorphism of Q onto P/σ such that $p\rho^*\alpha = p\sigma^*$ for all $p \in P$. We have the following diagram and theorem.



Theorem 4-1. P/σ is the smallest o-homomorphic image of P that is a t-semigroup. In particular, P/σ is the smallest o-homomorphic image of P that is an ordinal sum of pos. o.s.

Remarks. (1) Let ρ be a congruence relation on P. Then P/ρ is a tsemigroup and ρ^* is an o-homomorphism if and only if for all a, $b \in P$: (A)

If a < b, then $a\rho^* = b\rho^*$ or x < y for all $x \in a\rho^*$ and $y \in b\rho^*$, and $ma(NOT \rho)$

(m+1)a for all m. Thus σ is the join of all congruence relations that satisfy (A). (2) If $|P/\tau|=1$ and ρ is a congruence relation on P such that P/ρ is an ordinal sum of pos. o.s. and ρ^* is an ρ -homomorphism, then P/ρ is a pos. o.s..

5. Relationship between P and its quotient group G. Let P be a pos. o.s. and let $\Delta = \{ \rho : \rho \text{ is a congruence relation on } P, P/\rho \text{ is a pos. o.s. or a pos. o.s. with zero, and } \rho^* \text{ is an } o\text{-homomorphism} \}.$

Lemma 5-1. A is ordered by inclusion.

Proof. Consider α , $\beta \in A$ and suppose (by way of contradiction) that there exist a, b, c, $d \in P$ such that $a\alpha b$, $a(\text{NOT }\beta)b$, $c(\text{NOT }\alpha)d$ and $c\beta d$. Case I. a > b and c > d. Then $a\beta^* > b\beta^*$ and $c\alpha^* > d\alpha^*$. If $a + d \le b + c$, then $a\beta^* + d\beta^* \le b\beta^* + c\beta^*$ and $d\beta^* = c\beta^*$. Thus $a\beta^* \le b\beta^*$, a contradiction. If a + d > b + c, then $a\alpha^* + d\alpha^* \ge b\alpha^* + c\alpha^*$ and $a\alpha^* = b\alpha^*$. Thus $d\alpha^* \ge c\alpha^*$, a contradiction. Similarly in the other three cases we get a contradiction.

For the remainder of this section we assume that P is a pos. o.s. which satisfies (*). In particular, the results obtained are valid for commutative pos. o.s. Let G be the difference group of P and let π be an o-homomorphism of P into a pos. o.s. with zero. Then clearly $P\pi$ satisfies (*). Let H be the difference group of $P\pi$ and for g=a-b in G define $g\pi=a\pi-b\pi$.

Lemma 5-2. $\overline{\pi}$ is the unique extension of π to an o-homomorphism of G onto H.

Proof. If a-b=c-d, where $a,b,c,d\in P$, then by Corollary II of Theorem 2-1, there exist $x,y\in P$ such that a+x=c+y and b+x=d+y. Thus $a\pi+x\pi=c\pi+y\pi$ and $b\pi+x\pi=d\pi+y\pi$, and so by applying this corollary again, $a\pi-b\pi=c\pi-d\pi$. Thus π is single valued. The lemma now follows by repeated use of Corollary II and straightforward computation.

It is well known and easy to verify that the kernel of any o-homomorphism of an o-group is a convex normal subgroup. Let $\mathscr C$ be the set of all convex normal subgroups of G except G itself. Then $\mathscr C$ is ordered with respect to inclusion.

THEOREM 5-1. There exists a 1-1 order preserving mapping of Δ onto C.

Proof. For each $\rho \in \Delta$ let $\overline{\rho}$ be the unique extension of ρ^* to G (which is assured by Lemma 5-2), and let $\rho \eta = K(\overline{\rho}) = \{x \in G : x\overline{\rho} = 0\}$. We wish to show

that η is the desired mapping. Since $\overline{\rho}$ is uniquely determined by ρ , η is single valued. Let α , $\beta \in \Delta$ and $\alpha \subseteq \beta$. If $x \in K(\overline{\alpha})$, then x = a - b, where a, $b \in P$ and $0 = x\overline{\alpha} = (a - b)\overline{\alpha} = a\overline{\alpha} - b\overline{\alpha} = a\alpha^* - b\alpha^*$. Thus $a\alpha b$ and hence $a\beta b$. But then $0 = a\beta^* - b\beta^* = x\overline{\beta}$. Therefore $x \in K(\overline{\rho})$ and $\alpha \eta \subseteq \beta \eta$. If $\alpha \neq \beta$, then there exist a, $b \in P$ such that $a\beta b$ but not $a\alpha b$, but this means that $a - b \in K(\overline{\beta}) \setminus K(\overline{\alpha})$. Therefore η is 1 - 1 and order preserving. Next consider $C \in \mathscr{C}$ and let N be the natural o-homomorphism of G onto G/C. Let ρ be the congruence relation induced on P by N ($a\rho b$ if and only if aN = bN). Define that $a\rho^* > b\rho^*$ if a + C > b + C. Then it follows by a straightforward computation that $\rho \in \Delta$ and $\rho \eta = C$. Therefore η is a + 1 - 1 order preserving mapping of Δ onto \mathscr{C} .

If $|P/\tau|=1$ or equivalently if P/σ is σ -isomorphic to a subsemigroup of positive reals, then $\sigma \in \mathcal{A}$ and $\mathcal{A} = \{\rho : \rho \text{ is a congruence relation on } P, P/\rho \text{ is a pos. o.s. and } \rho^* \text{ is an } \sigma\text{-homomorphism}\}.$

REFERENCES

- N. G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576.
- [2] C. G. Chehata, On ordered semigroups, J. London Math. Soc. 28 (1953), 353-356.
- [3] A. H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504.
- [4] A. H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64 (1958), 305-316.
- [5] P. Conrad, Extensions of ordered groups, Proc. Amer. Math. Soc. 6 (1955), 516-528.
- [6] P. Conrad, Semigroups of real numbers, (to appear).
- [7] C. J. Everett, A note on a result of L. Fuchs on ordered groups, Amer. J. Math. 73 (1950), 216.
- [8] O. Ore, Linear equations in non-commutative fields, Annals Math. 32 (1931), 463-477.
- [9] A. A. Vinogradov, On the theory of ordered semigroups, Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz. Mat. Nauki 4 (1953) 19-21.

Tulane University