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1. Introduction

In this paper, some methods are developed for obtaining explicitly a basis for
the integral closure of a class of coordinate rings of algebraic space curves.

The investigation of this problem was motivated by a need for examples of
integrally closed rings with specified subrings with a view toward examining ques-
tions of unique factorization in them. The principal result, giving the elements to
be adjoined to a ring of the form fc[xx, • ••,*„] to obtain its integral closure, is
limited to the rather special case of the coordinate ring of a space curve all of whose
singularities are normal. But in numerous examples where the curve has non-
normal singularities, the same method, which is essentially a modification of the
method of locally quadratic transformations, also gives the integral closure.

2. Terminology and notation

An algebraic curve defined over a field k is a one-dimensional subvariety of an
n-dimensional afnne space with coordinates in a universal domain K whose prime
ideal ty in k[Xu •••,Xn] is absolutely prime, that is, the extension of S$ to
F[Xlt •••,Xn'} is prime for every algebraic field extension F of k. The notions of
point, coordinate ring, and function field of the curve are those of Zariski and
Samuel (1960; page 22). In particular, a point will be a zero-dimensonal sub-
variety of the curve. A place of the curve is a place of the function field as de-
fined by Chevalley (1951; page 2).

If the constant field k is algebraically closed, a place is defined equivalently as
a class of k-isomorphisms of the function field into a power series field k((t)) in
one variable. More precisely, if the function field K is generated over k by the
elements xlt •••,*„, then a representation of a place of K/k is a k-isomorphism of
K into k((()). A representation is called primitive if not all the images of xlt ••-,xn

are power series in the same power series of order greater than one. This definition
is independent of the choice of generating elements of K over k. Two representa-
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tions <j> and ij/ are equivalent if there is a substitution X of order one in k((t)) such
that <j> = faj/. A place is an equivalence class of primitive representations. If a
system of generators x^ •••,*„ of Kjk is fixed, then the n-tuple (Pi(t),-~,pn(t)),
where Pi(t) is the image of x; under a primitive representation, is a parametriza-
tion of the place, so that a place may be equivalently regarded as a class of
equivalent parametrizations, or a minimal quasi-branch as defined by Semple and
Kneebone (1959; page 67). The definition of the order of a place on a curve is
that of Semple and Kneebone and a linear place is a place of order one.

The equivalence of these definitions of place is seen as follows. A place in the
latter sense corresponds to the set of elements of K mapped by the isomorphism
onto power series of positive order, and this set is the maximal ideal of a valuation
ring in K, i.e. a place in the sense of Chevalley. Conversely, given a valuation ring
D of Kjk (k algebraically closed), one obtains an isomorphism into the power
series field k((tj) as follows. Let £ e D. k is the residue class field of D, so for some
a e k, v(£ — a) > 0, that is ^ — a = nra with a a unit in D, n a generator of the
maximal ideal, and r > 0. Similarly, for some bek, v(<x — b) > 0, that is a — b
= n"P, 0 a unit in D, s > 0. Thus

f = a + bif + j?7t'+s.

Continuing in this way, we get a power series

= a + bf + cf+s + •••

and £ -> £(0 is the required isomorphism.
The centre of a place on a curve is the intersection of the place with the coor-

dinate ring of the curve, provided that the ring of the place contains the coordinate
ring. Otherwise, the place is said not to have finite centre on the curve, or to have
its centre at infinity. The centre of every place of Kjk with finite centre on the
curve is a proper prime ideal of k[xu •••, xn], and conversely, every prime ideal is
the centre of at least one place. Since k[xu • • •, xn] has degree of transcendence one
over k, every non-zero prime ideal is maximal. In case k is algebraically closed, an
ideal of k\xx, - , x n ] is a proper prime ideal if and only if it is of the form
(xt — au - , x B — an) where (au •••,an) is a point of the curve, so that in this case
the centre of a place on a curve can be regarded as a point on the curve.

A point of a curve is simple if its local ring is regular. If k is algebraically
closed, this is equivalent to being the centre of exactly one place of the curve, this
place being linear. A point which is not simple is singular. A singular point is
normal if it is the centre of several places all of which are linear and all of which
have distinct tangents, where the definition of the tangent of a place is that of
Semple and Kneebone, (1959; page 182).

The integral closure of a coordinate ring of a curve Y is the intersection of all
places with finite centre on T, and the coordinate ring is integrally closed if and
only if every point of T is simple.
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3. Principal results

LEMMA 1. Let k be an algebraically closed field, k[x1, •••,xn] the coordinate
ring of an algebraic space curve F, and suppose that the point P with coordinates
(au •••,an) is on F. Then there is an affine coordinate transformation

Yt = la^Xj + bt, i = i,—,n
j

such that

(1) P is at the origin,
(2) no tangent toT at P lies in the hyperplane Yt = 0, and
(3) no intersection of F with Y^ = 0 other than P lies in any other hyper-

plane Yt = 0.

PROOF. Let V denote affine n-dimensional space over k, and V the dual space
of V as a vector space. If P is at the origin, the tangents to F at P are one-dimen-
sional subspaces, and they correspond to (n — l)-dimensional subspaces of V.
Since k is infinite and no vector space over an infinite field is a finite union of
proper subspaces, a basis of V exists containing at least one element which is not
in any of these (n — l)-dimensional subspaces. The equations of the hyperplanes
in V corresponding to these basis elements of V give a coordinate transformation
satisfying (1) and (2).

Having transformed coordinates so that (1) and (2) hold, but continuing to
denote the coordinate hyperplanes by Xt = 0 for simplicity, let M be the union of
the {n — l)-dimensional subspaces of V corresponding to the lines in V through
the origin and the points of intersection of F with the hyperplane Xt = 0. Let / i
be a generator of the 1-dimensional subspace of V corresponding to X x = 0 in
V. Let fi be an element of V not in M,f3 an element of V not in M or in the
space spanned by / x and f2. Continuing in this way, a basis {/,, •••,/„} of V is
obtained. The equations of the hyperplanes in V corresponding to these basis ele-
ments of V give a coordinate transformation satisfying (1), (2) and (3).

LEMMA 2. Let k be an algebraically closed field, fc[x,, •••,*„] the coordinate
ring of an algebraic space curve T of order e with a singular point at the origin.
Assume that no line tangent to T at the origin lies in the hyperplane Xx = 0,
and that the intersections

Qi = (0,bi2,-,bin); i = l , - , m

ofT with the hyperplane Xi = 0 not at the origin do not lie in any of the hyper-
planes Xt = 0, i different from one. Then for j = 2, ••-,«

*y = (v*i) n (XJ - boy
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is integral overk[xu • • • ,x n ] . Furthermore, fc[xl5 •••,xn,z2, •••,zn~] is the coordinate

ring of a curve T' with the following properties:

(1) If (au---,an,b2,---,bn) is a point F ' , then the projection (au•••,an) is a

point of F .

(2) A point ofT different from the origin is the projection of one and only

one point ofT'.
(3) If PU-,PS are the points ofT' vhich project to the origin on F, then

the sum of the orders of the places of T' centred at P !,-••, Ps isless than or equal

to the sum of the orders of the places ofTcentred at the origin.

(4) / / ^ P i and ty2 are places of k(xu •••,xn)lk centred at the origin on F and

having distinct tangents, then *px and ^32 have distinct centres on F ' .

PROOF. Let ^3 be any place of the function field k(xu -".x,,) of F with finite
centre, and let v be the order function at ty. Suppose the centre of ^J on F is the
point P = (au ••-,«„)• Then x t — at belongs to ty so that if a1 is non-zero, xx

does not belong to S\$. Hence, v(x1) = 0, and

v(zj) = v(xj) - uCxj) + e E v(xj - bij) ^ 0 , ; = 2, ••-,n.
i

If «! = 0 and not all at are zero, then P is one of the points Qh and

v(xj - by) > 0 ; j = 2, • • - , « .

Since xx has positive order at some places other than ^ (such as those centred at
the origin), vixj is strictly less than the sum of the orders of x t at all places with
finite centre on fe[x1; •••,xn~\ which in turn is at most equal to the order e of F.
Hence,

v{Zj) ^ ifxj) - v(Xi) + ev(xj - bij) ^ - i;(xx) + e ^ 0; j = 2, -,n.

If flj = 0 for all i, then consider the parametrization (px(0, •••,P«(0) of t n e

place Ŝ where pt(t) belongs to the power series ring fc[[l]]. If

Pj(t) = 2 Pjkt!>
k

has order ss, then the tangent to ^3 has parametric equations

Xj = pJst, where s = min{s1; •••,sn}.

Since no tangent line to F at the origin is contained in the hyperplane Xt = 0, pu

is different from zero, so that

Sj ^ Sj\ j = 2 , ••-,/!.

Since
v(xj) = ord[p/0]»

u(x1) g v(xj) and v(z}) ^ v(xj) - v(xt) ^ 0.
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Thus Zj has non-negative order at every place with finite centre on k\xu ••-, x n ] , so

that Zj is integral over k[xu ••• ,*„], j = 2, •••, n.

Let F ' be a curve in (2n — l)-dimensional affine space having coordinate ring

^ L ^ l ' '">Xn>Z2> '"•>zn\-

If (au •••, an, b2, ••• bn) is a point of F ' , then the ideal

p = (x, - au—,xn - an,z2 - b2,---,zn - bn)

is a proper prime ideal of k[xu •••,xn, z2 , •••, zB], and

p n / c [ x 1 ; - - - , x n ] = (x t - a1 , - - - ,xn - an),

so that (a 1 ; •••, an) is apoint of F , and (1) is established.

Suppose P = (au •••, an) is a point of F . T h e n ( x 1 — au ---.Xn — an) is a proper

prime ideal of fc[xt, •••, x n ] , and is hence the contraction of a prime ideal p of the

integral extension k\xu •••, xn, z2 , •••, z j . p is of the form

p = (* i - a i , ••;xn - an, z2 - b2,---,zn - bn).

and the point P' = (au •••, an, b2, •••, 6B) is a point of F ' . Suppose P is not at the

origin. If at is different from zero, then

h ~ bj ^ (f) II («j ~ btjy - bj (Mod p).

Hence

bj = («y/
fli) IT ifli - buy-

i

If ay = 0 , then P is one of the points Qj. It has already been shown that z2,---,zn

have positive value at all places centred at g / , so since the same is true of
Z2 — b2, •••,zn — bn, it follows that b2 = ••• = bn = 0. Thus in either case,

b2, ••-,bn are uniquely determined by au ••-,an, and (2) is established.

F and F ' have the same function field K = k(xu ••-,xn). A place of Kjk has a

representation as a fc-isomorphism of iC into a power series field k((t)), and such a

fc-isomorphism is completely determined by its action on the elements x 1 ; •••, xn of

X. Hence, a place of K/k is centred at the origin on F if and only if it is centred

at some point of F ' lying above the origin on F . If (pi(t), •••, pn(t)) is a parametriza-

tion of a place of K/k centred at the origin on F , then its order on F is

min {ord [p ; (0] |« = 1, •", " } •

Its parametrization on F ' is

(Pi(t),-,Pn(t),q2(t),-,qn(t))-
where

n
and its order on F' is
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min{ord[p f(0] , ord[gy(f) - g / 0 ) ] | i = 1, ••• ,«; j = 2, ••-,n}

which is less than or equal to its order on F . Hence, (3) is established. Suppose

(Pn(t),-,Pin(t)), i = 1,2

are parametrizations of tyt and ^32 respectively, where

Pijit) = £ pijkt
k.

Let *
rt = min{ord[pf/0]|j = I, ••-,«}, i = 1,2.

Then the tangents to ^8X and ^}2 as places of F are given parametrically by

and since no tangent to F at the origin lies in the hyperplane X1 = 0,

Par, ^ 0 , i = 1,2.

The corresponding parametrizations of ^ and ^S2 as places of F' are

(P«(0,-,l'fa(0,?«(0»-,«fa(0) i = 1,2,
where

Pn(0 k

'3 Piu, k kJ

If the centes of ^Si and ^$2 on F ' coincide, then

Since none of the points g ( = (0, bi2, •••, bin) lies on any hyperplane X, = 0,

n (-bkj)e*o.
k

Hence,
^•Pljn = P2jr2' J = I ' ' " - "

where

A =
Pllr,

so the tangents to *px and ip2 as places of F coincide. Thus (4) is established and
the proof is complete.

It is clear from the above proof that the choice of elements to be adjoined
to form the desired integral extension may be modified by replacing e by any
sufficiently large integer, and hence that the actual form of the elements to be
adjoined may be simpler than those appearing in the statement of the Lemma.
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If the origin is a normal s-fold singular point of an algebraic curve F defined
over an algebraically closed field k, and the axes are suitably chosen, then the
curve F" defined in the previous lemma has s distinct simple points projecting to
the origin on F, and the other points of F and F' correspond in such a way that
the set of places with centre at some point not at the origin on F is precisely the
same as the set of places centred at the corresponding point on F'.

If all the singularities of F are normal, then all singularities of F' are normal,
and the procedure described in the preceding results may be successively applied
to obtain a finite sequence of curves, the last of which has no singular points. Its
coordinate ring is thus integrally closed and integral over that of F. Hence it is the
integral closure of the coordinate ring of F.

A simplification of the procedure outlined above is obtained by partially
combining the successive steps as follows :-

THEOREM 1. Let k be an algebraically closed field, fc[xt, • ••,*„] the

coordinate ring of an algebraic curve F all of whose singular points P x , •••, Ps are

normal. For i = l,---,s, let

= I tiJkXk +iJkXk j = l ,

be a coordinate transformation chosen so that P( is at the origin, no tangent
to T at Pt lies in the hyper plane Yt = 0, and no intersection

Qik = (O,bik2,-,bikn)

ofY with Yx = 0 other than the origin lies on any other hyperplane y. = 0.
For i = l , - - - , s and j = l , - - , n , define

Then if
UjkXk

= ~ I! (*.y - bikj)\xn k

where e is the order of T, then R = k[xly---,xn,z12, •••,zsn] is the integral
closure of k\_x1,---,xn'].

PROOF. By Lemma 2, zi2, - , z ( l , are integral over k\xiU ••-,xin'] which is equal
to k\xu •••,xn]. Hence R is integral over k[xu •••, xn]. R is the coordinate ring of
a curve all of whose singularities, if any, are normal, so to show that R is integrally
closed, it suffices to show that no two distinct places of k(xt, •••,xn)/k have the
the same centre on R. If ^3X and ^2 a r e t w o places having the same centre on R,
then they have the same centre on k[xu ••-,xn], say (xx - au •••,xn- an), where
(a!, •••, an) is a point of F. If this point is simple, then it is the centre of only one
place, so that ^ = ^82. Otherwise, (au ••-,an) is one of the points Pt. Since
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k[_XU '"tXni =

and since ^ and ip2
 n a v e the same centre on R, they have the same centre on

k[xn> •••jX.m zi2» •••,zin] and hence, by Lemma 2, their tangents, as places of the
transform of F by the equations

YJ = ^ hjkXk +Cij,
k

coincide. Since all singular points of F are normal, t^1 = S$2, and the proof is
complete.

The following examples are applications of some of the preceding methods.

EXAMPLE 1. Let k be the field of complex numbers. Let &[x,>>] denote the
coordinate ring of the curve F defined over k by

f(x,y) = {x2 + y2)2 + 3x2y - y3.

Since /has subdegree three and degree four, the origin is a threefold point and all
other points are simple. The tangents to F at the origin are the lines with equation
Y = 0 and Y = + yj3X, so that the origin is a normal singular point of F. (0,1)
is the only intersection of F with the axis X = 0 other than the origin. Hence, the
integral closure of k\x, y\ is k[x, y, z] where z = y(y — Yfjx.

EXAMPLE 2. Let k be the field of complex numbers. Let k\x, y] denote the
coordinate ring of the curve F defined over k by

f(X, Y) = 2(Y4 - 2Y3 - 3Y2) + (X2 - A)2.

T has normal double points with non-vertical tangents at (—2,0) and (2,0) and
all other points are simple. The coordinate transformations

X' = X + 2, Y' = Y and X' = X - 2, Y' = Y,

locate these points respectively at the origin of the transformed systems. In both
these coordinate systems, the intersections of F with X' = 0 other than the origin
are the points (0, — 1) and (0,3). Hence, the integral closure of k\x, y] is
k\x,y,zuz^\ where

*i = y(y ~ 3)4(y + l)4/(* + 2) and z2 = y(y - 3)\y + l)4/(x - 2).

4. Auxiliary results and examples

In case the field of constants is not algebraically closed, the following results,
the proofs of which are direct, are sometimes useful.

THEOREM 2. Let k be an arbitrary field and f(X,Y) an irreducible poly-
nomial in k\X, y] of subdegree n and degree m.

(1) / / k[x,y] = k\X, Y]/(/), andf(0, Y) = Y"p(Y) where p(Y) belongs to
fe[y], then yp(y)/x is integral over k[x,y].
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(2)//
f(X,Y) = /n(X,Y) + -+/m(X,Y)

where ft is homogeneous of degree i, then g{X, Y) =/B(l, Y) + Xfn+i(l, Y) +
... + Xm~nfm{\, Y) is irreducible.

EXAMPLE 3. Let k be a field with characteristic different from two.

f{X, Y) = X4 + X2 Y2 - 2X2Y - XY2 + Y2

is irreducible over k and defines a curve r \ with a non-normal double point at the
origin and no other intersections with the Y-axis. Denote its coordinate ring by
k[x, y]. Then yjx is integral over fc[x, y].Now k[x, y, y/x] = /c[x, y/x] which is
the coordinate ring of the curve F2 defined by the polynomial

g(X, Y) = X2 + X2 Y2 - 2XY - XY2 + Y2.

g(X, Y) is irreducible by Theorem 2. T2 has a double point at the origin and no
other intersections with the 7-axis, so that y\x2 is integral over k\x,y\x\.
k[x, yjx, y/x2] = k\x, y/x2] which is the coordinate ring of the curve T3 defined by

h(X, Y) = 1 + X2 Y2 - 27 - XY2 + Y2.

Again, h(X, Y) is irreducible, but T3 is free of singular points. Hence the integral
closure of k\x,y~\ is fe[x, y/x2].

The next example illustrates that, although the first part of Theorem 2
appears in some respects to be a stronger form of Lemma 2, the conditions in
Lemma 2 may not in fact be relaxed.

EXAMPLE 4. Let k be the field of complex numbers. The curve T defined by

f{X, Y) = X2 - Y3

fails to satisfy the conditions in Lemma 2 on orientation of axes, and the element
yjx of its coordinate ring fe[x, y] is in fact not integral over fe[x, y]. On the other
hand, by Theorem 2 z = y2/x is integral over fe[x, y]. Moreover, fe[x, y, z] = /e[z]
which, being a polynomial ring, is integrally closed and hence the integral closure
offc[x,y].
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