ON THE COMPACITY OF THE ORTHOGONAL GROUPS

TAKASHI ONO

It is a well known fact on Lorenz groups that a quadratic form f is definite if and only if the corresponding orthogonal group $O_n(R_{\infty}, f)$, where R_{∞} is the real number field, is compact. In this note, we shall show that the analogue of this holds for the case of the *p*-adic orthogonal group $O_n(R_p, f)$, where R_p is the rational *p*-adic number field, as a special result of the more general statement on the completely valued fields.

Let K be a field with non-trivial valuation $| \cdot |$, and of characteristic $\neq 2$. Let V be an n-dimensional vector space over K and let u_i (i = 1, ..., n) be some fixed basis of V over K. If we define norm of $x = \sum_{i=1}^{n} x_i u_i \in V$ by ||x||= max $|x_i|$, then the space V is topologized as usual.¹⁾ Now, let E be the algebra of endomorphisms of V over K. Using the above basis, we also define norm of transformation $X = (x_{ij})$ by $||X|| = \max_{i, j=1,...,n} |x_{ij}|$. It is easy to see that $||X \cdot Y|| \leq n ||X|| \cdot ||Y||$. Thus, E becomes a normed algebra over K. A subset S of a normed space is called bounded if for some number b > 0 we have $\|x\|$ < b for all $x \in S$. For our normed space V, boundedness is independent of the The same is true for the normed space E. If K is locally choice of basis u_i . compact, then a bounded and closed subset of a normed space over K is the same thing as a compact subset. Now, let f be a non-degenerate symmetric bilinear form on V. The orthogonal group $O_n(K, f)$ is obviously a closed subset of *E*. If f and g are congruent, it is easy to see that their groups are homeomorphically isomorphic and if one of them is bounded in E so is the other. We say that a from f is of index v if v is the maximum dimension of $U \subset V$ such that U is a totally isotropic subspace of $V^{(2)}$ $\nu = 0$ means that f(x, x) = 0 implies x = 0.

We prove the following

Received March 29, 1954.

¹ See [1] p. 18.

² See [2] p. 17.

THEOREM 1. Let K be a completely (non-trivially) valued field with characteristic $\neq 2$ and let f be a non-degenerate symmetric bilinear form over K. Then the index ν of f is zero if and only if the orthogonal group $O_n(K, f)$ is bounded in E.

Proof. If n = 1, since then $\nu = 0$ always and the group is of order 2, the statement is trivial. So we assume that $n \ge 2$. Suppose that $\nu \ge 1$. Then f is congruent to the form g whose matrix is of type

$$G = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \\ & & * \end{array}\right)^{3)}$$

Since $\binom{t}{0}\binom{x}{x^{-1}}\binom{0}{1}\binom{x}{0}\binom{x}{0}\binom{x}{x^{-1}} = \binom{0}{1}\binom{1}{1}$ for all $x(\neq 0) \in K$, it follows that

belongs to $O_n(K, g)$ for each $x(\pm 0) \in K$. Thus, $O_n(K, g)$ is not bounded in E. Hence, $O_n(K, f)$ is also not bounded. This proves the sufficiency. It is to be noted that we do not use the completeness of K.

Next, we shall prove the necessity.⁴⁾ Here the completeness of K is used essentially. Assume that $O_n(K, f)$ is not bounded. Without loss of generality, we may suppose that the matrix of f is of type

$$F = \begin{pmatrix} a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} \quad \text{where } |a_i| \leq 1, \ i = 1, \ldots, n$$

By our assumption, for any N > 0 there exists an $X \in O_n(K, f)$ such that ||X|| > N. Suppose that $||X|| = |x_{pq}|$. Comparing the (q, q)-components of both sides in ${}^{t}XFX = F$, we get $\sum_{i=1}^{n} a_i x_{iq}^2 = a_q$. Multiplying x_{pq}^{-2} on both sides, we see that

³⁾ See [3] Satz 5.

⁴⁾ The following proof is inspired by Theorem 2, Dieudonné [4].

the inequality $\left|\sum_{i=1}^{n} a_{i} x_{i}^{*}\right| < |a_{q}| N^{-2}$ has a solution x_{i} such that $|x_{i}| \leq 1, |x_{p}| = 1$. Now, if K is locally compact then the unit cube, i.e. the set of x with $||x|| \leq 1$ in V is compact. Thus, for increasing N we may select a sequence of vectors x_N in the unit cube satisfying an inequality as above one of whose component, say p_{y} -th, is of value 1. Taking a subsequence, if necessary, we may assume that p_N are all equal. It is obvious that $x = \lim_{N \to \infty} x_N$ gives a non-trivial solution of f(x, x) = 0. Thus, the necessity is proved for our special case, i.e. the case when K is archimedean (that is, when K is real or complex field) or K is a finite extension of the Hensel p-adic number field R_p with some prime p or a field of power series of one variable over a finite field of characteristic $\neq 2$. Therefore, there remains to be considered a case of a non-archimedean field K. We shall construct a non-trivial solution of f(x, x) = 0 by successive approxi-We fix an element $c \in K$ such that |c| < 1, and put $d = 2a_1 \dots a_n \cdot c$. mation. Then, from the above argument, the inequality $\sum_{i=1}^{n} a_i x_i^2 < |d|^3$ has a solution x_i such that $|x_i| \leq 1$, $|x_p| = 1$. Then, we shall show by induction on μ that the inequality $\left|\sum_{i=1}^{n} a_i x_{i,\mu}^{\circ}\right| < |d|^{\mu+2}$ has a solution $x_{i,\mu}$ such that $|x_{i,\mu}| \leq 1, |x_{p,\mu}| = 1$. For $\mu = 1$, it suffices to take $x_{i,1} = x_i$. Next, we assume that we have a solution for some μ . Put $\sum_{i=1}^{n} a_i x_{i,\mu}^2 = d^{\mu} e$, $e = d^2 f$. We have |f| < 1. And set y $= -e(2a_{p}x_{p,\mu})^{-1}.$ Then, we get $|y| = |a_{1}...\frac{v}{...a_{n}}||c||d||f||x_{p,\mu}|^{-1} < |d| < 1.$ Using this y, we put $x_{i,\mu+1} = x_{i,\mu}$ $(i \neq p)$, $x_{p,\mu+1} = x_{p,\mu} + d^{\mu}y$. Since the valuation is non-archimedean, we have $|x_{i,\mu+1}| = |x_{i,\mu}|$ i = 1, ..., n. From the definition of y, we have $\sum_{i=1}^{n} a_i x_{i,\mu+1}^2 = \sum_{i=1}^{n} a_i x_{i,\mu}^2 + 2 a_p x_{p,\mu} d^{\mu} y + a_p d^{2\mu} y^2 = d^{\mu} (e + 2 a_p x_{p,\mu} y)$ $+ a_p d^{2\mu} y^2 = a_p d^{2\mu} y^2$. Therefore, it follows that $\left| \sum_{i=1}^n a_i x_{i,\mu+1}^2 \right| \le |d|^{2\mu} |y|^2 < |d|^{2\mu+2}$ $\leq |d|^{\mu+3}$. Thus, we get *n* Cauchy sequences $\{x_{i,\mu}\}$ in K. Since K is complete, there exist $x_i = \lim_{\mu \to \infty} x_{i,\mu}$. It is obvious that $x = \sum_{i=1}^{n} x_i u_i$ is a non-trivial solution of the equation f(x, x) = 0. This proves the necessity assertion.

As an immediate consequence of Theorem 1 we get the following

THEOREM 2. Let K be a locally compactly valued field with characteristic $\neq 2$. Then, the index ν of f is zero if and only if the group $O_n(K, f)$ is compact.⁵⁾

⁵⁾ Mr. A. Hattori has communicated to the writer an elegant alternative proof. Here we sketch his proof. Let P be the projective space corresponding to V. If we define the open set in P as the totality of lines in V each of which intersects with some given open set in V, then P becomes a compact space. If $\nu = 0$, then there is a homeomorphism between P and the set S of all symmetries with respect to the hyperplanes in V. Here, the topology in S is the one induced from E. Thus S is a compact set. Therefore, $O_n(K, f) = S^n$ (Cartan-Dieudonné) is also compact.

T. ONO

Now we shall apply the above results to the orthogonal group over a field K of algebraic numbers or algebraic functions of one variable over a finite field of characteristic $\neq 2$. Let $K_{\mathfrak{p}}$ be a \mathfrak{p} -adic completion of K with respect to a place \mathfrak{p} in K. Suppose that a form f is given in K. Naturally f may be considered as a form over $K_{\mathfrak{p}}$ and $O_n(K, f)$ is contained in $O_n(K_{\mathfrak{p}}, f)$.⁶⁾ Let ν and $\nu_{\mathfrak{p}}$ be the global and local indices of f respectively. According to Hasse's principle, we have the relation $\nu = \min_{\mathfrak{p}} \nu_{\mathfrak{p}}$ between these indices.⁷⁾ If $\nu \ge 1$, since we do not use the completeness of valuation in the proof of sufficiency in Theorem 1, if \mathfrak{p} is any place of K, then $O_n(K, f)$ is unbounded with respect to the \mathfrak{p} -adic topology. Conversely, if $\nu = 0$, then by the above principle we get $\nu_{\mathfrak{p}} = 0$ for some \mathfrak{p} . Therefore $O_n(K_{\mathfrak{p}}, f)$ is compact for such \mathfrak{p} (Theorem 2) and we see that $O_n(K, f)$ is bounded in the \mathfrak{p} -adic topology.

Thus we get

THEOREM 3. Let K be a field of algebraic numbers or algebraic functions of one variable over a finite field of characteristic $\neq 2$. Then a form f is a zero-form⁸⁾ if and only if the orthogonal group $O_n(K, f)$ is unbounded for all \mathfrak{p} adic topologies in K.

References

- [1] E. Artin, Algebraic numbers and algebraic functions, Princeton (1951).
- [2] J. Dieudonné, Sur les groupes classiques, Act. Sci. et Ind., 1040 (1948).
- [3] E. Witt, Theorie der Quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937).
- [4] J. Dieudonné, Sur les groupes orthogonaux rationnels à trois et quatre variables. Compt. rend., t. 233 (1951).

Mathematical Institute, Nagoya University

⁶) By Cayley's parametrization we can see that $O_n(K, f)$ is dense in $O_n(K_{\mathfrak{p}}, f)$. But this fact is unnecessary to prove our Theorem 3.

⁷⁾ See [3] Satz 19. Though only the number field case is treated in [3], we know that the principle is also valid for the function field case.

⁸⁾ This means that f represents zero non-trivially.