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Introduction

The aim of this paper is to study a property of a special kind of exact

functors and give some applications to projective modules and injective modules.

In section 1 we introduce the notion of faithfully exact functors [Definition

1] as a generalization of the functor T(X) = X®M, where M i s a faithfully

flat module, and give a property of this class of functors [Theorem 1.1]. Next,

applying this general theory to functors ® and Horn, we define the notion of

faithfully projective modules [Definition 2] and faithfully injective modules

[Definition 3]. In the commutative case "faithfully projective" means, however,

simply "projective and faithfully flat" [Proposition 2.3]. In section 2, equivalent

conditions for a projective module P to be faithfully projective are given [Theo-

rem 2.2, Proposition 2. 3 and 2.4]. And a simpler proof is given to Y. Hino-

hara's result [6J asserting that projective modules over an indecomposable

weakly noetherian ring are faithfully flat [Proposition 2.5]. In section 3, we

consider faithfully injective modules. Equivalent conditions for an injective

module Q to be faithfully injective are given [Theorem 3.1 and Cor. 3.3] e.g.

Q is faithfully injective if and only if Q has a direct summand isomorphic to

ϋ?(Σθ#/m<*), where mβ ranges over all maximal ideals of R and E( ) denotes

the injective envelope. In section 4 we study the annihilator relations between

the ring R and an i?-injective module. Our faithfully injective modules are

characterized in fact by the annihilator relation for ideals [Theorem 4.1].

Finally we give a generalization of E. Matlis' result [9], that is: when R is a

noetherian local ring with the maximal ideal m and E(R/m) is not finitely gener-

ated, every proper submodule of E(R/n\) is finitely generated if and only if R

is analytically irreducible and Krull dim. R = 1 [Theorem 4. 8].
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30 TAKESHI ISHIKAWA

Throughout this paper we assume that every ring has a unit element and

every module is unitary. Further, modules and ideals mean left modules and

left ideals, unless the contrary is stated.

1. Faithfully exact functors

Let if? be a ring. We consider a covariant or contravariant additive functor

T(X) defined on the category of (left or right) ^-modules with values in some

category of modules. First, we set the following

Definition 1. A functor T is called a faithfully exact functor if the

sequence T(A) Iί£> T(B) T±& T(C) (or T(C) T_±J% T(B) 1^ T(A) in the con-

travariant case) is exact when and only when the sequence A ? y B g

y C is

exact.

Then, we have the following

THEOREM 1.1. Let T{X) be an exact functor. Then the following conditions

are equivalent:

(1) T(X) is a faithfully exact functor.

(2) T(A)*0 for every non zero R-module A.

(3) T(φ)*eO for every non zero R-homomorphism ψ.

(4) T(R/a) *0 for every proper ideal a of R.

(5) TiR/m) =¥0 for every maximal ideal m of R.

Proof1*. We consider only the covariant case, since the contravariant case

is quite similarly treated.

(1) =K2): If T(A) =0, then, the sequence Γ(0)-*TίA)-*T(0) is clearly

exact. Hence, by (1), the sequence 0-*A-*0 is exact. So A = 0.

(2) =K3) : Let φ: X-*Y be an i?-homomorphism. Then, since T is an

exact functor, we obtain the following commutative diagram with exact rows

and columns

0

T{X) T^D T(lm.φ) —> 0

\ ίT{i)

T{Ψ) \ T(γ) .

C.f. [3], Ch. 1, §3, Prop. 1.

https://doi.org/10.1017/S0027763000011326 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011326


FAITHFULLY EXACT FUNCTORS 31

where i is the inclusion map and ψ is considered as the composition X φ\

Im. ψ _%. y. Now let T(ψ) = 0. Then, TU)T(φ') = T(ψ) = 0 and so we have

T(y>')=0. This implies T(Im. f ) = 0 and we have Im. ̂  = 0 by the condition

(2). Thus ^ = 0.

(3) =>(1): Let Γ(A) Iί£ } Γ(S) ^ Γ(C) be exact. It is to be proved that

A JL^ B JL,. C is exact. Since T{gf) = T(g)T(f) = 0, we have #/ = 0 and Im. /

c Ker. g. Then we obtain the following commutative diagram with exact

rows and columns :

0

0 <— nim.f) V^f T(A)

0 —> T(Ker.^) ^ t } T(B) ̂  T(C)
T(p)[
T(Keτ.g/lm.f)

0

where i and j are inclusion maps and p is the natural epimorphism. Since

T(g)T(j)x = 0 for any χςΞT(Ker.g), T(j)x^Ker. (Tig)) = Im. (T(/». Thus

there exists an element > in T(Λ) such that T(f)y = T{j)x. Hence T{j)x =

T(f)y = T(j)T(i)T(f')y and so we have x^T(i)T(f')y. Therefore T(ι) is an

epimorphism, hence T(p) = 0 and by the assumption (3) we have p = 0 which

shows that Im. / = Ker. g.

(2) =K4) and (4) =5(5) are trivial.

(5) =*(2): Let T(A)=0. For each ^ e A , T(/to)=0 since T is exact.

Now, if l(a) = {r^R', ra-0}=*R, there exists a maximal ideal m containing

l(a) and we have an exact sequence R/l(a)-*R/m-*0. Therefore O-T(Ra)^

T(R/l{a))-*T(R/m)-+Q is exact and this implies T(R/m) =0 which contradicts

(5). Thus Ha) = R i.e. Λ = 0 and so A = 0.

Now, we apply this theorem to the functors Horn* and ® B . In the sub-

sequent sections we consider a fixed ring R with identity 1 and sometimes

speak of, dropping the symbol R, simply ''module", "projective", "Horn", " & "

e.t.c. instead of "i?-module", "2?-ρrojective", "Horn*", " ® R" e.t.c, unless no con-

fusion occurs.
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2. Faithfully protective modules

Let T(X) = Hom(P, X) and U{X) =X®M, where P and M are fixed left

i?-modules. Then T and U are covariant additive functors defined on the cate-

gory of left i?-modules and right i?-modules, respectively.

Definition 2. We say an i?-module P to be faithfully projective if T is a

faithfully exact functor. And an Z?-module M is called faithfully flat if U is

a faithfully exact functor.

Applying Theorem 1.1 to the above functor Z7, we have the following well

known theorem [3, Ch. 1, 3, Prop. 11

THEOREM 2.1. Let M be aflat left R-module. Then the following conditions

are equivalent:

(1) M is faithfully flat

(2) A®M^0 for every non zero right R-module A.

(3) <P®IM * 0 for every non zero right R-homomorphism ψ, where 1M denotes

the identity map on M.

(4) aM^M for every proper right ideal o of R.

(5) mM^M for every maximal right ideal m of R.

Next, applying Theorem 1.1 to the above functor T, we have the following

THEOREM 2.2. Let P be a projective module. Then the following conditions

are equivalent:

(1) P is faithfully projective.

(2) Hom{Py A)^0/or every non zero left R-module A.

(3) Homilp, ψ) 3FO for every non zero left R-homomorphism φ, where 1P denotes

the identity map on P.

(4) Hom(P, R/a) #0 for every proper left ideal α of R.

(5) Hom(P> R/xn) =*F0 for every maximal left ideal m of R.

Obviously a free module is faithfully projective and also faithfully flat.

Now, we have the following

PROPOSITION 2.3. If a module P is faithfully projective, then P is projective

and faithfully flat. Further, when the ring R is commutative or the module P

is finitely generated, the converse holds.

Proof. A module P, being faithfully projective, is projective and so flat.
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Now assume that A®RP=0 for a right P-module A. Then it is to be proved

A = 0 (Theorem 2.1 (2)). By [4, II. 5. 2] for any Z-module C we have Horn*

(P, Ή.omz(A, O) =Hom2(A(g)i2P, C) =0, where Z denotes the ring of integers.

Since P is faithfully projective, we have Hom2(A, C) = 0 for any Z-module C

by Theorem 2.2 (2), and hence A = 0.

In the finitely generated case, we can prove the converse by utilizing a

similar formula as above given in [4, VI. 5. 2].

Finally let R be commutative and P be projective and faithfully flat.

Then P/mP=^0 for any maximal ideal m of R by Theorem 2.1 (5). Therefore

Homj?(P/niP, i?/m) ^HomB/miP/mP, P/m)=vO and we have an exact sequence

0-*Hom(P/mP, P/m)-*Hom(P, Rim). This implies Hom(P, Rim) =*0 and P is

faithfully projective by Theorem 2.2 (5).

Next, we give a further characterization of faithfully projective modules.

PROPOSITION 2.4. Let P be a projective module. Then the following con-

ditions are equivalent:

(1) P is faithfully projective.

(2) There exists a positive integer n such that Pi® Θ Pn (where Pi = P)

has a direct summand isomorphic to the ring R.

(3) There exists an index set I of infinite cardinal such that Σ ® P/ (where Pi =
tε/

P ) is free.

Further, when R is semi-local, we can take n-1 in the case (2).

Proof. (1) => (2): Let P be a faithfully projective module. Then, by Theo-

rem 2.2 (5), for every maximal left ideal mα of R, there exists a homomorph-
n

ism /*: P-*R such that f*(P)<tmΛ. Therefore we have 1 = Σ/«<(ίι) for some
t = l

pi^P, since R= UΛ(P). Now we define a homomorphism / : P i θ ΘPM

n

-*R by /(./>!, . . . ,pn) —^Σifai(pi)y then / is obviously an epimorphism. Hence
ί = l

Pxθ ΘPn has a direct summand isomorphic to R.

When R is semi-local, we can easily find an element p of P such that

/, (ί)Φm, for each i. Therefore / = Σ / / : P-*P is an epmorphism.

(2) =*(3) : Take / to be an infinite index set of which power is equal to

that of generators of P. (Take / to be countable if P is finitely generated).

Then Σ ® P ί has, by (2), a free direct summand with a basis of same power

as /. Thus this is free by Eilenberg's lemma [c.f. 7].
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(3) =»(1): Let Σ θ Λ be free as in (3). Then Π Horn (ft,
ίey fez

( Σ ΘΛ , /?/m) #0. Hence Hom(P, /?/m) # 0 and thus P is faithfully projective
by Theorem 2.2 (5).

It is known that any finitely generated projective module over an indecom-

posable commutative ring is faithfully flat [5]. Recently Y. Hinohara [6]

proved that if R is an indecomposable commutative ring and the maximal

spectrum of R is a noetherian space, then any projective module is faithfully

flat. Now we give a somewhat simple (but essentially same) proof of these

facts and moreover we prove, dropping the noetherian assumption, that any

projective module over an indecomposable commutative ring is almost faithfully

flat in a sense. That is

PROPOSITION 2.5. Let R be an indecomposable commutative ring and P be

a non zero projective module over R. Then we have

(1) If P is finitely generated, P is faithfully projective. (O. Goldman)

(2)7/ the maximal spectrum of R is a noetherian space, P is faithfully pro-

jective. (Y. Hinohara)

(3) When R is not semi-local (the semi-local case is included in (2)), there

exist infinitely many maximal ideals mΛ such that

Proof. We use the following notations:

X: the maximal spectrum of R. (for definition c.f. [3])

F ( α ) = { m e Z ; αcm}, where α is an ideal of R.

= { m e I ; Hom(P,R/m) = 0 or equivalently P = mP}.

{ m e I ; Hom(P, R/m) *0 or equivalently P*mP} =X-S(P).

We use the following without proof:

LEMMA 2.6. (Y. Hinohara [6]) X is a noetherian space if and only if for

any ideal α there exists a finitely generated ideal b which is contained in a such

that F(α) = V(b).

We return to prove the proposition. Let P be not faithfully projective i.e.

S(P)*φ. If T(P)=φ, then P = m P for every m e X This implies- P = 0 by

[6, Lemma 1. 4] and [10, § 9, Lemma 2], since P is projective. Therefore we

may assume that also T(P) # ψ. For each πα &T(P), there exists a homomorphism

fa' P^R such that Λ(P)0:ttβ, since Hom(P, /?/nβ)*0. Therefore there exist
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elements p* of P such that / β ( ί β ) $ n β . Let α be the ideal generated by the

elements f*(p*Ys. Then αctrtα for any π β e T ( P ) . On the other hand if mα is

an element of S(P), then / ( P ) c m β for any homomorphism / : P-+R. Hence

we have αcm β for any I Ϊ I S G S ( P ) . Thus V(a)=S(P) and X-V(a) = T{P).

If m G S(P), Pm = 0 and hence, for any p G P there exists an element sof R— m

such that sp = 0. Now assume that P is moreover finitely generated or T( P)

is a finite set. Then we can find easily an element sa G R - mtf for each mα G

S(P) such that saa = 0. Let b be the ideal generated by these sa's. Then bα = 0

and b + a = R, since bctmα for any mα G S(P) and α<ΐnα for any nα G T(P). Thus

we have i?=bθα, which contradicts the indecomposability of R. Thus (1)

and (3) are proved. As to the case of (2), we can have a finitely generated

ideal α'cα such that V(a') = V(a) by Lemma 2.6. Therefore we can proceed

quite similarly to find an ideal b such that bθQ ; = P.

3. Faithfully injective modules

In place of T(X) = Hom(P, X) in section 2, let us now consider the con-

travariant functor V(X) =Hom(Z, Q), where Q is a fixed P-module. First, we

will set the following

Definition 3. An i?-module Q is called faithfully injective if V is a faithfully

exact functor.

Then, applying Theorem 1.1 to this functor, we have immediately the

following

THEOREM 3.1. Let Q be an injective module. Then the following conditions

are equivalent:

(1) Q is faithfully injective.

(2) Hom(A, ζ>)#0 for every non zero left R-module A.

(3) Homiψ, 1Q) ̂ 0 for every non zero left R-homomorphism φ, where 1Q denotes

the identity map on Q.

(4) HomiR/a, Q) =̂ 0 for every proper left ideal α of R.

(5) Hom(Rlm, Q)*0 for every maximal left ideal in of R.

From this, we can easily show the following Corollary 3.2 and 3.3.

COROLLARY 3.2.

(1) If Q is faithfully injective and Q1 is injective, then QφQf is faithfully in-
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jective.

(2) Let E = i?(Σθ#/nΊ α ), where m* ranges over all maximal left ideals of R
a

and E( ) denotes the injective envelopel). Then E is a faithfully injective

module.

This injective module E is called the canonical injective (left) module.

From now on, E always denotes this injective module. Note that if R is semi-

local or noetherian, then E=*Σ®E(R/m*) by [8, Prop. 2.1].
a.

COROLLARY 3.3. Let Q be an injective module and E be the canonical in-

jective module. Then the following conditions are equivalent:

(1) Q is faithfully injective.

(2) Q contains an isomorphic image of every simple R-module.

(3) Q has a direct summand isomorphic to E.

Remark. Azumaya [1] calls a module Q (not necessary injective) distin-

guished if it has the property (2) of Corollary 3.3. If R is a commutative

semi-local ring and n is its Jacobson radical, then obviously E = E(R/n).

Azumaya [1] calls E(R/n) the canonical R-module when R is a commutative

ring with minimum condition.

PROPOSITION 3.4. Let R be a commutative ring. Suppose that every non

zero injective R-module is faithfully injective. Then R is a primary ring {i.e.

R has only one proper prime ideal). Moreover the converse holds when R is

noetherian.

Proof. Let p be a prime ideal of R. Then E(R/p) is faithfully injective

and therefore we have Hom(i?/m, E(R/p)) =*FO for any maximal ideal m of R.

Let / be a non zero element of Hom(i?/m, E(R/p)). Then R/n\~f(R/m) is a

non zero submodule of E(R/p), so f(R/m) Π R/p^O since E(Rlp) is an essential

extension of Rip. Therefore, for a non zero element x of f(R/m) Π R/p, we

have m = 0{x) = p, where 0(x) denotes the oder ideal of x. Thus R has only

one proper prime ideal.

Conversely, if R is noetherian, every injective module is then a direct sum

of indecomposable injective modules [8, Th. 2.5.1 and every indecomposable

injective module is isomorphic to E(R/p) for some prime ideal p [8, Th. 3.1].

For the definition and fundamental properties of the injective envelope, see [8].
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Therefore, if R has only one proper prime ideal m, every injective module has

a direct summand isomorphic to E- E(R/m) and hence faithfully injective by

Corollary 3.3.

PROPOSITION 3.5. Let R be a cmmutative noetherian ring. Then an R*

module Q is faithfully injective if and only if Qm is faithfully injective as an

Rm-module for every maximal ideal m of R.

Proof. By [2, Cor. 1. 4], Q is injective if and only if Qm is i?nr injective

for every maximal ideal m. If m, m' are two distinct maximal ideals of R,

then we have ΉomniR/m, Q)rn'~ftomRnv{Rm>/wRχn', Qm>) = 0. Therefore, for a

fixed maximal ideal m we have : Hom(/?/m, Q) = 0 Φ=* Hom(i?/m, Q)ma = 0 for

every maximal ideal mα «=Φ Horn (i?/m, Q) m = 0 <=̂  HomBm(/?m/mi?m, Qxn) = 0.

Hence Horn (R/m, Q) # 0 for every maximal ideal m if and only if HomBm

(Rxti/mRm, Qm)^0 for every maximal ideal m. This concludes the proof.

Finally we will state a proposition without detailed proof.

PROPOSITION 3.6. Let R be a commutative ring and Q be a faithfully in-

jective module. Then, a module M is flat (resp. faithfully flat) if and only if

Hom(M, Q) is injective {resp. faithfully injective).

Proof. This is an immediate consequence of natural equivalences of [4, II

5.2. and VI 5.1] and Theorem 3.1.

4. Annihilator relations

Throughout this section we assume that R is a commutative ring and E is

the canonical injective module. Let Q be an injective module, iV be its sub-

module and α be an ideal of R. We will denote the annihilator of α in Q by

α* and the annihilator of 2V in R by N*. That is:

α* = Annρ(α) = {X<ΞQ; aχ = Q)

JV* = AnnB(iV) = {re/?; rN = 0}

Generally we have αcα** and N^N** for any ideal α of R and any sub-

module JV of Q. If a = a** (resp. N=N**) holds, we say that the annihilator

relation holds for α (resp. for N). If the annihilator relations hold for any

ideal of R and for any submodule of Q, we say that the annihilator relations

hold between R and Q. It is known that if R has the minimum condition for

ideals [1] or R is a complete noetherian (semi-) local ring [8], the
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relations hold between R and E.

Now we will show that the annihilator relation for ideals characterizes the

faithfully injectivity of an injective module.

THEOREM 4.1. Let Q be an injective module. Then the following conditions

are equivalent:

(1) Q is faithfully injective.

(2) α = α** for every ideal a of R.

(3) m = m** for every maximal ideal m of R.

Proof (1) =*(2): In general, we have easily αcα** and α* = α***. From

the exact sequence 0->α**/α-*i?/α->i?/α**-*0, we obtain the following exact

sequence:

0-*Hom(i?/α**, Q) -*Hom(2?/α, Q) ->Hom(α**/α, Q) ->0

By the well known isomorphism, we have Horn (R/ay Q) ^ α* = α***^ Horn

(/?/α**, 0) and hence Hom(α**/α, Q) = 0. Since Q is faithfully injective, we

obtain a**/a = 0 i.e. α = α**.

(2) =*(3): trivial.

(3)=^(1): If Hom(i?/m, ζ?)^m* = 0, then m = m** = 0* = R Thus Horn

(/?/m, ©) ̂ 0 for every maximal ideal m of R and this implies that Q is faithful-

ly injective.

PROPOSITION 4.2. Lei Q be an injective module. If the annihilator relations

hold between R and Q, then Q is isomorphic to E.

Proof1*. By Theorem 4.1, Q is faithfully injective. Then by Cor. 3.3, Q

has a direct summand Ef isomorphic to E. Thus we have Q = EfΘQ' for some

injective submodule Q1. It is to be proved Qf = 0. Let Qf *? 0 or more generally

let N be any non zero submodule of Q. By the assumption we have N= N**.

But there exists a maximal ideal m such that iV* c m and hence we get JV =

N** 3 m*. Therefore N^E'^0 and especially Qf Π E'* 0, which contradicts the

direct decomposition Q = E'φQf.

LEMMA 4.3. Let R be a noetherian local ring with the maximal ideal m.

Then, for every finitely generated submodule N of E, N* = 0 if and only if

N=E.

This proof is suggested by Y. Hinohara.
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Proof. It is easily seen that a faithfully injective module is faithful (in

the sense that rQ = 0 implies r = 0). Therefore E is faithful and so E* = 0.

Conversely let iV= Σ ##(#/ e £ ) and N* = 0. Then we have 0 = N* = Π (/?#,-)*.

Each (/?ΛΓ; )* is in-primary ideal by [8, Lemma 3.2]. Therefore 0 is an m-primary

ideal and hence R must satisfy the minimum condition for ideals. Thus the

annihilator relations hold between R and E and hence we have N = iV** = 0* = E.

LEMMA 4.4. Let Q be any module, N be its finitely generated submodule, m

be a maximal ideal of R and a be a finitely generated ideal of R. Then we have

(1) {AnnQ(a))m =AnnQm(am)

(2) (AnnR(N))m = AnnBm(Nm)

Proof. We prove only (2), because (1) is proved quite similarly. L e t # =

[r/s] be any element of A n n ^ W m ) and (nu . . . > m) be a system of gener-

ators for N. Then JVm is generated by (LnJXl, . . . , ίm/H) over Rm Now

since lrIs'M.m11} = 0 for each i, there exist elements Si, . . . , si of R such that

s, Φm and spm == 0 for / = 1, . . . , / . Let sf = Sis2 s/. Then 5'^m and s'rm = 0

for each t, i.e. s V e Annβ(Λ^). Thus x-Zr/s~] = [l/s'][sV/s] is in (Ann*(AD)tit,

which shows (Ann jR(Λr))m^) Ann/?m(iVm) The opposite inclusion is obvious.

THEOREM 4.5. Let R be a noetherian ring. Then the annihilator relations

hold between R and E only with respect to finitely generated submodules.

Proof. The annihilator relation for ideals follows from Theorem 4.1. Let

AT be a finitely generated submodule of E. Then we have the following exact

sequence 0->Nm-+ (iV**)m-> (Af**/A0m-»0 for any maximal ideal m of R. By

Lemma 4.4 we have (Af**)m = (iVm)**. Therefore if we can prove Nm = (A^m)**,

then we have (N**/N)m = 0 for any maximal ideal m and this will implies

N=N** by [10, §9, Lemma 2]. Thus, since £m = £ι?m(/?tn/ni/?tn)1) by [2, Cor.

1.3], we may assume that R is a local ring. Let AΓ= Rxi+ -f Rxn where

Xi<ΞE = E(R/m). If AT* = 0, then N=E by Lemma 4.3 and so N=E=E** =

N**. Now we consider A^*#0. Then Â  and A7** are both /?/Ar*-modules. R/N*

is also noetherian local and moreover we have Anns/N*(N) = 0 and A^** = Hom

{R/N*. E) =EBιA(R/N*)/(m/N*)) by [1, Theorem 17]. Therefore again by

Lemma 4.3 we obtain N=Es/AUt/N*)/(m/N*)) = N**.

1} £z?m( ) denotes the injective envelope considered as an i?πrmodule.
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COROLLARY 4.6. R has the minimum condition for ideals if and only if R

is noetherian and E is finitely generated.

Proof. If R is noetherian and E is finitely generated, then the annihilator

relations hold between R and E by Theorem 4.5, and so the ascending chain

condition of E implies the descending chain condition of R. The only if part

is Proposition 10 of Azumaya [1].

E. Matlis [9, Proposition 3] showed that when R is a complete noetherian

local domain, Krull dim R = 1 if and only if every proper submodule of E is

finitely generated. Using Theorem 4.5 and [9, Proposition 2] (that is: E has

no faithful submodule if R is annalytically irreducible and Krull dimi?=l),

this result can be generalized as follows: when R is a noetherian local ring,

every proper submodule of E is finitely generated if and only if R is annalytic-

ally irreducible and Krull dim R = 1. But more generally we will show the

following Theorem 4.8. To prove this theorem we need an easy

LEMMA 4.7. Let R be a semi-local ring. Then an R-module A is finitely

generated if and only if Am is finitely generated over i?m for every maximal

ideal m of R.

Proof. For each maximal ideal m, , we can take a system of generators

(tan/11, . . . , taint/11) for Am*. Let A1 be the submodule generated by these

Oifs. Then, for any a e A, we can find elements s; of R — mi such that s,α e A1.

Since the ideal generated by these s/s is equal to Ry we obtain that sa e A\

hence A- A! is finitely generated. The converse is obvious.

THEOREM 4.8. Let R be a noetherian ring such that E(R/m) is not finitely

generated for every maximal ideal m of R. Then the following conditions are

equivalent:

(1) Every proper submodule of E not containing any E(R/m) is finitely generated.

(2) R is a semi-local ring of Krull dimension 1. Rm is an integral domain and

the annihilator relations hold between Rm and Em = EBm{Rmh^Rχn) for every

maximal ideal m of R.

(3) R is a semi-local ring of Krull dimension 1. Rm is an integral domain and

E\w has no proper faithful Rm~submodule for every maximal ideal in of R.

(4) R is a semi-local ring of Krull dimension 1 and Rm is annalytically irre-

ducible for every maximal ideal m of i?.
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Proof. (1) =?(2): Since *Σΐ®R/ma, where mα runs over all maximal ideals
α

of R, is a submodule of i? satisfying the condition of (1), R must be a semi-

local ring: To see the rests of the assertion of (2) we may assume that R is

a local ring, since any proper /?m-submodule of Em is also 2?m-finitely generated.

The annihilator relations follow from Theorem 4.5. Let α be a non zero ideal

of R. Then α* is a proper submodule of E = E(R/m). Therefore α* is finitely
n

generated. Let α* = ΣitaK*/e£). Since (i?#/)* is m-primary by [8, Lemma
t = l

n

3.2], a = a**= Π(Rxi)* is also m-primary. Hence we have Krull dimi?=l, if
t = l

R is an integral domain. If R is not a domain, zero ideal is a finite intersection

of non zero ideals and is also m-primary. Therefore R must satisfy the mini-

mum condition and so by Corollary 4.6 E is finitely generated. This is a con-

tradiction.

(2) =3(3) : Obvious.

(3) ==>(!) : Let N be a proper submodule of E not containing any E(R/m).

If jVm = Em - E(R/m)m> then for each x<=E(R/m) there exists an element s of R

such that sΦm and sx&N. Since (Rx)* is m-primary, we have m'* = 0 for

some positive integer t. Also we have 1 = m + rs for some m e m ' and r e

/?, since i?s + mt = i?. Therefore x = mx + rs# = rsx e AT and hence we have

ND E(R/m), which is a contradiction. Thus iVm is a proper ΐ?m-submodule of

E(R/m)χn- Eβnι(Rm/mRrn)' If the assertion is true for local rings, then Nm is

i?m-finitely generated and hence N is /^-finitely generated by Lemma 4.7. Thus

we may assume that R is a local domain of Krull dimention 1 and E~E(R/m)

has no proper faithful submodule. Now let N be a proper submodule of E.

Then JV* is a non zero ideal and hence is m-primary. Therefore we have
n

jV*= Πqi, where q, 's are irreducible m-primary ideals. By [8, Lemma 3.2]
t = l

there exist xi^E such that q, = (/?#/)* for each i. Therefore iVcAΓ** =(Π q, )* = ( Σ Λ*ί)** = Σ Rxi by Theorem 4.5. Thus N is finitely generated.
i = 1 i = 1 t = 1

(1) =K4) We can assume that R is a local ring (c.f. the proof of (1) =*

(2)). Let /? be the completion of R. Then £ is also the canonical injective

R -module by [8, Theorem 3.6]. Now, any proper ^-submodule of E is in-

finitely generated and hence /?-finitely generated. Therefore by the same way

in the case of (1) ==M2), we obtain that R is an integral domain.

(4) =*(3) This case is contained in [9, Proposition 2].
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