Yoshio Kato Nagoya Math. J. Vol. 54 (1974), 7-20

ON A CLASS OF NON-ELLIPTIC BOUNDARY PROBLEMS

Dedicated to Professor Minoru Kurita on his 60th birthday

YOSHIO KATO

Introduction.

Let Ω be a bounded domain in \mathbb{R}^{l} $(l \geq 2)$ with C^{∞} boundary Γ of dimension l-1 and let there be given a second order elliptic differential equation

(1)
$$Au = -\sum_{i,j=1}^{l} \partial_i (a_{ij} \partial_j u) + \sum_{i=1}^{l} a_i \partial_i u + au = f \quad \text{in } \Omega,$$

where $\partial_j = \partial/\partial x_i$ and all coefficients are assumed, for the sake of simplicity, to be real-valued and C^{∞} on $\overline{\Omega} = \Omega^{\cup} \Gamma$. It is also assumed that $a_{ij} = a_{ji}$ on Ω and that there exists a positive constant c_0 such that

$$\sum\limits_{i,j=1}^l a_{ij}(x) \hat{\xi}_i \hat{\xi}_j \geq c_{\scriptscriptstyle 0} \, |\xi|^2$$

holds for all $x \in \overline{\Omega}$ and $\xi \in \mathbf{R}^{i}$.

Then we consider a boundary condition

(2)
$$Bu = \alpha \partial_{\nu} u + \gamma u + \beta u = \varphi \text{ on } \Gamma$$

where α , β are real-valued C^{∞} functions on Γ , γ is a C^{∞} real vector field tangent to Γ , and $\partial_{\nu} u$ denotes the conormal derivative of u, i.e.,

$$\partial_{\mathbf{v}} u = \sum\limits_{i,j=1}^l a_{ij} n_i \partial_j u$$
 ,

 $n = (n_1, \dots, n_l)$ being the exterior normal of Γ . Moreover, throughout this paper, we assume $\alpha \ge 0$ on Γ .

In case $\gamma = 0$ on Γ , the boundary problem (1)-(2) was discussed in [2,3] by using the Hilbert space technique and the elliptic regularization. This paper is a continuation of their studies and is especially nothing but a slight improvement of [2].

Received December 13, 1973.

Now we state the results obtained. The notations appearing will be made clear in $\S 1$.

THEOREM 1. If we assume that

(3)
$$\frac{1}{2}\gamma^*(1) + \beta > 0 \quad on \quad \Gamma_0 = \{x \in \Gamma; \alpha(x) = 0\},\$$

it then follows that for every $f \in H^{k-2}(\Omega; p)$ and every $\varphi \in H^{k-1}(\Gamma)$ (k integer ≥ 2), the boundary problem

(4)
$$\begin{cases} (A + \lambda)u = f & in \ \Omega\\ (B + t)u = \varphi & on \ \Gamma \end{cases}$$

has the unique solution u in $H^{k}(\Omega; p)$, provided $\lambda \geq \lambda_{0}$, a number which is a constant not depending on k, and $t \geq t_{k}$, a number which is a constant depending in general on k.

Moreover it follows that there exists a constant $C_k > 0$ independent of $t \ge t_k$ such that

(5)
$$||u;p||_k \leq C_k(||f;p||_{k-2} + ||\varphi||_{k-1,r}).$$

COROLLARY. Assume, in addition to (3), that

(6)
$$\gamma = 0$$
 in a neighbourhood of Γ_0 .

Then we can take as $t_k = 0$ for every k.

The following example shows us that condition (6) is necessary for Theorem 1 to be valid for $t_k = 0$.

EXAMPLE. Let Ω be a bounded domain in the (x, y)-plane whose boundary Γ is a C^{∞} curve and contains an open interval $\omega \ni (0, 0)$ in the *x*-axis. In (1) and (2) we take as $A = \Delta$, $\alpha = 0$ in ω , $\gamma = -x\partial/\partial x$ in ω , $\beta \ge 1$ integer and $\varphi = \alpha \partial v/\partial n + \gamma v + \beta v$, where v is a harmonic function whose boundary value is C^{∞} except the origin and is equal to $|x|^{\beta}$ in ω . Clearly we have $\varphi \in C^{\infty}(\Gamma)$.

Then u = v is a solution belonging to $C^{\beta-1}(\overline{\Omega})$ of the problem

$$\begin{cases} -\varDelta u = 0 & \text{in } arDelta \ lpha rac{\partial u}{\partial n} + \gamma u + eta u = arphi & ext{on } arGamma \ , \end{cases}$$

but does not belong to $C^{\beta}(\overline{\Omega})$. Here it is easily seen that (3) is satisfied

but not (6).

THEOREM 2. If Γ_0 is a C^{∞} manifold of dimension l - 2 and γ is transversal to Γ_0 , it then follows that for every $f \in H^{k-2}(\Omega; p)$ and every $\varphi \in H^{k-1}(\Gamma)$ (k integer ≥ 2) the problem (4) with t = 0 has the unique solution u in $H^k(\Omega; p)$, provided $\lambda \geq \lambda_1$ which is a constant not depending on k. Moreover the u satisfies (5).

In case $\beta = 0$, this is nothing but a class of the oblique derivative problems, which was already discussed in [1] by the slightly different manner (cf. § 7 of [1]).

The plan of the paper is as follows. $\S1$ is devoted to preliminaries of the proof of Theorem 1, which will be given in $\S2$. Corollary and Theorem 2 will be briefly proved in $\S\$3$ and 4, respectively, by the similar argument as in Theorem 1.

§1. Preliminaries.

Let γ be a C^{∞} real vector field tangent to Γ . The adjoint γ^* of γ is defined by the identity

$$\int_{\Gamma} \gamma u \cdot v d\sigma = \int_{\Gamma} u \cdot \gamma^* v d\sigma , \qquad u, v \in C^{\infty}(\Gamma) ,$$

where $d\sigma$ is the Lebesque measure on Γ .

Let $\{U_j\}, j = 1, \dots, N$, be a family of open subsets of \mathbb{R}^l , covering Γ , and assume that there exists a C^{∞} coordinate transformation $y = \kappa_j(x)$ on U_j such that $\Omega \cap U_j$ is mapped in a one-to-one way onto an open portion Σ_j of a half space $y_l < 0$ and $\Gamma_j = \Gamma \cap U_j$ is transformed onto an open portion τ_j of $y_l = 0$. Moreover assume that $dy = J_j dx$ and $d\sigma = K_j dy'$ $(y' = y_1, \dots, y_{l-1})$.

Let $\{\zeta_j(x)\}$ be a partition of unity of Γ belonging to $\{U_j\}$, i.e., $\zeta_j \in C_0^{\infty}(U_j), \zeta_j \geq 0$ and $\sum_{j=1}^N \zeta_j(x) = 1$ on Γ . Using the partition of unity $\{U_j, \zeta_j\}$, we can easily prove

LEMMA 1. There exists a C^{∞} function b(x) on Γ such that $\gamma^* = -\gamma + b(x)$.

Proof. We assume that by the transformation κ_j the vector field γ is altered to

YOSHIO KATO

$$\delta_j = \sum_{k=1}^{l-1} c_{jk} \partial_k \qquad (\partial_k = \partial/\partial y_k) \;.$$

Then we have

$$\begin{split} \int_{\Gamma} \gamma u \cdot v d\sigma &= \sum_{j=1}^{N} \int_{\Gamma_{j}} \gamma(\zeta_{j} u) \cdot v d\sigma \\ &= \sum_{j} \int_{y_{l}=0} \sum_{k} c_{jk} \partial_{k}(\zeta_{j} u) \cdot v K_{j} dy' = -\sum_{j} \int_{y_{l}=0} \sum_{k} \zeta_{j} u \cdot \partial_{k}(c_{jk} K_{j} v) dy' \\ &= -\sum_{j} \int_{y_{l}=0} \sum_{k} \zeta_{j} u \{ c_{jk} K_{j} \partial_{k} v + \partial_{k} (c_{jk} K_{j}) v \} dy' \\ &= -\sum_{j} \int_{y_{l}=0} \zeta_{j} u \cdot \sum_{k} (c_{jk} \partial_{k} v) K_{j} dy' \\ &- \sum_{j} \int_{y_{l}=0} \zeta_{j} u \cdot \sum_{k} \partial_{k} (c_{jk} K_{j}) K_{j}^{-1} v K_{j} dy' \\ &= -\sum_{j} \int_{\Gamma} \zeta_{j} u \cdot \gamma v d\sigma - \sum_{j} \int_{\Gamma} u \{ \zeta_{j} K_{j}^{-1} \sum_{k} \partial_{k} (c_{jk} K_{j}) \} v d\sigma \end{split}$$

which completes the proof.

The following lemma can be easily proved. So we omit the proof.

LEMMA 2. Under condition (3) we can find a function $q(x) \in C^{\infty}(\overline{\Omega})$ satisfying

(i) q > 0 in Ω and $q = \alpha$ on Γ .

(ii) There exist two positive constants C and d such that C dis $(x, \Gamma) \leq q(x)$ in $\Omega_d = \{x \in \overline{\Omega}; \text{dis}(x, \Gamma) < d\}.$

(iii) There exists a positive constant c_1 such that

$$rac{1}{2}\partial_{
u}q+rac{1}{2}\gamma^{*}(1)+eta\geq c_{1} \quad on \quad \Gamma \; .$$

LEMMA 3. For any $\delta > 0$ there exists a constant $C_{\delta} > 0$ such that

$$\|u\|_{0, \mathscr{Q}}^2 \leq \delta_{||} \|p\partial u\|_{0, \mathscr{Q}}^2 + C_{\delta} \|pu\|_{0, \mathscr{Q}}^2$$
 , $u \in C^{\infty}(\overline{\Omega})$,

where $p = \sqrt{q}$, $||u||_{0,a}^2 = \int_a |u|^2 dx$ and

$$\|p\partial u\|_{0,\varrho}^2=\sum\limits_{j=1}^l\int q\,|\partial_j u|^2\,dx$$
 .

Proof. This lemma is due to [2]. Let $\zeta_0(x) \in C_0^{\infty}(\Omega)$ such that $\zeta_0 = 1 - \sum_{j=1}^N \zeta_j$ in Ω and = 0 outside of $\overline{\Omega}$. Then $u = \sum_{j=1}^N \zeta_j u + \zeta_0 u$ in Ω . Hence we have

$$egin{aligned} \|u\|_{0,arrho}^2 &\leq \left(\sum\limits_{j=1}^N \|\zeta_j u\|_{0,arrho} \,+\, \|\zeta_0 u\|_{0,arrho}
ight)^2 \ &\leq ext{const.} \left(\sum\limits_{j=1}^N \!\!\!\!\int_{arsigma_j} |v_j|^2 \,dy \,+\, \|pu\|_{0,arrho}^2
ight)$$
 ,

where $v_j = \sqrt{J_j} \zeta_j u$ is in $C_0^{\infty}(\Sigma_j \cup \tau_j)$. It was indicated by Hayashida in [2] that for any $\varepsilon > 0$ the inequality

$$\int_{|\mathfrak{T}_j|} |v_j|^2 \, dy \leq \varepsilon \int_{|\mathfrak{T}_j|} |y_l| |\partial_l v_j|^2 \, dy + \frac{1}{\varepsilon} \int_{|\mathfrak{T}_j|} |y_l| |v_j|^2 \, dy$$

holds. Thus we can establish the proof with the aid of Lemma 2.

Now we introduce an integro-differential bilinear form:

$$Q[u,v] = B[u,qv] + \int_{\Gamma} (\gamma u + \beta u) \cdot v d\sigma$$

where

$$B[u,v] = \int_{g} \left(\sum_{i,j=1}^{l} a_{ij} \partial_{i} u \cdot \partial_{j} u + \sum_{i=1}^{l} a_{i} \partial_{i} u \cdot v + a u \cdot v \right) dx \; .$$

It is easily seen that $u \in C^2(\overline{\Omega})$ satisfies (1) and (2) if and only if it satisfies

(7)
$$Q[u, v] = (qf, v)_{\varrho} + (\varphi, v)_{\Gamma}, \quad v \in C^{\infty}(\overline{\varrho}),$$

where $(,)_{g}$ and $(,)_{r}$ denote the usual inner products in $L^{2}(\Omega)$ and $L^{2}(\Gamma)$, respectively. Hence we have only to deal with (7). This idea was used in [4].

Throughout the paper we always assume condition (3).

PROPOSITION 1. There exist two positive constants c_2 , λ_0 such that

$$Q_{\lambda}[u, u] \ge c_{2}(\|p\partial u\|_{0, \varrho}^{2} + \|pu\|_{0, \varrho}^{2} + \|u\|_{0, \Gamma}^{2})$$

holds for every $u \in C^{\infty}(\overline{\Omega})$ and $\lambda \geq \lambda_0$, where $||u||_{0,\Gamma}^2 = (u, u)_{\Gamma}$ and

$$Q_{\lambda}[u \cdot v] = Q[u, v] + \lambda(u, qv) .$$

Proof. For $u \in C^{\infty}(\overline{\Omega})$ we have

$$Q[u, u] = \int_{\mathcal{Q}} q\left(\sum_{i,j=1}^{l} a_{ij}\partial_{i}u \cdot \partial_{j} \cdot u + \sum_{i=1}^{l} a_{i}\partial_{i}u \cdot u + auu\right) dx$$
$$+ \frac{1}{2} \int_{\mathcal{Q}} \sum_{i,j=1}^{l} a_{ij}\partial_{j}q \cdot \partial_{i}(u^{2}) dx + \int_{\mathcal{V}} \left(\frac{1}{2}\gamma(u^{2}) + \beta u^{2}\right) dx$$

YOSHIO KATO

$$\geq rac{c_{\mathfrak{0}}}{2} \, \| p \partial u \|_{\mathfrak{0}, arrho}^2 - C \, \| p u \|_{\mathfrak{0}, arrho}^2 + rac{1}{2} \int A_{\mathfrak{0}} q \cdot u^2 dx
onumber \ + \int_r \Bigl(rac{1}{2} \partial_{
u} q + rac{1}{2} \gamma^*(1) + eta \Bigr) u^2 d\sigma$$
 ,

where C is a constant and $A_0 = -\sum_{i,j=1}^l \partial_i a_{ij} \partial_j$. Thus, using Lemmas 2 and 3, we can conclude the proposition.

For any ε , $0 < \varepsilon \leq 1$, putting $q_{\varepsilon}(x) = q(x) + \varepsilon$, we define an integrodifferential bilinear form as

$$Q^{\epsilon}[u, v] = B[u, q_{\epsilon}v] + \int_{\Gamma} (\gamma u + \beta u) v d\sigma$$

PROPOSITION 2. Let $\lambda \geq \lambda_0$ and $t \geq 0$. Then for every $f \in C^{\infty}(\overline{\Omega})$ and every $\varphi \in C^{\infty}(\Gamma)$, there exists the unique $u_{\epsilon} \in C^{\infty}(\overline{\Omega})$ which depends also on λ and t, satisfying

Moreover it follows that there exists a constant $c_3 > 0$ independent of ε , λ and t such that

$$(9) c_3(\|p_{\mathfrak{s}}\partial u_{\mathfrak{s}}\|_{0,\mathfrak{G}}^2 + \|p_{\mathfrak{s}}u_{\mathfrak{s}}\|_{0,\mathfrak{G}}^2 + (1+t)\|u_{\mathfrak{s}}\|_{0,\mathfrak{F}}^2) \le \|p_{\mathfrak{s}}f\|_{0,\mathfrak{G}}^2 + \|\varphi\|_{0,\mathfrak{F}}^2,$$

where $p_{\epsilon} = \sqrt{q_{\epsilon}}$ and

$$Q_{\lambda,t}^{\iota}[u,v] = Q^{\iota}[u,v] + \lambda(u,q,v) + t(u,v)_{\Gamma} .$$

Proof. By the same argument as in Proposition 1, we can immediately obtain

(10)
$$Q_{\lambda,\iota}^{\epsilon}[u,u] \ge c_{2}^{\prime}(\|p_{\epsilon}\partial u\|_{0,\varrho}^{2} + \|p_{\epsilon}u\|_{0,\varrho}^{2} + (1+t)\|u\|_{0,\Gamma}^{2})$$
$$(=c_{2}^{\prime}(\|u\|_{\epsilon,\iota}^{2}), \qquad u \in C^{\infty}(\overline{\Omega}),$$

with $c'_2 = \min(c_2, 1)$. Clearly we have

$$egin{cases} \{Q^*_{1,t}[u,u] \geq arepsilon c_2' \|u\|^2_{1,arepsilon} \ \|Q^*_{1,t}[u,v]| \leq ext{const.} \|u\|_{1,arphi} \|v\|_{1,arphi} \ , \end{cases}$$

where

$$\|u\|_{1,\varrho}^2 = \sum_{j=1}^l \int_{\varrho} |\partial_j u|^2 \, dx + \|u\|_{0,\varrho}^2 \, .$$

Accordingly we can apply the theorem of Riesz-Milgram-Lax which guarantees the existence of the unique solution u_{ϵ} of (8) in $H^{1}(\Omega)$. It is

(11)
$$\begin{cases} (A + \lambda)u_{\varepsilon} = f & \text{in } \Omega\\ (\alpha + \varepsilon)\partial_{\nu}u_{\varepsilon} + \gamma u_{\varepsilon} + (\beta + t)u_{\varepsilon} = \varphi & \text{on } \Gamma \end{cases}$$

Substituting $v = u_{\epsilon}$ in (8) and using (10), we obtain

$$\begin{split} c'_{2} |||u_{\epsilon}|||_{\epsilon,t}^{2} &\leq Q_{\lambda,t}^{\epsilon}[u_{\epsilon}, u_{\epsilon}] = (q_{\epsilon}f, u_{\epsilon})_{\mathcal{G}} + (\varphi, u_{\epsilon})_{\Gamma} \\ &\leq ||p_{\epsilon}f||_{0,\mathcal{G}} \, ||p_{\epsilon}u_{\epsilon}||_{0,\mathcal{G}} + ||\varphi||_{0,\Gamma} \, ||u_{\epsilon}||_{0,\Gamma} \\ &\leq (||p_{\epsilon}f||_{0,\mathcal{G}} + ||\varphi||_{0,\Gamma}) |||u_{\epsilon}||_{\epsilon,t} \,, \end{split}$$

which proves (9).

Finally we shall define the Hilbert space $H^{k}(\Omega; p)$ for integer $k \geq 0$. By $H^{s}(\Omega)$, s real, we denote the Sobolev space with norm $\|\cdot\|_{s,\Omega}$. Then $H^{k}(\Omega; p)$ is a Hilbert space given by the completion of $C^{\infty}(\overline{\Omega})$ with respect to the norm $\|\cdot, p\|_{k}$ defined by

(12)
$$\|u;p\|_{k}^{2} = \|p\partial^{k}u\|_{0,\varrho}^{2} + \|u\|_{k-1/2,\varrho}^{2}.$$

2. Proof of Theorem 1.

Setting $U_0 = \Omega - \bigcup_{k=1}^{N} U_j$, we obtain the partition of unity $\{U_j, \zeta_j\}$, $j = 0, 1, \dots, N$, of $\overline{\Omega}$. In the following we denote by $U, \zeta, \kappa, \Sigma, \tau, J$ and K one of $U_j, \zeta_j, \kappa_j, \Sigma_j, \tau_j, J_j$ and K_j $(j = 1, \dots, N)$, respectively, and assume that by the transformation κ the form $Q_{j,\iota}^{\epsilon}[u \cdot v]$ is altered to, λ fixed,

$$\begin{split} P_i^{\iota}[u,v] &= \int_{\Sigma} \Bigl(\sum_{i,j=1}^{l} b_{ij} \partial_i u \cdot \partial_j (q_{\iota}v) + \sum_{i=1}^{l} b_i \partial_i u \cdot q_{\iota}v + b u q_{\iota}v \Bigr) dy \\ &+ \int_{\tau} \partial u \cdot v K dy' + \int_{\tau} \beta u v K dy' + t \int_{\tau} u v K dy' \\ &= \mathrm{I}[u,v] + \mathrm{II}[u,v] + \mathrm{III}[u,v] + \mathrm{IV}[u,v] \;, \end{split}$$

with $b_{ij} = b_{ji}$. It then follows from (10) that there exists a constant $c_2'' > 0$ independent of ε , λ and t such that

(13) $c_2''(\|p_*\partial u\|_{0,\Sigma}^2 + \|p_*u\|_{0,\Sigma}^2 + (1+t)\|u\|_{0,\Gamma}^2) \le P_t^*[u,u], \quad u \in C_0^{\infty}(U).$

For any multi-integers $\rho = (\rho_1, \dots, \rho_{l-1})$ such that $|\rho| = \rho_1 + \dots + \rho_{l-1}$ = $r \ge 1$, we set

$$Tu = \partial^{\rho}(\zeta u) = \partial_1^{\rho_1} \cdots \partial_{l-1}^{\rho_{l-1}}(\zeta u)$$

with $\partial_j = \partial/\partial y_j$. In the following propositions all constants are inde-

pendent of ε and $t \geq 0$.

PROPOSITION 3. There exist positive constants C_{II}, C_{II} and C_{III} depending only on the forms I, II and III, respectively, such that

$$\begin{split} P_t^{\epsilon}[Tu, Tu] &- P_t^{\epsilon}[u, K^{-1}T^*KTu] \leq C_{\mathrm{I}}(\|u\|_{r, \mathcal{S}} \|\partial (q_{\epsilon}Tu)\|_{0, \mathcal{S}} + \|u\|_{r, \mathcal{S}}^2) \\ &+ C_{\mathrm{II}} \|u\|_{r, \mathfrak{r}}^2 + C_{\mathrm{III}} \|u\|_{r-1, \mathfrak{r}} \|Tu\|_{0, \mathfrak{r}}, \qquad u \in C^{\infty}(\boldsymbol{R}_y^n) \;, \end{split}$$

where $K(y', y_l) = K(y')$.

Proof. (I) Setting $R = b_{ij}\partial_i$ and $S = \partial_j$, and writting simply $(,)_{\Sigma} = (,)$ and [A, B] = AB - BA, we can compute as follows:

$$\begin{split} (RTu, Sq_{*}Tu) &= (Ru, T^{*}Sq_{*}Tu) + ([R, T]u, Sq_{*}Tu) \\ &= (Ru, T^{*}Sq_{*}K^{-1}KTu) + ([R, T]u, Sq_{*}Tu) \\ &= (Ru, Sq_{*}K^{-1}T^{*}KTu) + (Ru, [T^{*}, Sq_{*}K^{-1}]KTu) \\ &+ ([R, T]u, Sq_{*}Tu) \\ &= (Ru, Sq_{*}K^{-1}T^{*}KTu) + (Ru, [T^{*}, S]q_{*}Tu) \\ &+ ([R, T]u, Sq_{*}Tu) + (Ru, S[T^{*}, q_{*}K^{-1}]KTu) \;. \end{split}$$

Thus

(14)
$$I[Tu, Tu] - I[u, K^{-1}T^*KTu] \leq C(||u||_{r,\Sigma} ||\partial(q_{\epsilon}Tu)||_{0,\Sigma} + ||u||_{r,\Sigma}^2) + \int_{\Sigma} \sum_{i,j=1}^{l} b_{ij}\partial_i u \cdot \partial_j v dy ,$$

where we put
$$v = [T^*, q_*K^{-1}]KTu$$
. Now
 $(Ru, Sv) + (Rv, Su) = (Ru, [T^*, q_*K^{-1}]KTSu) + (Ru, [S, [T^*, q_*K^{-1}]KT]u)$
 $+ ([T^*, q_*K^{-1}]KTRu, Su) + ([R, [T^*, q_*K^{-1}]KT]u, Su)$
 $= (Ru, \{[T^*, q_*K^{-1}]KT + T^*K[q_*K^{-1}, T]\}Su) + O(||u||_{r,\Sigma}^2),$

which implies

$$|(Ru, Sv) + (Rv, Su)| \le C ||u||_{r, \Sigma}^2$$
.

This together with (14) and the fact $b_{ij} = b_{ji}$ implies

$$I[Tu, Tu] - I[u, K^{-1}T^*KTu] \le C_I(||u||_{r,\Sigma} ||\partial(qTu)||_{0,\Sigma} + ||u||_{r,\Sigma}^2).$$

(II) Next

$$II[Tu, Tu] = (T\delta u, KTu)_{\tau} + ([\delta, T]u, KTu)_{\tau}$$
$$= (\delta u, KK^{-1}T^*KTu)_{\tau} + ([\delta, T]u, KTu)_{\tau}.$$

Therefore we have

(15)
$$II[Tu, Tu] - II[u, K^{-1}T^*KTu] = ([\delta, T]u, KTu)_{\tau} \le C_{II} \|u\|_{\tau, \tau}^2$$

(III) By the same way as (II) we have

$$[\operatorname{III}[Tu, Tu] - \operatorname{III}[u, K^{-1}T^*KTu] \le C_{\operatorname{III}} \|u\|_{r-1, \tau} \|Tu\|_{0, \tau}.$$

(IV) Finally

$$IV[Tu, Tu] - IV[u, K^{-1}T^*KTu] = 0.$$

Thus (I), (II), (III) and (IV) conclude the proposition.

Now, by using (8), we shall estimate the term $P_i[u, K^{-1}T^*KTu]$ with $u = u_i$ which was introduced in Proposition 2. That is,

PROPOSITION 4. We have, with a suitable constant C > 0,

$$|P_{i}^{\epsilon}[u_{\epsilon}, K^{-1}T^{*}KTu_{\epsilon}]| \leq C(||p_{\epsilon}\partial^{r-1}f||_{0,\Sigma} ||p_{\epsilon}\partial(KTu_{\epsilon})||_{0,\Sigma} + ||f||_{r-2+1/2,\Sigma} ||Tu_{\epsilon}||_{1/2,\Sigma} + ||\varphi||_{r,\Sigma} ||Tu_{\epsilon}||_{0,\tau}) .$$

Proof. For the sake of simplicity, we write
$$u_{\epsilon} = u$$
. Then

$$\begin{aligned} P_{i}^{\epsilon}[u, K^{-1}T^{*}KTu] &= (Jq_{\epsilon}f, K^{-1}T^{*}KTu)_{\Sigma} + (\varphi, KK^{-1}T^{*}KTu)_{\tau} \\ &= (\zeta K^{-1}Jq_{\epsilon}f, \partial^{\rho}KTu)_{\Sigma} + (\varphi, T^{*}KTu)_{\tau} \\ &= (\zeta K^{-1}Jq_{\epsilon}(-\partial)^{\rho'}f, \partial KTu)_{\Sigma} + ([(-\partial)^{\rho'}, \zeta K^{-1}Jq_{\epsilon}]f, \partial (KTu))_{\Sigma} \\ &+ (\varphi, T^{*}KTu)_{\tau} \qquad (\partial^{\rho} = \partial^{\rho'}\partial) \\ &= (\zeta K^{-1}Jp_{\epsilon}(-\partial)^{\rho'}f, p_{\epsilon}\partial (KTu))_{\Sigma} \\ &- (\partial [(-\partial)^{\rho'}, \zeta K^{-1}Jq_{\epsilon}]f, KTu)_{\Sigma} + (\varphi, T^{*}KTu)_{\tau} ,\end{aligned}$$

from which we easily obtain the proposition.

PROPOSITION 5. There exists a constant $C_0 > 0$ such that

$$\begin{split} \|p_{\epsilon}\partial^{r+1}u_{\epsilon}\|_{0,\varrho}^{2} &+ (1+t)\|u_{\epsilon}\|_{r,\Gamma}^{2} \\ &\leq C_{0}(\|u_{\epsilon}\|_{r,\varrho}^{2} + \sum_{s=0}^{r-1}\|p_{\epsilon}\partial^{s}f\|_{0,\varrho}^{2} + \|f\|_{r-2+1/2,\varrho}\|u_{\epsilon}\|_{r+1/2,\varrho}^{2} + \|\varphi\|_{r,\Gamma}^{2} \\ &+ C_{\Pi}\|u_{\epsilon}\|_{r,\Gamma}^{2}) \;. \end{split}$$

Proof. Using (13) and Proposition 3 with $u = u_{\epsilon}$, we can obtain, with the aid of Proposition 4.

$$\begin{split} \|p_{\epsilon}\partial Tu_{\epsilon}\|_{0,\Sigma}^{2} + \|p_{\epsilon}Tu_{\epsilon}\|_{0,\Sigma}^{2} + (1+t)\|Tu_{\epsilon}\|_{0,\tau}^{2} \\ &\leq C_{1}(\|u_{\epsilon}\|_{r,\varrho}^{2} + \sum_{s=0}^{r-1}\|p_{\epsilon}\partial^{s}f\|_{0,\varrho}^{2} + \|f\|_{r-2+1/2,\varrho}\|u_{\epsilon}\|_{r+1/2,\varrho} + \|\varphi\|_{r,\Gamma}^{2} \\ &+ C_{\Pi}(\|u_{\epsilon}\|_{r,\Gamma}^{2}) \qquad (=C_{1}F) \;. \end{split}$$

Noting that this remains valid for any $\rho = (\rho_1, \dots, \rho_{l-1})$ with $|\rho| \le r$, we have, with a suitable constant C_2 ,

$$\sum_{|\rho|\leq r} (\|p_{*}\partial^{\rho}\partial(\zeta u_{*})\|_{0,\varSigma}^{2} + \|p_{*}\zeta u_{*}\|_{0,\varSigma}^{2} + (1+t)\|\partial^{\rho}(\zeta u_{*})\|_{0,\fbox}^{2}) \leq C_{2}F$$

With the aid of (11), we can assert that $\partial_i^2(\zeta u_{\epsilon})$ can be written by a linear combination of $\partial_j\partial_l(\zeta u_{\epsilon})$, $\partial_j\partial_k(\zeta u_{\epsilon})$ $(j, k = 1, \dots, l-1)$, $\partial_j(\zeta u_{\epsilon})$ $(j = 1, \dots, l)$, ζu_{ϵ} , ζf and $[A, \zeta]u_{\epsilon}$. Hence we have

$$\sum_{||
ho|\leq r-1} \|p_{
ho}\partial^{
ho}\partial^{2}(\zeta u_{
ho})\|_{0,\Sigma}^{2} + (1+t)\sum_{||
ho|\leq r} \|\partial^{
ho}(\zeta u_{
ho})\|_{0, au}^{2} \leq C_{3}F$$

Repeating this process if r > 1, we finally obtain

$$\|p_{\epsilon}\partial^{r+1}(\zeta u_{\epsilon})\|^{2}_{0,\Sigma} + (1+t)\sum_{|\rho|\leq r} \|\partial^{\rho}(\zeta u_{\epsilon})\|^{2}_{0,\tau} \leq C_{4}F$$
.

Clearly this remains also valid for $\zeta = \zeta_0$. Therefore applying this for $\zeta = \zeta_j$ $(j = 0, \dots, N)$ and using $\sum_{j=0}^N \zeta_j = 1$ on $\overline{\Omega}$, we obtain

$$\|p_{\epsilon}\partial^{r+1}u_{\epsilon}\|_{0,\varrho}^{2} + (1+t)\|u_{\epsilon}\|_{r,\Gamma}^{2} \leq C_{5}F$$

This completes the proof.

PROPOSITION 6. For every integer $k \ge 2$, we can find two constant $C_k > 0$ and $t_k \ge 0$ such that

 $\|p_{\epsilon}\partial^{k}u_{\epsilon}\|_{0,\varrho}^{2} + \|u_{\epsilon}\|_{k-1/2,\varrho}^{2} \leq C_{k}(\|p_{\epsilon}\partial^{k-2}f\|_{0,\varrho}^{2} + \|f\|_{k-2-1/2,\varrho}^{2} + \|\varphi\|_{k-1,\Gamma}^{2})$ is valid for all ϵ and $t \geq t_{k}$.

Proof. Using the preceding proposition in the case k = r + 1 and $t \ge C_0 C_{II}$ $(=t_k)$, we have

(16)
$$\| p_{\epsilon} \partial^{k} u_{\epsilon} \|_{0, \varrho}^{2} + \| u_{\epsilon} \|_{k-1, \Gamma}^{2} \\ \leq C(\| u_{\epsilon} \|_{k-1, \varrho}^{2} + \sum_{s=0}^{k-2} \| p_{\epsilon} \partial^{s} f \|_{0, \varrho}^{2} + \| f \|_{k-2-1/2, \varrho} \| u_{\epsilon} \|_{k-1/2, \varrho} + \| \varphi \|_{k-1\Gamma}^{2}) .$$

From (11) and the coercive inequality for Dirichlet problem it follows

(17)
$$C' \| u_{\varepsilon} \|_{k-1/2, \varrho}^2 - \| f \|_{k-2-1/2, \varrho}^2 \leq \| u_{\varepsilon} \|_{k-1, \Gamma}^2.$$

The interpolation inequality says that for any $\delta > 0$ there exists a constant $C_{\delta} > 0$ such that

(18)
$$||u||_{k-1,\varrho}^2 \leq \delta ||u||_{k-1/2,\varrho}^2 + C_{\delta} ||u||_{\varrho,\varrho}^2$$
, $u \in C^{\infty}(\overline{\Omega})$.

Thus, the inequalities (16), (17) and (18) together with (9) immedi-

ately imply the proposition.

In the below, Theorem 1 will be proved. We begin with the proof in case $f \in C^{\infty}(\overline{\Omega})$ and $\varphi \in C^{\infty}(\Gamma)$. So that we can use Propositions 1-6. Proposition 6 becomes, by using the notation (12),

$$||u_{\epsilon}; p||_{k} \leq C_{k}(||f; p_{\epsilon}||_{k-2} + ||\varphi||_{k-1,\Gamma})$$

The theorem of Banach-Sacks guarantees that there exists a sequence $\epsilon_1 > \epsilon_2 > \cdots$ converging to zero such that, as $n \to \infty$,

$$v_n = \frac{u_{\iota_1} + \cdots + u_{\iota_n}}{n} \to u \quad \text{in } H^k(\Omega; p)$$

From (8) we have, setting $B_{\lambda}[u, v] = B[u, v] + \lambda(u, v)$,

$$\begin{aligned} Q_{\lambda,t}[v_n,v] + B_{\lambda} \bigg[\frac{\varepsilon_1 u_{\epsilon_1} + \cdots + \varepsilon_n u_{\epsilon_n}}{n}, v \bigg] \\ &= (qf,v)_g + (\varphi,v)_{\Gamma} + \frac{\varepsilon_1 + \cdots + \varepsilon_n}{n} (f,v)_g \end{aligned}$$

Noting that $v_n \to u$ and $\varepsilon_n u_{\epsilon_n} \to 0$ in $H^{k-\frac{1}{2}}(\Omega)$ as $n \to \infty$, we can derive

(19)
$$Q_{\lambda,t}[u,v] = (qf,v)_{g} + (\varphi,v)_{\Gamma}, \qquad v \in C^{\infty}(\overline{\Omega}),$$

and hence the u satisfies (4). Moreover

$$egin{aligned} \|v_n;p\|_k &\leq rac{1}{n}(\|u_{\epsilon_1};p\|_k+\cdots+\|u_{\epsilon_n};p\|_k) \ &\leq C_k \Bigl(\|f;p\|_{k-2}+\|arphi\|_{k-1,arphi}+rac{\sqrt{arepsilon_1}+\cdots+\sqrt{arepsilon_n}}{n}\|\partial^{k-2}f\|_{0,arphi}\Bigr)\,. \end{aligned}$$

Accordingly, we obtain (5) as $n \to \infty$. It is easily seen that the uniqueness of solution of (4) follows from (19) and Proposition 1.

Suppose now that f and φ are in $H^{k-2}(\Omega; p)$ and $H^{k-1}(\Gamma)$, respectively. Let $f_j \in C^{\infty}(\overline{\Omega})$ and $\varphi_j \in C^{\infty}(\Gamma)$ $(j = 1, 2, \cdots)$ such that $f_j \to f$ in $H^{k-2}(\varphi; p)$ and $\varphi_j \to \varphi$ in $H^{k-1}(\Gamma)$ as $j \to \infty$. For each j, we can find $u_j \in H^k(\Omega; p)$ whose existence has just been proved, satisfying (4) and (5) with $f = f_j$ and $\varphi = \varphi_j$. We can immediately see that u_j converges to u in $H^k(\Omega; p)$ an $j \to \infty$. Thus we finally obtain that u is the unique solution of (4) and satisfies (5).

§3. Proof of Corollary.

Assume that there exists an open neighbourhood U_0 of Γ_0 in \mathbf{R}^l such

that $\gamma = 0$ in $V_0 = \Gamma \cap U_0$, and that $(\Gamma - V_0) \cap U_j$ is transformed by κ_j to $\tau'_j \subset \tau_j$. Then we have instead of (15)

(15')
$$|([\delta, T]u, KTu)_{\tau}| \leq C_{II} ||u||_{r,\tau'}^2$$

Hence we can change, in Proposition 5, the term $||u_{\epsilon}||_{r,\Gamma}$ into $||u_{\epsilon}||_{r,\Gamma-V_0}$. By the well known inequalities:

$$\begin{aligned} \|u\|_{r,F-V_0} &\leq \text{const.} \, \|u\|_{r+1/2,g-U_0} \\ &\leq \delta \|u\|_{r+1,g-U_0} + C_{\delta} \|u\|_{r,g} \\ &\leq C(\delta \|p_s \partial^{r+1} u\|_{0,g} + C_{\delta} \|u\|_{r,g}) , \end{aligned}$$

we obtain Proposition 5 with $C_{II} = 0$. In this case we have $t_k = 0$ in Proposition 6. Thus we can assert Corollary.

§4. Proof of Theorem 2.

We assume that $\Gamma_0 = \{x \in \Gamma; \alpha(x) = 0\}$ is a C^{∞} manifold of dimension l-2 and γ is transversal to Γ_0 . Let $U_j, \kappa_j, \Sigma_j, \tau_j, J_j, K_j$ and ζ_j be the same in §1. Here we further assume that for every j such that $U_j \cap \Gamma_0 \neq \emptyset$, the set $U_j \cap \Gamma_0$ is transformed onto an open portion τ_j^0 of $y_l = 0$, $y_1 = 0$ and γ is altered to $\delta_j = \partial_1$ by κ_j , and $\gamma(\zeta_j(x)) = 0$ in a neighbourhood V_0 of Γ_0 .

LEMMA 4. There exists a positive C^{∞} function h on Γ such that

$$rac{1}{2}\gamma^*(h)+eta h\geq 0 \qquad on \ \ \Gamma_{\mathfrak{o}} \ .$$

Proof. By Lemma 1, we have only to find h such that $-\gamma h + (b + 2\beta)h > 0$ on Γ_0 . For every j such that $U_j \cap \Gamma_0 \neq \emptyset$, let h_j be satisfying $-\partial_1 h_j + (b + 2\beta)h_j = 1$. Then $h = \Sigma \zeta_j h_j$ is a desired one, since $\gamma \zeta_j = 0$ on Γ_0 .

Using this lemma, we can easily prove

LEMMA 2'. We can find a function $q(x) \in C^{\infty}(\overline{\Omega})$ satisfying

- (i) q > 0 in Ω and $q = h\alpha$ on Γ .
- (ii) (ii) of Lemma 2.
- (iii) There exists a positive constant c_1 such that

$$rac{1}{2}\partial_{
u}q+rac{1}{2}\gamma^{*}(h)+eta h\geq c_{1} \qquad on \ \ \Gamma \ .$$

If we define as

$$Q[u,v] = B[u,qv] + \int_{\Gamma} (h\gamma u + heta u) v d\sigma$$
,

then Propositions 1 and 2 with t = 0 remain valid. We shall now show that Proposition 3 also holds if $P_t^{\epsilon}[u, K^{-1}T^*KTu]$ and $C_{II} ||u||_{r,\tau}^2$ are replaced with $P_t^{\epsilon}[u, (hK)^{-1}T^*hKTu]$ and $C_{II} ||u||_{r,\tau'}^2$, where τ' denotes the same notation as in § 3. In (I) of the proof of Proposition 3 we have only to replace K with hK. In this case, the forms II and III become

$$II[u,v] = \int_{\tau} \partial_1 u \cdot h K v d\sigma$$

and

$$\operatorname{III}[u,v] = \int_{\tau} eta u \cdot h K v d\sigma \; .$$

Therefore we have

$$\begin{split} \operatorname{II}[Tu, Tu] &= (\partial_1 Tu, hKTu)_{\mathfrak{r}} \\ &= (T\partial_1 u, hKTu)_{\mathfrak{r}} + ([\partial_1, T]u, hKTu)_{\mathfrak{r}} \\ &= (\partial_1 u, hK(hK)^{-1}T^*hKTu)_{\mathfrak{r}} + ([\partial_1, T]u, hKTu)_{\mathfrak{r}} \\ &= \operatorname{II}[u, (hK)^{-1}T^*hKTu] + ([\partial_1, T]u, hKTu)_{\mathfrak{r}} \,. \end{split}$$

Hence

$$\operatorname{II}[Tu, Tu] - \operatorname{II}[u, (hK)^{-1}T^*hKTu] \leq C_{\operatorname{II}} ||u||_{r, \tau'}^2$$

since $\partial_1 \zeta = 0$ in V_0 . It is obvious that

$$III[Tu, Tu] - III[u, (hK)^{-1}T^*hKTu] \le C_{III} \|u\|_{r-1,\tau} \|Tu\|_{0,\tau}.$$

Thus, Proposition 3 can be concluded in our case.

By the same argument as in §3, we obtain Proposition 5 with $C_{II} = 0$. Finally we can complete the proof of Theorem 2 by the same argument as in the proof of Theorem 1.

REFERENCES

- Ju. V. Egorov, V. A. Kondrat'ev, The oblique derivative problem, Mat. Sbornik 78 (1969), 148-176.=Math. USSR Sbornik 7 (1969), 139-169.
- [2] K. Hayashida, On the singular boundary value problem for elliptic equations, Trans. Amer. Math. Soc., 184 (1973), 205-221.
- [3] Y. Kato, Mixed-type boundary conditions for second order elliptic differential equations, to appear in J. Math. Soc. Japan 26 (1974).

YOSHIO KATO

[4] V. G. Mazja, The degenerate problem with oblique derivative, Uspehi Mat. Nauk 25 (1970), 275-276.

Mathematical Institute Nagoya University