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SPHERICAL FUNCTIONS

ON ORTHOGONAL GROUPS

YASUHIRO KAJIMA

Introduction

Let G be a p-adic connected reductive algebraic group and K a maximal com-

pact subgroup of G. In [4], Casselman obtained the explicit formula of zonal spher-

ical functions on G with respect to K on the assumption that K is special. It is

known (Bruhat and Tits [3]) that the affine root system of algebraic group which

has good but not special maximal compact subgroup is Av C2, or Bn (n > 3), and

all βw-types can be realized by orthogonal groups. Here the assumption "good" is

necessary for the Satake's theory of spherical functions.

Thus in this paper we write down explicitly the zonal spherical functions on

all p-adic (we assume that p does not lie over 2 for the convenience of calculation)

orthogonal groups but the case of even dimensional split orthogonal groups (this

case is contained in the work of Casselman) and determine the image of Satake

transform. To do so, we use Macdonald's idea by which he has obtained explicit

formula for the p-adic Chevalley group.

Now we recall briefly some basic notion of Satake transform. Let L(G) be the

set of all compactly supported continuous functions on G with values in C. We

put

L(G, K) = {/ e L(G) | f(ugu') = fig) for all u, ur e K, g e G>.

For/i, f2

 e L(G, K), we define their product by the convolution

(/l*/2)(*) =

where g ^ G, and dgx is the bi-invariant Haar measure on G normalized by the

condition that the volume of K is equal to 1. The multiplication gives the structure

Received March 12, 1993.
Revised February 24, 1995.

157

https://doi.org/10.1017/S0027763000005572 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005572


1 5 8 YASUHIRO KAJIMA

of C-algebra to L(G, K). The algebra L(G, K) is called local Hecke algebra of G

with respect to K. A complex-valued function ω is called a zonal spherical func-

tion if ω is continuous, not identically zero, satisfies the condition that

ω(g^)ω(g2) = I ω(g1kg2)dk,

for all glt g2 ^ G. Now the Satake transform of / ^ L(G, K) with respect to a

zonal spherical function ω is given by

It is known that the transform above is an isomorphism from L(G, K) onto a

polynomial ring. Since each element of L(G, K) is written as a finite sum of the

characteristic functions of sets KgK for g e G and the zonal spherical function is

constant on KgK, we have only to know the explicit formulae of the zonal spheric-

al functions and the volume of KgK to obtain explicit formula of Satake transform.

We determine the explicit formulae of the zonal spherical functions in Section 2

except for even dimensional split orthogonal groups and calculate the volume KgK

in Section 3.

NOTATION. Let A: be a p-adic field where p does not lie over 2. We denote the

maximal order in k by o and its prime ideal by p = (Π). We denote by In the

identity matrix of degree n. For a topological group G, we denote the volume of a

set 5 c G for a given Haar measure by volG(S). We omit the index G in

volG(5) if there is no confusion.

§1. Definitions and properties of fundamentals

1.1. Let F be a right vector space over k of dimension n, and <,> a

non-degenerate symmetric bilinear form on V with Witt index v. We put nQ — n

— 2iλ In this paper we treat only the case where nQ Φ 0 as mentioned in the in-

troduction. There exists (not uniquely determined) a system of vectors {ev er)

(1 < i< v) such that

(ei9 0y> = (e'if ep = 0 (eif ep — <5ί7 for all i, j ,

(<50 is Kronecker's symbol). Put

Vo = (Σetk + Σ</c)\ Lo= {χ<ΞV0\ <x, x) e o}, L = Σep + Σ<o + Lo.
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SPHERICAL FUNCTIONS 159

Then Vo is anisotropic and L is a maximal lattice of V. There is an orthogonal sys-

tem of vectors {/)} (1 < z < n0) such that

(1) L0=Σ fl0, o r d p « / 1 , Λ » < o r d p « / 2 , / , » < • • • < o r d p « / v fn>).
ί 0

We define a as the non-negative integer such that

(2) ord p «/ α , fa» = < ord p «/ α + 1 , fa+1» = 1.

We also put

(3) β = n0- a.

Hereafter we fix this basis {elf. . . ,ev, flf. . ., /Wo, ^ , . . . ,e[} of F and identify the

algebra End^(V) with the matrix algebra Mn(k). Then the symmetric bilinear

form O is represented by the matrix

s =

0

0

I

0

So

0

I
0

0

}n0,

where we set

So = diag«/1, Λ> <fno, Λ o » e Mno(k), lv =

By the well-known theory of quadratic forms on local fields, we may assume that

So is one of the following matrices:

(n0 = 1)

<»o = 2)

(»o = 3)

(1), (TΓ), (M), (uπ)

π

— u

uπ \ π — u

— u π

π, uπ, — uπ,

u *

uπ I \ uπ
1' u

τ
— uπ,

{n0 = 4)
— u

— uπ >

where u is a representative of o /(o ) . Let G and GQ be orthogonal groups of
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(4)

similitudes of I/and Vo respectively, with respect to <,>, that is,

G= {g<Ξ GL(V)\tgSg = μ(g)S}

Go = teo e GL(V0) I'goSogo = μo(go)So}.

As in [7] we define three subgroups K, H, and N as follows:

(5) K : = {k €= G | ftL = L) = ik e G | A, F 1 e GL(«, o)}

(6)

(7)

(diag(£lf..., ξv, K, μo(ho)C,.. -,

*

*

0

*

0

0

ϊjA-'l

G | ξ,

G),

Go}

where Λ is a lower unipotent triangular matrix. This if is a good maximal compact

subgroup of G. In fact, K is a special good maximal compact subgroup of G except

for the case n0 = β ^ 2. However, it is known that if is not special in the case of

n0 = /? < 2. In other words

Remark 1 . The maximal compact subgroup defined above is good but not

special if and only if (α, β) = (0,1) or (0,2).

We define the symbol e0 and the group M by

ord^(G) = J- Z. M = ZV XyZ.

It is easy to see that £0 = 2 if a = /J, and £0 = 1 if α Φ β. For (m) = lmlf. . .,

mv, —-j G M, we define Π m as follows:

= diag(Π \ . . . , Π , w °, //0(M;) Π , . . . , μo(w) ° Π ' ) ,

2
where w denotes an arbitrarily fixed element of Go such that orάυμ0(w) — —. We

eQ

denote by D the subgroup in H generated by Π m , for (m) G M. We consider any

character s of D as a character of H by putting s(/0 = 1 for ΆW h ^ Ho = H C\

i, o). It is known ([7]),

G = (Cartan decomposition),
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= KHN = KDN (Iwasawa decomposition).

We define the modular function δ on H by

(8) d{hnhTι)/d(n) = δ~\h).

For a character 5 of D, we define a function φs on G by

(9) φs(khn) = s(h)δU2(h) (k^Kfh^Hfn^N).

Then the zonal spherical function ωs on G is defined to be

(10) ωs(x~ι) := fφs(xk)dk, (x e G)

where the Haar measure rf/c on if is normalized such that vol(iO = 1. It is trivial

that 0 5 is a multiplicative function on H. Since any hr ^ H normalizes N, we have

(11) 0S(*A') = φs(khnh') = φs(khh'n') = φs{h)φsW) = φs(x)φs(h0f

where x = /c/m, nr = A'"" nh\

1.2. Now we prepare some notion. The group K, H, and iV, are the same as

defined in Section 1.1. In a v-dimensional vector space R with standard basis

{εly..., εj, the root system Σ of i^-type is given by

Σ = { + εi9 ± ε , ± εj I 1 < i , j <v,iΦ j}.

A set of positive roots and a set of simple roots of Σ are given as follows:

Σ + = {ε,, εj + εk,εj-εk\l<i<v}l<i<k<\A,

k,, 6 , - 6 / + 1 ( l < i< v - 1)}.

Also define Σ — Σ \ Σ . For any simple root a G Σ , we define an isometry

wa of R , which we call simple reflection, by

wa{a) = - a, and wa(Σ+\a) = Σ+\a.

We define the Weyl group as the group W generated by wa, a ^ Σ . Now let

w — wx. . . wr e W be a "reduced" word, that is to say, w/s are simple reflections,

and w is not a product of r7 simple reflections for r' < r. We call r the "length" of

w and denote it by l(w). It is known that if w = wx . . . w ^ - ^ ^ a reduced word

where wr = ί(;α for a simple root α ^ Σ , than we have

(12) (% . . . wr_^)a G Σ + and ̂ α = (M^ . . . wr_-) (— α) ^ Σ ~
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(a)
(cf. [8, p.216]). For a simple root a, we define automorphism w on M and w(a)

e GL(V) as follows:

*,(jφ i, i+1),

, 2

m;
v).

(13)
e 1 9 . . . , e v f f 1 9 . . . , /Wo, < , . . . , ^

β\' '

(14)
( e l t . . . , eυ,fu..., fno, e ' υ ι . . . , e[) w ( ε v )

. / / f f f r nr\

Denote by WM (resp. Wv) the group generated by w (resp. w(ά)). Then W —

— Wyy and we identify them if there is no confusion. It is easy to see that

(15) wW{m)w~ι = U(w(m)) for w e W.

Thus, since W ^ K, we can take

(16) = I I ( m ) e Z), ( m ) = (ml9..., mV9 ^ ) w i t h m ,
\ e0 /

> ^

as the representatives of double cosets K\ G/K. Therefore we have only to evalu-

ate ωs(x) for x ^ D of the form above.

Now we define nilpotent matrices M ( ± εf ± ε ; )(ί), and M A ( ± εf ) (ί) (1 < fe

< n0) ίor t ^ k as follows:

^ if r = i, s = y,

i — εy) (f) = (rnrs), mrs~ — t if r = n + 1 — , s = n + 1 — i,

0 otherwise.

i + Sj) (t) = (mrs), mrs =

M(— ε{ — εy)(f) = ^(βi + εj

Mh{ε^){t) — (rnrs), mrs =

t
- 1

0

t
0

if r — i, s =

iίr = j 9 s =

otherwise.

fh9 Λ> if r =

if r =

w +
n +

ίy S

v +
otherwise.

1 -

= V

h9 s

J,

+
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— t(fh, /A> if r = n + 1 — i, s = v + h,

Mh(- ε,)(t) = (mrX mrs= t iίr=v + h,s = i,

0 otherwise.

Also define exp M for nilpotent matrices M ^ Mn(k) by

ΛJT i i M . ^ 2 i

exp M = 1 + - j - + -^y- + .

Now we define subgroups £7ft'(± ε f), U(±ε,)t Ui±e,±εm) of G by

C/^(± εf) : = {exp M A ( ± ε^ίί) U e A:}

(17) C/(ε<) : = C/^ί) £ W , C/(-e() : = ^ ' ( - ε,) t £ , ( - ε.)

ι l ( ί ε, ± ε ^ ω | ί e /fc}.

It is easy to see that for some fixed h ^ {1, . . . , v)> U'h(ε) commute with each

other, which implies that Ui6{) (resp. C/(_ε.)) is a group. The fact that U(±Bi±6j) are

groups is trivial.

Remark 2. The (i + v, n + 1 — v)-entry (1 < / < n0) of w = ux ww ^

ί/(6y) is the same as that of ut.

For u = (wAZ) e t/(e<) (resp. C/(_ε.)), we put

ord p^ = ordp(uitn+ι_i) (resp. ordpw = ordp(«n + 1_< p i)).

Similarly we define orάpu for u = exp M ( ± εt ± ε;) (β by

ordpu = ordpt.

We define

Uia)(ί)'= (we C/ ( f l ) |ord^>/}.

Then U(a)(t), (a ^ Σ) are subgroups and we have for all a ^ Σ , w ^ W

(18) wC/^ωMΓ1 = I/(IWI)(/), and 1

For / > 0, we define f/+(/) (resp. U~(l)) to be the subgroup of K generated by

U(a)(l), a^Σ+ (resp. U(a)(l), a e Σ"), i.e.,

C/+(0 : = <C/(α)(Z) I a e Σ+>, t/"(0 : = <ί/ t e ) (0 I α e Σ">.

Moreover we define
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It is easy to see that f/+(0) # 0 U (1) = H°ΊJ+(0) U (1) is a subgroup of K

where HQ = H Π K, which we denote by B :

(19) B:= U+(Q) HO U~(D = Ho U+(0) EΓ(1).

Now we write down some groups defined above explicitly.

where diagonal blocks are identity matrices, * 's are on the ί-th row or the (n +

1 — i)-th column, and entries in the 1 x 3 block is zero except for (i, n + 1 —

0-entry, other entries are zero.

A+

r+(l) = {« = 0

A'

D~

C+ D+

E+ \<ΞG\A+-Iu,B
+-Iu,D

+,<ΞMv(p1)},

B+

0 \eG\A--Iv,B~-Iv,D-,

B~

where A and B (resp. A and B ) are upper (resp. lower) unipotent triangular

matrices.

B = ib^ K\b =

0 *

0

*

\ °

*
*

0

*

*

*

t

*
*

0 *

modp},

)v

where (1,1) and (4,4) blocks are upper triangular matrices, (2,1), (4,1) and (4,2)

blocks are zero matrices. (It turns out that (1,3), (2,3), and (4,3) blocks are con-

gruent to zero matrices mod p.)
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Remark 3. Put, U;(εv) (I) : = U-{εv) Π £/(£y)(0, and

w = wx . . . uno e U(εv)(t) (decomposition in (17)).

Since (e'v, e'v} = 0, we have

where z/ is the (v, w + 1 — v)-entry of w, and ^ is (v + i, n + 1 — v)-entry of

M, . This equality implies [3, Theorem (10.1.15), Proposition (10.1.12)] that

(20) ordp</Λ,/Λ> > o r d p z / > /

for all i (1 < i < n0). Since — (fiXif ftx^>/2 is the (v, w + 1 — v) -entry of ^ ,

we have

W; e U;(εv)(ί) for all i.

Therefore

(21) [£/( ,(/) : ί/te ,(«)] = Π [[//(εy) (/) : ί//(ε,) (m)].

Now we state the following theorem of Hijikata which is used later.

THEOREM H (Hijikata [5, p.33]). The maximal compact subgroup K is decomposed

as follows:

K = U BwB (disjoint union).
WGW

Remark 4. In [5] Hijikata proved the Bruhat decomposition in more general

situation. But we use Hijikata's theorem in restricted form as above. In our case,

the Theorem H is proved by straightforward calculation.

Now as the Lemma 2.6.2 in [6], we know

(22) ί / + ( / ) = Π f/(α)(/),and t / + = Π UM,
<zeΣ+ aeΣ+

(23) (resp. U~(t) = Π U(a)(ί), and U~ = N= Π U(ah)
αeΣ" αeΣ"

where we can take the products above in an arbitrary order. Moreover, for any

simple root a ^ Σ and / > 0, we put

(24) t / f ( / ) : = Π Ua)(t),U?:= Π Uit),
+\ +\
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(25) U[-a)(l):= Π tf<w(0, and£/l- β > := Π ί/(W.
beΣ~\{-a} beΣ~\{-a)

Then these groups are written as semidirect product as follows:

(26) U+(/) - U(a) (I) C/f (0, ί/+ = [/(α) ϋf,

(27) I7~ω = U(a)([) • UlΓa)(D, and £7" = U{a)-U!Γa),

where U+ (/), U+ , U_ (/), and U_ are normal subgroups of U (/), £/ ,

ί7 (/), and C/ , respectively. Thus we have

du+ = du(a)-du(f = du(fdu(a),

αw_ = du(_a) - du_ = du_ du(_a)

for any simple root a e Σ + . In the following, we assume that

vol(C/+(0)) = vol(C/(fl)(0)) = vol(£/+

te)(0)) - 1.

Now define the modular function δa(h) for h ^ H, and a ^ Σ by

(29) 0β(A) = d(hu{a)h~ι)/du{a).

Then it is easy to see that

(30) δa(h)'δ(.a)(h) = 1, and δa(h) δa{wahw~ι) = 1,

for any simple root <z ̂  Σ + . Also define

(31) δa(h) =d(hufh~ι)/duff

for h ̂  H, and α ̂  Σ + . Then we have

(32) δa(h)-δa(h) = δ(h)

for any simple root a ^ Σ .

Now for any simple root a ^ Σ , x ^ Π , and M>α G FT, we have

(3 3) d((waxw~ι)u+(Wapcw'1) ~ι)

= d({waxw~ι)U(a){waxw~ι)~ι) -d((waxw~a

ι)ul\waxw~a

ιYι)

= δa(x)~ιduiayd({waxw~ι)u+\waxw~ιYι) (by (30))

= δa(xΓιdu{a) d(xufχ-1) = δa(xy1'duia)δ
a(x)duf

= δ^(x)'δ(x)'du+. (by (32))

Since (33) is equal to δ(waxwa )du by definition, we have
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(34) δ{waxw~a

ι)/δ(x) = (δa(x)Γ2.

§2. Calculations of spherical functions

2.1. We now calculate the zonal spherical function ωs(x~ ). We put Vw =

vol(BwB) where Yθl(K) — 1. For the convenience of notation, we define

(35) Π, : = Π ( w ω ) €Ξ D, (m(0) e M

(36) iKε, - εi+1) '•= Π, andΠ(ε y) : = Uu

where m(v) = (0v_v 1,0), m(i) = (0t_lf 1, — 1, 0v_f) if i Φ v. (Here 0? is a zero

matrix in M ( l , i).) Let J: = Π m , such that

(m) = imlf..., my, —-j with mx > > mv > — m0.

Note that x above satisfies the conditions

X' LJ \ j) ' X ^— LJ \ι) f X LJ /Q\ \I) * X — LJ (n) \')

and

(37) X'U{_a)(r)x~1^ U(_a)(r)

for any positive root a ^ Σ and any integer r.

Morever it is easy to see that

(38) w~ι- U~(ί) w c B, and w~ι-H0-w = Hoa B

for every w ^ W (Ho = H Π K). Thus we have from the decomposition (19),

(39) B wB= U+(0)'wB.

Now for a character 5 of D, the value of the zonal spherical function ωs in

Section 1 at x = Π above is

(40) ωs{x~ι) = J φs(xk)dk= Σ f φs(xk)dk (by Theorem H)

= Σ Vw- I φs(xwb)db,
ui(= w JR

(by (38) and (39), using xU+(0)x : c C/+(0) c X,) where rfδ is normalized as

vol(β) = 1. Then we have
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(41) ωs(x~ι) = Σ Vw- f φs(xwu+)du+,
W<=W JU+(0)

where vol(£/+(0)) = 1. Putting x' = w~ xw, we have

(42) i φs(xwu+)du+ = I φs(w~ιxwu+)du+

= I φsix'u^x'^x^du* = (sδ1/2)(xf) I φs(x/u+x/"1)du+

= (s<51/2)Cr0<ΓV) Γ φs(u+)du+ = (s<Γ1/2) CrO f φs(u+)du\

Here for any character χ of D and w ^ W, we define a character w(χ) (or

simply w/χ) of D by

(43) α/χM) : = χ{w~ιdw).

Then (42) = ^(5^" 1 / 2 )te) f φs(u+)du+. We denote this by Jw(s), i,e.,

Then we have from (41)

(44) ωt(χ~1)= ΣVu Jw(s).

Remark 5. Since U (0) is compact, K is open, and G = KHNy there exists a

finite set {A ,-#,•} c HN such that .r7?/ (O)^7 is contained in the union-of the sets

KhM:. Thus we have

Λ,(s) = w(sδ'U2)(x)'Σvol(Khtni Π x'tf^
i

where vol(C/+(0)) = 1. In other words, Jw(s) c R[(s) ( Π ^ * 1 , . . . ,

The computation of ws(x ) is reduced to the integrals Jw(s), w ^ W. Let us

continue the calculation. If w = 1 ( = identity), we have

(45) Jw(s) = Λ ω = (sδι/2)(x)

using the fact that xU+(0)x~ c X (by (37)). Now assume ^ ^ 1. Then there ex-

ists a simple root a G Σ + such that
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(46) wa e Σ~, w = a/wα with l(w) = l(w') + 1.

Then x'U (ϋ)xf can be written as a semi-direct product of

Za : = j ' ί / +

t e ) ( 0 ) i r l and Zα : = x't/^ίO)*'""1

uniquely. Therefore we have

(47) /w(s) = w(sδ~1/2) (x) Γ Γ φs(uaua)dua

+dua

= (w(sδ~1/2)(x))( I I φs(uaua)dua

+dua— I I φs(uaua)dua

+dua).
\Jza Juia) Jza Ju{a)\za t

Putting

(48) J*(s) — w(sδ~1/2)(x) I I φs(uaua)dua

+dua,
Jza Ju{a)

(49) J°(s)=w(s5~1/2)(x) [ f φs(uua)du+duai

*>za Ju{a)\za

we have

(50) Λ(s)=/ 1 iω-/ l ,
β ω.

Now we define C0(α, s) for any simple root a ^ Σ by

(51) C0(afs) : = Γ φs(ua)dua.

We did not care the convergence of integrals, but it is easy to see that if

I s(ΐl(a)) I > 1 for a simple root a (see (36)), then C0(α, s) and all integrals are

absolutely convergent, and so, our calculations above are justified.

2.2. In this section, we give relations of Jw, Jw, Jw, and C0(a, s). We prepare

several lemmas.

LEMMA 1. In the notation as before, we have

(52) /w,(s) = (w's){x){wδ-U2)(x) f φs(u")dua

+,
JwaZ

aw~1

where Za = xfUl(Q)xr~ι', xr — w~1χw, w = wrwa.

Proof. We put xλ = wf xwr = wax'wa . Since wa U+(0)wa = C/+(0) (see

(18) and (24)), we have
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waZ
aw~a

ι = w, l l 1 t ϊ

Since w'a e Σ + , we have w'Ua(0)w'"1 = Uw,a{0) c ί/+(0) (by (18)). Thus

(53) wMQDxΐ1 c uΓιxU*(Ά)x~ιu>1 c uΓιU*{0)tf C if,

where we used (37). Therefore we have

,,(*) = w'(sδ-ι/2){χ) f o .,j[ ^ ( Λ ^ M ^ (by

-1/2 Γ β β -1
/(sδ )Gr) I φs(u)du, x (volume of xιUa(ϋ)xι ).

Λ 7%-ix Λ Z J?Λ

Since vol(ί/(o)(0)) - 1, voKC^ίO)) = 1 and

^ ) (see (29)), we have

(54) = w/{sδ-ιn){x)'δu\xι)δ-ι/\w~a

ιχιwa) f a Js(ua)dua (by (34))

= (w's) (x) (wδ~1/2) (x) j a J>s(u)du (by w'wa = w). Π

LEMMA 2. L^ί a ^ Σ + 6β α simple root, i.e., a = ε^ ~ εi+ι or εv. Then a

non-zero element u of U(a) is decomposed in G as follows:

(55) u = h'ywa(n(a))r'Z, for y, z e U(_a)(r)

(see (36)), where r = - ordpu, h <Ξ Ho = H Γ\ K

Proof The lemma is easily proved as the proof of G — UHN in Satake [7].

We only note the following decomposition for the case where So = ( ),

and n = 4.

1

- IΓft 0 1

AIT - UΊla - ϊlΊlub 1

1
b/A 0 1
l/A -Ua/A Uub/A 1
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where A = H(ub2 - a)/2y Π' = If, Π" = Π2r, hi = - Ua2/A - 1, hi = -

Uabu/A, A3 = - ΐlab/A, and A4 = 1 - Π«62/A D

LEMMA 3. /n £/i£ notation as above, we have

f φs(ua)dua = (C0(α, s)~ I) ((ws)(x)y1'aw/s)(x)).
JU(a)\Za

Proof. For ua G i/ ( Λ )\ C/(α)(0), we have from Lemma 2,

where h ^ H Γ\ K, y, z ^ U{_ah Since o r d ^ < 0, we have ordpz/ = ordp£ =

— ordpua > 0, and hence y, z ^ £/(_fl)(0) c: if. It is easy to see that

(56) xrhxr~ι e iί,

and we have b '-= w(— a) ^ Σ by virtue of the choice of w ((46)). Thus recall-

ing (18) and (37), we have

(57) xfyxf~ι = w~ιχwyw~ιχ~ιw c w~lxU{b)(0)x~lw c w~1U+(0)w c i ί .

From (56), (57), and w~ιχrwa e if, we have

(58) ^ . 1 1

( 5 9 ) = 0 5 W ((^) (x))'1- «w's)

= φs(ua)((ws)(x))~1'aw's)(x))'δ-1(x0 (by (34)).

By (59), we have

(60) Γ φs(ua)dua = δa{xr) x Γ

f φs(ua)dua-({ws)(x)Tl'{(w's)(x)).
Ju(a)\ua^)

Now since vol(U(a) (0)) = 1, we get our lemma from (60). D

Now we give explicit formulae of C0(a, s)) for orthogonal groups. Except for

the case a = 0, C0(a, s) is known by Casselman [4].

THEOREM 1. We keep the notation as above. We put q = | o/p |, and Sf =
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where s{ is a character of D, and Π ? is defined in (35) as before. We have

i) C 0(ε, - ε< + 1, s) = ^ _ qst

ii) C0(ευ, s) = 1 + y — — where T= (a+β)/2 Sv + — — S * .

Proof Consider the case where a = εv. Using Lemma 3 for the case where

w' = 1, w = wa, and x = Π ( w ), (m) = ( 1 , . . . , 1,0), we get

Γ φs(ua)dua= (C0(a,
JUta\UΛ-2)

JU{a)\Uaί-2)

Thus we have

(61) / Φs(ua)dua= / φs(ua)dua- / φs(ua)dua
JUa(-2)\Ua(0) JUa\Ua(0) JUa\Ua(-2)

= (C0(o, s) - 1 ) ( 1 - S V

2 ) .

Now from (21),

[£/<,„,(0 :ί/tev,(» + 1)] = Π [C//(ε;ω : U;{β)(i + 1)].

It is easy to see that if 1 ^ _;' < α (resp. a + 1 < j < n0 = a + β), then

ii i is

if i is odd,

1 if i is even,
resp. lUΛε )W : Uj(ε)Kt -t JJJ = I . . .7 v y L ̂  if z is odd,

which implies

( 6 2 )
f if ί is odd.

Moreover from Lemma 2, we have for u ^ Uia),

u — h - y w a ' ( U ( a ) ) ' Y - z , f o r y , z ^ U ( _ a ) ( r ) ,

where r = - ordpu, and h <E HQ = H 0 K. Thus, if u e f/(β) \ t/ ( β )(0), then we

have y ^ K, and h- y wα^ K. Since z ^ N, we have 0s(w) = (5(5

which implies
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Γ Φs(ua)dua = (sδ1/2) (Π(α)) (qB - 1) + (s2δ)
~Ί7a(-2)\£V0)

Since <5(Π(#)) — q , we have proved our theorem for the case where a — εy.

For the case where a — ε{ — εi+1, it is proved similarly. D

Remark 6. If s — δ~ 2, a = εv, then

Γ 0 5 ( ^ ) ^ f l = Of - 1 ) + (<Γ* - qβ) = qa+β - 1 = δiUia))-1 - 1 = S2

V - 1.
^ί/α(-2)\ί/α(0)

This implies C0(εv, δ ) = 0. Similarly, we have CQ{εi — εi+1, δ ) — 0.

It follows from Theorem 1 that, for w e W, C0(tf, 5) = C0(wa, ws) if both a

and wα are simple roots. Therefore we can define C0(a, s) for any root a by

(63) C0(af s) = C 0 (wα, W5).

LEMMA 4. In the notation as before, we have

(64) Γ Γ φs(uaua)dua

+dua= f φs(uawa)dua

+x f φs(ua)dua,
Jza Ju{a)\za

 Jza Ju{a)\za

where Za = x'U+\u)x'~l, Za = x''ϋ\a)(0) x'~ι, and wa e Σ " .

Proof. Suppose a = εv. Define / by / = o r d p ^ _ v + 1 — ordpxj, where Xn-v+ι

(resp. xl) is (n — v + 1, n — ι>+ 1)-entry (resp. (v, v)-entry) of xf. It is clear

that / = ordpwβ — ordp r X r ' " 1 for ua G UauΦ In. Since x 7 = ^ " ^ and

Σ~, we have / > 0 and Za = U(a)(— I). From Lemma 2, ua e [/(β) \Za —

Uia) \ U{a)(— ΐ) can be written as follows:

(65) ua = h yw0 (Ώ1)
r z,

where h<^H0 = HΓ\K,0<Kr= ordpy = ordp>2: = — ord p w α and z/, 2 e

U(a)(r) c if. Since /? normalize the group Z*\ we have

I I φs(uaua)dua

+dua = I φs(uaywa)dua

+ x /
u{a)\za

Now the fact that the unipotent group U(a)(0) normalize U+ (0) ((26)),

waU+\θ)Wal= U+\θ) and waU{a)(Q)w~l = £/(_β)(0) (by (18)) yields that

t/(_β)(0) normalize ί7+

β (0), and hence the group xrU{_a)(Q>)xr~ι normalize the

group Za = x'U+

a (0)x' . Here the matrix y in (65) is contained in K and
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y e U{_a)(r) c U(_a)(ί) = i ' ί / M ( 0 ) i r l ,

we have

I φs(uaywa)dua

+ = I φs(uawa)dua

+1
Jχa JZa

which proves our lemma. For a = εt — εi+1, we can prove similarly. •

Now, we can give the following relations of J^(s) f Jw(s), Jwr{s)> and C0(a, s).

PROPOSITION 1. In the notation as before, we have

(66) J*(s) = C0(α, s)Jwr(was),

and

(67) Jlis) = (C0(β, s) - l)/w,(s),

i(;/ι̂ r̂  w = w'wa, l(w) = l(w') + l(wa), wa is a simple reflection corresponding to the

simple root a ^ Σ .

Proof Firs let us prove (66). Recall that

(68) Jlis) = w(sδ~1/2)(x) I I φs(uaua)dua

+dua.
Jza Ju{O)

For ua e Z α , wα G ί/(α), we write w;~ uawa = khγn, wanw~ = u~aur

a where u

^ ί7_~β and uf

a ^ C/(α), and pu

= wakw~ιh2wanw~ιua, we have

~β and uf

a ^ C/(α), and put h2 — wahλw~ ^ H. Writing uaua = wjίh^nwi ua

(69) φs(uaua) = φs(h2wanw~ιua) = φs(h2u~au'aua).

Since u~aur

aua = (UaUa){wa(wau
f

auawaV\wau~awa)(wau
f

auawa)wJ e {u'aua)U{Sa)

we have (69) = φs(h2UaUa) and (using (11)) it is equal to

(70) φs(h2u
f

auah~ιh2) = φs(h2u
r

auah~ι) (sδ1/2) (h2).

Here we have (using (34) and wα = 1)

(sδ1/2)(h2) — s{wahλw~ι)δι/2{h2) = φWaS{w~ιua w,) δa(h2).

Thus we have

φs{uaua) = φs(h2u'auah~ι) x φWaS(w~ιuawa)δa(h2).
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Hence we have

X Γ a a Γ Γ - l - l α a

I φs(u ua)du,dua = I I φs(h2u'uah2 )φws(wa u wa)δa(h2)du+dua
-aJUw JzaJu{a)

= j φsiua)duaj _χ a φWaSiu)du = Coia, s) J ^ a φWaSiu)du .

Substituting this to (68),

J^is) = wisδ~1/2)ix)CQiaf s) J φWaSiu
a)dua

+.

By Lemma 1, we have

Jw^iwas) = wisδ'1/2)ix) \ φw siu
a)dua

+, and hence

Jlis) = Coia,s)Jw,iwas).

Now we have completed the proof of (66). Next we prove (67).

First, it is easy to see from Lemma 1 that

/ φsiu
awa)dua

+ = I φsiw-(l

1uaw()du\
%J2a *'za

= f φs{u)du\ = (w's{x)Vι(wδι/2)(x)Ja,(s).

By definition

(72) Jlis) = wisδ~1/2)ix) f f φsiuua)du+dua

Jz« Ju(a)\za

= wisδ"1/2)ix) I φsiu
awa)dua

+- I φsiua)dua (by Lemma 4)

= wisδ~1/2) ix) iw'six))'1 iwδ1/2) ix)Jw,is) \ φsiua)dua

Ut \\Z

= wsix)- iw'six))-1 -Jwris) I φsiua)dua.
Ju{a)\za

Now using Lemma 3, we have Jw = iCoia, s) — i)Jw,is). CH

2.3. A character s of D is called non-singular if s(ΓQ Φ 1 for all t Φ 1,. . .,

v — 1, and | s(Πy) | Φ 1. Now we prove the following proposition.
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PROPOSITION 2 (reduction formula). Suppose that s is nonsingular and a ^ Σ a

simple root such that wa is a negative root and wr — wwa.

(73) Jw(s) = C0(a, s)Jw,(was) - (C0(a, s) - l)Jw,(s)

Proof. The formula in our proposition follows from Proposition 1, as far as

the integrals are convergent, and it is satisfied if \ s(ΐl(a)) | > 1. Now Jw{s),

Jwr(s), and Jwr(was) are polynomials with respect to s(d^) d{ e D as mentioned be-

fore. Therefore (73) is valid (by analytic continuation) whenever the right-hand

side is defined, i.e., whenever s is nonsingular. •

For w = wι . . . wr ^ W (reduced word), we denote by E(w) the set of all

products w\ι ''' w^iβi = 0 or 1).

LEMMA 5. Suppose that a character s of D is non- singular. Then

(74) Jw(s) = <51/20e) Σ λw
ΪU

Here the coefficients λw^(s) are rational functions which do not dependent on x.

Moreover we have

(75) ^ . ( 5 ) = Π C0(a,s),

where Σw is the set of all roots a €= Σ such that wa is negative.

Proof. We prove this lemma by induction on the length l{w) = r of w. First

of all, if r = 1, that is to say w = wa, then we have, E{w) = {1, w) and Jw(s) =

C0(a, s)J1(ws) — (C0(a, s) — DJ^s) by Proposition 2 (1 means identity of the

group W). Since }x{s) = sδ (x) from (45), we have

Jw{s) = C0(a, s)-ws(x)'δ1/2(x) - (C0(a, s)- I)(sδ1/2)(x)

= δ1/2(x)(C0(a,s)-(ws)(x) - (C0(a,s)- l) s(x)).

Therefore λWtW = CQ(a, s), and λwΛ = CQ(a, s)— 1. Thus we have proved the case

where r = 1.

Next, suppose r — m and assume our lemma is true if l(w') < m — 1 w' ^

W. We write w as w = w'wa, l(wf) = m — 1, and l(wa) = 1. Applying the induc-

tion assumption to w\ we have

λ*ιβ,(s) = Π C0(b,s).
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Putting this into the formula in Proposition 2,

1/2Jw(s) = C0(α, s)δ1/2(x) _ Σ λw,j(was)' (wwas) (x)
weEiw')

- (C0(fl, s)- l)<51/2(z) _ Σ λ^is) (ws)(x).
Ei')_

weEiw')
Since E(w') c 2?(w), E(wf)wa c £(u;), the equality above implies that/ w (5) has

a required form. Moreover since λWtW is the coefficient of (ws) (x) =

;'«>„) (s) Or:)) we have

ΛUM* = C0(α, s) ^ f l l,,(«;βs) = C0(a, s) Π Co(6, wβs).

Since «; β (Σ^) U ia) = Σ«, we have from (63) ^> M ;(s) = Π C0(α, 5). D

Substituting the formula of Lemma 5 to (44), have '

(76) ωs(x~ι) = δ1/2(x) Σ Vw'μw(s)-(ws)(x),
w<=W

where μw(s) are independent of x. It follows from Lemma 5 that

μ»0(s) = λw0,w0(s) = π co(fl, s),
αeΣ +

where wQ is the longest element of W. By virtue of cos(x ) = co^s(x ) for all

w e ^ ( [ 7 , p.26]), (76) implies

Σ V^^ίws) (WM)5)(X) = Σ Vwμw(s) (ws) (x) for all w ^ W.
w w

Now from the linearly independence of characters ws over C for w G FF, we have

y^ίί/ί5) — V^iiws), especially we have (using the fact that C0(a, wos) = C0(α,

s ), which is obtained from the definition of C0(α, s) and wo~ Π,-^ =

Π^1) ^ ^ ^ ( 5 ) = Vi/z^Woί) = Vji^s'1). This implies V^^Cs" 1 ) = Vjz^s).

Then we have

Vwμw(s) = V^^te s) = V ^ d c s " 1 ) - Va0- Π C0(β, ws"1) -

where we put C(s) = Π C0(α, s). Thus we have
αeΣ +

Σ Vwμw(s)(ws)(x) = V 1

and then we have proved the following theorem. (Except for the case where a = 0,

the theorem below is obtained by Casselman [4].)
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THEOREM 2 (Formulae for spherical functions of orthogonal groups). Suppose

s is nonsingular. Then, for

x = Π , (m) = [mv..., rnv, —) with mx> > rnu>-~rn0,

the spherical function is given as follows:

ωΛx'1) = κδW2(x) Σ C(ws-1)(ws)(x),

where

C(s) = Π C0(a, 5),
fl6Σ+

C0(α, s) are given in Theorem 1, and K is a constant.

We calculate the value of K. Substituting s = δ~ to the formula of the

theorem above, we have

1 - fcδ1/2(x) Σ C(ws~1)(ws)(x) = tcC(δ1/2),
weW

where we used Remark 6. This yields K — C(δ )~ .

§3. Calculations of the volume of KxK

In the notation as before, let x = Π m ^ D such that

(77) (m) = (*»!,..., my, —
Ά ) with m1> > mv > — m0.

\ e0 / e0

By (19) and (39), we have BwB = BwB~ι = Bw U'(1)HOU+(O) = BwU+(0),

where we used wU~(l)How~ι = wU~{\)w~ιwHow~ι c B (by (38)). Then by vir-

tue of Theorem H, we have

(78) KxK = KwoxK= U δ M / ί / + ( 0 ) v ί = U BwwoxK
w<zW weW

= [JBwxK= U B-wxw~ιK
weW w&W

(This is not necessarily a disjoint union.) where we used {W^JCY U + (O)(wox) =

x^U'Otfix c [ Γ ( 0 ) c K, (by (37)) and w0 is the longest element of W. We de-

fine Wx by Wfx = {w ^ WI w;xz(;~ = x) ( = {^ ^ PF | wm = m}, J: = Π m ).

Then, it is trivial that Bww'x(ww')~ιK = Bwxw~ιK for all w' e Wς. Therefore

we have
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(79) KxK = U Bwxw~ιK.
weW/wx

Let us see that (79) is a disjoint union. If Bwxw~ι K Π Bwfxwf~lK Φ {φ) for

some w, wf e W, there is an element b0 e B such that (w'tfH;'" 1)' 1^^:^!;" 1) G

if. Thus diagonal entries of (wfxwr ) (WXH; ) must be unit elements. This im-

plies wrxw'~ = wxw~ , and hence (79) is a disjoint union. Thus we have

(80) \KxK/K\=τirΎ Σ \BwxK/K\,

where | * | denotes the number of the elements of a finite set * . There exists a un-

ique set Wτep of representatives of W/Wx with the property that each w ^ f̂ rep

is of minimal length in the coset wWx. Then, each w ^ Wτev satisfies a relation

(81) l(ww') = l(w) + l(w'),

for any w;/ ̂  Wx. Now denote by Z^^) the number of we in the shortest express-

ion of w with respect to simple reflections. Then

(82) V(wwf) = /'(«/) + V(wr) for all w e ffrep and w' e Wς.

We put

L(w) =l(w) + (a- l)V{w).

Then (81), and (82) implies

L(ww') = L(w) + L(wO for all w e Pfrep and w' e Rς.

Using (21), and (62), we see that

(83) qUWa) = W{a)(0) : f/ (α)(l)] = W,_a)(0) : U{_a)(l)l

for any simple reflection wa ^ W.

Now the following lemma holds.

LEMMA 6. In the natation as before,

I BwxK/K I = q~L{w) I BxK/K \ for all w <= Wrep.

/. We prove this lemma by induction on the length of w ^ Wrep. If

= 0, then w = 1 and hence the equation above is clear. Now we assume that

our lemma is valid for w ^ Wrep such that l(w) < l(w) — 1. Let wa be a simple
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reflection such that l(waw) = l(w) — 1. We put w' = waw. Now if l(w') >

Kw'wJ for some w1 e W, then l(w) = l(wf) + 1 > l(w'Wj) + 1 > l(waw
rw^) =

KwWj), which implies that w e Wrep means w/ e Wrep. Thus we have by assump-

tion,

(84) I Bw'xK/K\ = q~L(wΊ \ BxK/K\.

Now (19), (26), (27) implies for a simple root a,

(85) B= U+(0)H0U~(l) = Uίa)(0)-U(a)(0)Ή0'U(_a)(l)'U[-a)ω.

It is easy to see

(86) u{_a)ω u?\o) = ula\o) - u(_a)ω
and

(87) Uia) (0)ίΓ0ί/(_a) (1) = U(_a) (l)HoU(a) (0).

Therefore from (85), (86), (87), we have

B = U{f(0) U(_a)(l)H0U{a)(0) C7<α)(l)

( 8 8 ) - U(a) (1) t / f (0) Ho • UlTa) (1) Uia) (0).

From this, we have

BwxK = ί/(_a) (1) U? (0) • Ho • U[~a) (1) U{a) (0) wxK
( 8 9 ) = t/(_β) (l) ί/|α> (o) u!ra) (i) WXK .

On the other hand, we have from (85)

(90) wa • Bw'xK = wa• Uia) (0) • Uf (0) HQ UlTa)(1) ί/(_β) (1) w'xK

= wa C/(o)(0) C/f'(0) -i/o t/ i " β ) ( l ) w'xΛΓ. (by uΓ\- a) e Σ " , (12) and (37))

= C/(_α) (0) Uia) (0) C/^a) ω-wx-K.

From (89) and (90), we have

wa Bw'xK, = U u BwxK
U

where u runs through a complete set of representatives of U(_a)(0)/U(_a)(l). Now

let us show that wBwxK Π BwxK Φ {φ} for some u e J7(_β)(0) implies w G

ί/ (_β )(l). If wBwxKC] BwxKΦ {φ} for some w <Ξ f/(_a)(0), then there exists

ft e β such that

(91) f ^ )
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Now since U(_a)(0) normalize U+

a (0) and US" (1), and the groups C/(_α)(l),

U+ (0), and £/_ (1) are all contained in the group B, we have from (91), w b ^

(wx)K{wx)~ for some b e B, i.e.,

(92) (wxw~ι)~\wb) {wxw~ι) e X for some 6 e β.

Now since «/ e PFrep, and w' = wy# e Wrep, we have, putting wxw~ι — Π ( w ) m Φ

wa(m). Therefore we have

(93) ordp(wxw~ )~ιu(wxw~ ) Φ orά^u for u G C/(_α).

Moreover since w (— α) ^ Σ , we have

(94) orά.^{wxw~ι)~ιu{wxw~ι) < ordpu for u e C/(_α).

From (93) and (94) we have

ordp(ίί;xM;~1)~1w(M;x^~ ) < ordpu for w e J7(_Λ).

Therefore (92) can hold only iί u ^ B, i.e., w ̂  ί/(_ f l )(l). Thus we have

Bw'xK/K\ = I wββιι;'jrίΓ/ΛL I = I BwxK/K\ x [C/(_α)(0) : tf(_

Therefore, using the induction assumption (84), we have

I BwxK/K\ = ^-Z(M;Λ) I Bw'xK/K\ = q-W-L™ I BxK/K\ = q~Liw) \ BxK/K\.

Now we have proved our lemma.

Now we have from Lemma 6,

q-Uwr) x Σ I BwxK/K\ = I BxK/K\ x | ffx | x Σ q~
Um'\

for all wr ^ Wx. Thus we have

Σ (q~L(wΊ) x Σ I BwxK/K\ = I BxK/K\ x | Wx\ x Σ ^"L(M;)

This implies

(95) \KxK/K\τ^Γj Σ IβwxίΓ/iΓl (by (80))

-L(w) / vp -L(w')\-1"SΠ —Ltio) / \-Λ —L(wf)\—1

Σ q '( Σ q ) .

Now we calculate | BxK/K\. Since
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BxK = U+(0)H0U~(l)xK (by (19))

= U+(O)xx~ιHoU~(l)xK = U+(0)xK, (by (37) and x^H^x = Ho)

we have

(96) I BxK/K\ = \x~ιBxK/K\ = \ x~ιU+(0)xK/K\

= \x~ιU*(0)x/K Π x~1U+(ff)x\ = U"1C/+(0)x/f/+(0) I (by (37))

= δ(x) (see (8)).

Putting (95) into (96), we have the following theorem.

THEOREM 3. In the notation as before, we have

\KxK/K\=δω Σ q~Uw) ( Σ <f i<wV.
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