THE *#*-EQUIVALENCE IN A COMPACT SEMIGROUP II

L. W. ANDERSON¹ and R. P. HUNTER¹ (received 8 August 1962)

In [1] we considered various aspects of the quotient semigroup $H \cdot H^2$ where H is an \mathscr{H} -class of a semigroup S. In particular, the action of the Schützenberger group of H upon SH was studied to obtain various results on the existence of subcontinua. Crucial in [1] was the notion of the (right handed) core of an \mathscr{H} -class which may be considered as a generalization of the notion of the core of a homogroup, [2].

The view taken here is the possible description of $H \cdot H$ as a fibre bundle, in the sense of Steenrod, in which the core and Schützenberger group play an appropriate rôle as fibre and structure group respectively. This is done somewhat in [2] in the very special case in which H is the kernel of S, and is an orbit of the maximal subgroup at the identity.

We recall now some basic definitions for the convenience of the reader. Let S be any semigroup. The Green equivalences are defined as follows

 $\begin{aligned} x &= y(\mathscr{L}) \rightleftharpoons x \cup Sx = y \cup Sy \\ x &= y(\mathscr{R}) \rightleftharpoons x \cup xS = y \cup yS \\ x &= y(\mathscr{J}) \rightleftharpoons x \cup xS \cup Sx \cup SxS = y \cup yS \cup Sy \cup SyS \\ \mathscr{H} &= \mathscr{L} \cap \mathscr{R} \\ \mathscr{D} &= \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}. \end{aligned}$

For $A \subset S$ and $x \in S$, set

$$A : \mathbf{x} \equiv \{ y \in S | xy \in A \}.$$

Here, our interest lies principally in the \mathscr{H} -equivalence.

We first establish a series of lemmas for later use.

LEMMA 1. Let S be a semigroup, H an \mathcal{H} -class in S and $x \in H$. If $A \subset S$ with xA = H then yA = H for all $y \in H$ and pA meets $x \cdot x$ for all $p \in H \cdot x$.

288

¹ The authors hold N.S.F. Grants G17901 and N.S.F. GP-237.

² Let A and B be subsets of a semigroup S then A cdots B is defined as $\{x | Bx \subset A\}$.

PROOF. Since $y \in H$, we have $y = q \cdot x$ for some $q \in S$. Thus yA = (qx)A = q(xA) = qH and since qH meets H, qH = H. Now if $p \in H \cdot x$ then x(pA) = (xp)A = H since $xp \in H$. Hence it follows that pA meets $x \cdot x$.

LEMMA 2. Let S be a semigroup, H an \mathcal{H} -class in S and $x \in H$. If $T \subset S$ with $xT \subset H$ and if $e \in T$ is a right identity for T then

$$(H \cdot x)T = (H \cdot x) \cap Se = (H \cdot x)e.$$

PROOF. First note that since $xT \subset H$, we have $T \subset H \, \cdot \, x$. Since $e \in T$ we have $(H \, \cdot \, x)e \subset (H \, \cdot \, x)T$.

Also

$$(H \cdot x)T = (H \cdot x)(Te) = ((H \cdot x)T)e(H \cdot x)e$$

since $H \, \cdot \, x$ is a subsemigroup of S. It is clear that

$$(H \cdot x)Se = (H \cdot x)e.$$

LEMMA 3. Let S be a semigroup, H an \mathcal{H} -class in S and $x \in H$. If G is a subgroup of S with identity e and if xG = H then $(x \cdot x) \cdot G = (H \cdot x) \cap Se$ $(H \cdot x)e$.

PROOF. By the preceding lemma we have $(x \cdot x)G \subset (H \cdot x) \cap Se$. If $p \in (H \cdot x) \cap Se$ then by lemma 1 we have $(x \cdot x)$ meets pG. Say $pg \in x \cdot x$ with $g \in G$. Then

$$\phi = \phi e = \phi(gg^{-1}) = (\phi g)g^{-1} \in (x \cdot x)G.$$

If A and B are subsets of the semigroup S, we say that A is right (left) cancellative on B if for any $a \in A$ and $b_1, b_2, \in B$, $b_1a = b_2a$ ($ab_1 = ab_2$) implies $b_1 = b_2$.

LEMMA 4. Let S be a semigroup, H an \mathcal{H} -class in S and $x \in H$. If $B \subset S$ is right cancellative on $x \cdot x$ and x is left cancellative on B then the mapping

 $m: (x \cdot x) \times B \rightarrow (x \cdot x)B$ defined by m(z, b) = zb is one-to-one. If zb = bz for all $z \in x \cdot x$ and $b \in B$ then m is an isomorphism. If, further, S is compact and B is closed then m is a homeomorphism.

PROOF. If zb = wc where $z, w \in x : x$ and $b, c \in B$ then xb = (xz)b = x(zb) = x(wc) = (xw)c = xc hence b = c whence it follows that z = w. The remaining conclusions are easily established. We have now established

THEOREM 1. Let S be a semigroup, H an \mathscr{H} -class in S and $x \in H$. If G is a subgroup of S with identity e and if the mapping $\lambda_x : G \to H$ defined by $\lambda_x(g) = xg$ is one-to-one and onto then the mapping $m : (x \cdot x) \cap Se \times G \to$ $(x \cdot x)G = (H \cdot x) \cap Se = (H \cdot x)e$ defined by m(z, g) = zg is one-to-one and onto. If zg = gz for all $z \in x \cdot x$ and $g \in G$ then m is an isomorphism. If, further, S is compact and G is closed then m is a homeomorphism. We note that the usual factorization (e.g. see [2]) of an isogroup is included in the above theorem.

Recall, [1], that if H is an \mathscr{H} -class in S and $h \in H$ then $H \cdot h$ is a subsemigroup of S. The relation \mathscr{S}_h defined on $H \cdot h$ by

$$x \equiv y(\mathscr{S}_h) \rightleftharpoons hx = hy$$

is a congruence and

$$(H \cdot h) / \mathscr{S}_h \equiv \mathscr{SI}_h$$

is a group. In case S is compact, \mathscr{GI}_h is a compact group homeomorphic with H. If H contains an idempotent then the subgroup H is isomorphic with \mathscr{GI}_h .

Throughout the following we will assume S is a compact homogroup, i.e. the kernel, K, of S is a group. Since the adjunction of an identity does not disturb the \mathscr{H} -class structure of S, we will assume S has an identity. Letting e be the identity of K we note that ex = xe for all $x \in S$, hence the function $\lambda_e: S \to K$ defined by $\lambda_e(x) = ex$ is a homomorphism. We recall from [1] that if $x, y \in S$ with $xH_y = H_x$ then $H_y : y \in H_x$. x and the identity homomorphism $i: H_y: y \to H_x: x$ induces an epimorphism $\varphi_y: \mathscr{GI}_y \to \mathscr{GI}_x$. Moreover, \mathscr{GI}_y acts as a group of homomorphisms on $(H_x \cdot x) \cap Sy$, and Ker (φ_y) is an effective transformation group on $x \cdot x \cap Sy$. Also note that if $z \in H_x \cdot x \cap Sy$ and $\alpha \in \mathscr{SI}_y$ then $x(z\alpha) = z$ $(xz)\varphi_y(\alpha)$. We now assume that for some $a \in S$, $eH_a = H_e = K$. Let G be the kernel of φ_a where $\varphi_a: \mathscr{GI}_a \to \mathscr{GI}_s = K$ is as above. Observe that $\alpha \in G$ if and only if α acts as the identity on K, i.e. $k\alpha = k$ for all $k \in K$. We now assume that G has a local cross section in \mathcal{GI}_{a} (as is the case, for example, if \mathscr{GI}_a is finite dimensional), i.e. there is an open set $V = V^{-1}$ contained in $K = \mathscr{GI}_a/G$ and containing e and there is a continuous function $\gamma: V^* \to V^*$ \mathscr{GI}_a such that $\varphi_a(\gamma(x)) = x$ for all $x \in V^*$. This being the case, then Sa is a fibre bundle in the sense of the Steenrod [3]. The base space is K, the projection mapping is $\lambda_e | Sa = p$. The fibre is given by $F = (e \cdot e) \cap Sa$. Observe that if Sa is connected then by a result in [1], the fibre F is also connected. For the coordinate neighborhoods we take the family of all $V_{\alpha} = V \cdot \alpha$ for $\alpha \in \mathcal{GI}_a$. Now we define the coordinate functions

$$\varphi_a: V_{\alpha} \times F \to p^{-1}(V_{\alpha})$$
 by $\varphi_{\alpha}(z, w) = w(\gamma(z\alpha^{-1})\alpha)$

for $z \in V_{\alpha}$ and $w \in F$. It is easily seen that φ_{α} is well defined and continuous. We now show that φ_{α} is a homeomorphism. Suppose $z, z' \in V_{\alpha}, w, w' \in F$ and $\varphi_{\alpha}(z, w) = \varphi_{\alpha}(z', w')$. Then $(\varphi_{\alpha}(z, w)) = ew(\gamma(z\alpha^{-1})\alpha) = (e\gamma(z\alpha^{-1})\alpha) = (z\alpha^{-1})\alpha = z$ and $e(\varphi(z', w')) = ew'(\gamma(z'\alpha^{-1})\alpha) = (e\alpha(z'\gamma^{-1})\alpha) = (z'\alpha^{-1})\alpha = z'$ hence z = z'. Since \mathscr{SF}_{α} acts as a group of permutations on Sa, it follows from the fact that $w(\gamma(z\alpha^{-1})\alpha) = w'(\gamma(z\alpha^{-1})\alpha)$ that w = w'. Thus φ is one-to-one. To see that φ is onto, choose $x \in p^{-1}(V_{\alpha})$ so that $x \in Sa$ and $ex \in V_{\alpha}$. Then $ex\alpha^{-1} \in V_{\alpha}$ and so $\gamma(ex\alpha^{-1}) \in \mathscr{GI}_{a}$. Now set z = ex and $w = x\alpha^{-1}(\gamma(ex\alpha^{-1})^{-1})$ then

$$\varphi(z,w) = [x^{-1}(\gamma(cx\alpha^{-1})^{-1})][\gamma(cx\alpha^{-1})\alpha] = xe_a = x,$$

where e_a is the identity of \mathscr{SI}_a . To see that $w \in F$ first note that $w \in Sa$ and $ew = e[x\alpha^{-1}(\gamma(ex\alpha^{-1})^{-1})] = (ex)\varphi_a(\alpha^{-1}(\gamma(ex\alpha^{-1}))) = (ex)\varphi_a(\alpha^{-1})\varphi_a(\gamma(ex\alpha^{-1})^{-1})) = (ex\alpha^{-1})(ex\alpha^{-1}) = (ex\alpha^{-1}(\alpha(ex)^{-1})) = e$ and so $w \in e$. e. For $\alpha \in \mathscr{SI}_a$ and $z \in V_\alpha$ define $\varphi_{\alpha,z} : F \to p^{-1}(z)$ by $\varphi_{\alpha,z}(w) = \varphi_\alpha(z, w)$. Then for $z \in V_\alpha \cap V_\beta$ and $w \in F$, we have $\varphi_{\alpha,z}^{-1}\varphi_{\beta,z}(w) = w(\gamma(z\beta^{-1})\beta)(\alpha^{-1}\gamma(z\alpha^{-1})^{-1})$. Also

$$e(\gamma(z\beta^{-1})\beta)(\alpha^{-1}\gamma(z\alpha^{-1})^{-1}) = [(z\beta^{-1})\beta][\alpha^{-1}(\alpha z^{-1})] = \alpha$$

so that

$$(\gamma(z\beta^{-1})\beta)(\alpha^{-1}\gamma(z\alpha^{-1})^{-1})\in G.$$

Clearly the mapping

$$g_{\alpha,\beta}: V_{\alpha} \cap V_{\beta} \to G$$
 defined by $g_{\alpha,\beta}(z) = (\gamma(z\beta^{-1})\beta)\alpha^{-1}(\gamma(z\alpha^{-1})^{-1})$

is continuous.

We summarize the foregoing discussion in

THEOREM 2. Let S be a compact semigroup with identity whose kernel K is a group. If $a \in S$ such that $kH_a = K$ for some $k \in K$ and if the kernel of the homeomorphism

 $\varphi_a : \mathscr{G}\mathscr{G}_a \to K$ has a local cross section then Sa has the structure of a fibre bundle. Moreover if Sa is connected then the fibre of the bundle is also connected.

For S a compact semigroup there is associated with each $x \in S$ a homogroup [1] namely, the homogroup

$$H_{x} \cdot x | \mathscr{S}'_{x}$$

where \mathscr{S}'_x is the restriction of \mathscr{S}_x to ker $(H_x \cdot x)$ (i.e. $\mathscr{S}'_x = (\mathscr{S}_x \cap \text{Ker}(H_x \cdot x) \times \text{Ker}(H_x \cdot x)) \cup \Delta$). Thus if S is finite dimensional and $x, y \in S$ with $H_x = xH_y$ then the homogroup

$$(H_x \cdot x) \cap Sy / \mathscr{S}'_{x,y}$$

(where $\mathscr{S}'_{x,y}$ is the restriction of \mathscr{S}'_x to Sy) associated with the pair (x, y) has the structure of a fibre bundle.

COROLLARY. Let S be a compact connected homogroup such that S = SE. If for some pair of points x and y we have $xH_y = K$ then K is an orbit of some H-class H_f , where $f^2 = f$, and the core contains a non-degenerate continuum at e. Moreover, if S is n-dimensional and K is n-1 dimensional then K is arcwise accessible. Indeed, in this case there exist an idempotent f and a standard thread from e, the identity of K, to f. From [1] we know that there is available an idempotent f such that $gH_f \supseteq H_y$. It follows that $eH_f = K$. It is immediate that H_f is n-1 dimensional and so, the homomorphism $t \to et$ defined upon H_f has a local cross section. Since this is an epimorphism the bundle has connected fibres. Now fSf is at most *n*-dimensional, K is n-1-dimensional and fSf is locally the product of K and $e \cdot e \cap fSf$. Since the dimension of K can be defined in terms of the largest call it contains it follows that $\dim(e \cdot e \cap fSf) + \dim K = \dim(e \cdot e \cap fSf \times K)$. So that $e \cdot e \cap fSf$ is precisely one dimensional. It follows now from [6] that $e \cdot e \cap fSf$ contains thread [e, f].

As we have seen [1], an \mathscr{H} -class H behaves in a way remarkably similar to a group. For example xH meets yH implies xH = yH. Of course, H is the underlying space of the Schützenberger group. In the following we note another such phenomenon.

THEOREM 3. Let S be a compact semigroup with identity. If $f: S \to T$ is a continuous epimorphism then for each $a \in S$, $f|H_a$ is equivalant to a group epimorphism in the sense that there exists groups G_1 and G_2 such that the diagram

is commutative and α , β are homeomorphisms and φ is an epimorphism.

PROOF. We first note that $f|(H_a \cdot a) = f_0 : H_a \cdot a \to H_{f(a)} \cdot f(a)$ is a homomorphism and $f_0(\mathscr{G}_a) \subset \mathscr{G}_{f(a)}$. Thus it follows from the induced homomorphism theorem ([4] or [5]) that there is a homomorphism f_0^* such that the diagram

is commutative. Now let $G_1 = \mathscr{G}_a$, $G_2 = f_0^*(\mathscr{G}_a)$ and $\varphi = f_0^*$. We now defined $\alpha : H_a \to G_1$ by $\alpha(y) = g$ if and only if $a \cdot g = y$. Then α is a homeomorphism (see [1]). We will now show that G_2 is a simply transitive group of homeomorphisms on $f(H_a)$. Choose $x \in H_a$, $g \in G_2$ and pick $s \in \rho_a^{-1} \varphi^{-1}(y)$. Now $xs \in H_a$ so $f(x)f(s) = f(xs) \in f(H_a)$, and by definition, $f(x) \cdot g = f(x)f(s)$, since $\rho_{f(a)}f(s) = g$, thus $f(H_a) \cdot g \subset f(H_a)$. Since $\mathscr{G}_{f(a)}$ is a simply transitive group of homeomorphisms on $H_{f(a)}$ it follows that G_2 is effective on $f(H_a)$. To see G_2 is transitive on $f(H_a)$ we choose $x, y, \in H_a$ and $s \in H_a$. a such that xs = y. Then $f(x)(\varphi(\rho_a(s))) = f(x)(\rho_{f(a)}(f_0(s))) = f(x)f(s) = f(xs) = f(y)$, thus the mapping $\beta : f(H_a) \to G_2$ defined by $\beta(y) = g$ if, and only if, f(a)g = y is a homeomorphism and clearly

$$\varphi(\alpha(x)) = \beta(f(x))$$
 for each $x \in H_a$.

It is of interest to remark that the above result shows that $f|_H$ cannot be dimension raising for we must have in fact, for any $h \in H$

$$\dim f(H) + \dim[f^{-1}f(h)] = \dim H.$$

Also, if T is a group then $\mathscr{SI}_{f(x)} = T$ and $f(H_x) = f(x \cdot \mathscr{SI}_x) = f(x) \cdot f_0^*(\mathscr{SI}_x)$, hence, $f(H_x)$ is a coset in T.

THEOREM 4. Let S be a compact semigroup with identity. If for each $x \in S$ there is a positive integer n(=n(x)) such that $x^n \in E$ then the natural mapping $\varphi: S \to S/H$ is light.

PROOF. Let H be an \mathscr{H} -class in S and $x \in H$. If $\alpha \in \mathscr{GI}_x$, choose $y \in H \, \cdot \, x$ such that $\rho_x(y) = \alpha$. Then $y^n \in E \cap H \, \cdot \, x$ for some n, hence α has finite order since ρ_x is a homomorphism. Now if \mathscr{GI}_x is not totally disconnected then the component containing the identity contains a non-trivial homomorphic image of the real numbers, contradicting the fact that every element of \mathscr{GI}_x has finite order. Since H_x is homeomorphic with \mathscr{GI}_x , it follows that H_x is also totally disconnected.

Observe that if each \mathscr{H} -class in a compact connected semigroup with identity is totally disconnected then an \mathscr{H} -class in the kernel reduces to a single point. Thus it follows that the semigroup is acyclic, since $H^n(S) \cong H^n(H)$ where $H \subset K$.

COROLLARY. If S is a compact connected semigroup with identity having the property that some power of every element is idempotent then S is acyclic.

Bibliography

- Anderson, L. W., and Hunter, R. P., The *#*-Equivalence in Compact Semigroups, Bull. Belg. Math. Soc., Tome XIV (1962) 274-296
- Hunter, R. P., On homogroups and their applications to compact connected semigroups, Fund. Math., 52 (1962), 1-34.
- [3] Steenrod, N., The topology of fibre bundles, Princeton University Press (1951).
- [4] Anderson, L. W., and Hunter, R. P., Homomorphisms and dimension, Math. Annalen, 147, (1962) 248-268.
- [5] Wallace, A. D., Tulane University notes, 1955.
- [6] Hunter, R. P., On the semigroup structure of continua, Trans. A.M.S. (1958), 356.

The Pennsylvania State University.