ON THE CLASS NUMBER OF A RELATIVELY CYCLIC NUMBER FIELD

HIDEO YOKOI

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

Introduction

Let l be a rational prime. For each $n \ge 0$, denote by ζ_{l^n} a primitive l^n -th root of unity and by $\mathbf{Q}(\zeta_{l^n})$ the cyclotomic field obtained by adjoining ζ_{l^n} to the rational field \mathbf{Q} . Then a theorem which was proved by \mathbf{H} . Weber¹⁾ is well known:

THEOREM (H. WEBER). The class number of $\mathbf{Q}(\zeta_{2\nu})$ is odd.

As a generalization of this theorem of Weber, Ph. Furtwängler²⁾ gave:

THEOREM (PH. FURTWÄNGLER). The class number of $\mathbf{Q}(\zeta_{l'})$ is divisible by the prime l if and only if the class number of $\mathbf{Q}(\zeta_l)$ is divisible by l.

Moreover, Ph. Furtwängler³⁾ obtained

THEOREM (Ph. Furtwängler). Let F and K be two subfields of $\mathbb{Q}(\zeta_{I^{\flat}})$. If F is contained in K, then the class number of K is divisible by the class number of F.

Afterwards, K. Iwasawa49 generalized these theorems, and got

THEOREM (K. IWASAWA)⁵). Let F be an algebraic number field, and let K be a finite Galois extension of F. Then we have the following facts:

- (1) If there exists a prime divisor P of F which is fully ramified in the extension K/F, then the class number of K is divisible by the class number of F.
 - (II) If, furthermore, K/F is a cyclic extension of prime power degree 1 and

Received February 16, 1966.

¹⁾ Cf. H. Weber [21].

²⁾ Cf. Ph. Furtwängler [7].

³⁾ Cf. Ph. Furtwängler [6].

⁴⁾ Cf. K. Iwasawa [12].

⁵⁾ This theorem is often referred to e.g. in S.-N.Kuroda [16], K. Iwasawa [14] etc.

has no ramified prime divisor other than P, then conversely the class number of F is divisible by l provided the class number of K is divisible by l.

In the present paper, we shall give some results on the ideal class number of a relatively cyclic number field including, in particular, a generalization of the theorem of Iwasawa. We shall first give some preliminaries in § 2. Next we shall consider in § 3 the ideal class group of a relatively cyclic number field, and in § 4 ideal class numbers and unit groups. Finally in § 5 we shall give main theorems which include the theorem of Iwasawa.

§ 1. Notations

Generally, for an arbitrary abelian group B and its subgroup B', the order of B and the index of B' in B are denoted by [B] and [B:B'], respectively.

The notations which are used throughout this paper for an arbitrary number field k are:

 E_k : the group of units in k.

 C_k : the group of absolute ideal classes in k.

 \tilde{k} : the absolute class field of k.

 h_k : the number of absolute ideal classes in k.

Let K/F be a Galois extension with finite degree n over an algebraic number field F of finite degree, and G = G(K/F) be the Galois group of K/F. Then, as usual, we shall denote by $H^r(G, B)$ or sometimes simply by $H^r(B)$ the r-dimensional Galois cohomology group of G acting on an abelian group G, and by G(G) the Herbrand quotient of G, i.e. $G(G) = [H^0(G, B)]/[H^1(G, B)]$. Furthermore, we used the notations

 $\Pi e(\mathfrak{p})$: product of the ramification exponents of all the finite prime divisors \mathfrak{p} in F with respect to K/F.

 $\Pi e(\mathfrak{p}_{\infty})$: product of the ramification exponents of all the infinite prime divisors \mathfrak{p}_{∞} in F with respect to K/F.

 $\widetilde{\Pi}e(\mathfrak{p})$: product of the ramification exponents of all the finite and infinite prime divisors in F with respect to K/F, i.e. $\widetilde{\Pi}e(\mathfrak{p})=\Pi e(\mathfrak{p})\times \Pi e(\mathfrak{p}_{\infty})$.

(A): the group of principal ideals in K.

 (α) : the group of principal ideals in F.

 (ε) : the group of units in F.

 (η) : the group of units which are norms of numbers in K.

 (A_0) : the group of ambiguous principal ideals in K/F.

 (a_F) : the group of ideals in F.

 (a_0) : the group of ambiguous ideals in K/F.

A : the group of ambiguous ideal classes in K/F.

 A_0 : the group of ideal classes represented by ambiguous ideals in K/F.

 A_F : the group of ideal classes of K represented by ideals of F.

 NC_K : the image by the norm homomorphism of C_K with respect to K/F.

 $_{N}C_{K}$: the kernel by the norm homomorphism of C_{K} with respect to K/F.

a: the number of ambiguous ideal classes in K/F, i.e. a = [A].

 a_0 : the number of ideal classes represented by ambiguous ideals in K/F, i.e. $a_0 = [A_0]$.

 h_0 : the number of ideal classes of F which become principal in K.

§ 2. Preliminaries

Let K/F be a Galois extension with finite degree n over an algebraic number field F of finite degree. Then we have the following two lemmas:

LEMMA 1.

$$a_0 = h_F \cdot \frac{\Pi e(\mathfrak{p})}{\lceil H^1(G, E_K) \rceil}.$$

Proof. For a_0 we have

$$a_0 = [A_0] = [(A)(a_0) : (A)] = [(a_0) : (A_0)] = \frac{[(a_0) : (\alpha)]}{[(A_0) : (\alpha)]}.$$

On the other hand, we know that $H^1(G, E_K)$ is canonically isomorphic with the factor group of the group of ambiguous principal ideals of K modulo the group of principal ideals of F^{6} , i.e.

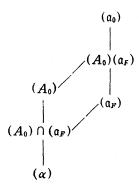
$$H^{1}(G, E_{K}) \cong (A_{0})/(\alpha).$$

Since $[(a_0):(\alpha)] = [(a_0):(a_F)][(a_F):(\alpha)] = \Pi e(\mathfrak{p}) \times h_F$, lemma 1 is clear.

LEMMA 2. In the following diagram:

⁶⁾ Cf. K. Iwasawa [13] or A. Brumer-M. Rosen [3].

34 HIDEO YOKOI



we have

 $[(A_0)\cap(a_F):(\alpha)]=h_0,$

 $[(a_F):(A_0)\cap(a_F)]=[(A_0)(a_F):(A_0)]=h_F/h_0,$

 $[(A_0):(A_0)\cap(a_F)]=[(A_0)(a_F):(a_F)]=[H^1(G,E_R)]/h_0,$

 $[(a_0): (A_0)(a_F)] = \operatorname{\Pie}(\mathfrak{p}) \cdot h_0/[H^1(G, E_K)].$

In particular, h_0 is a common divisor of h_F and $[H^1(G, E_K)]$.

Proof. $[(A_0) \cap (\alpha_F) : (\alpha)] = h_0$ is a direct consequence of our definition of h_0 . Since $[(\alpha_F) : (\alpha)] = h_F$, we have $[(\alpha_F) : (A_0) \cap (\alpha_F)] = h_F/h_0$, and hence $[(A_0)(\alpha_F) : (A_0)] = h_F/h_0$. On the other hand, since $[(A_0) : (\alpha)] = [H^1(G, E_K)]^{7}$, we have $[(A_0) : (A_0) \cap (\alpha_F)] = [H^1(G, E_K)]/h_0$, and hence $[(A_0)(\alpha_F) : (\alpha_F)] = [H^1(G, E_K)]/h_0$.

Finally, since by lemma 1 we know $[(\mathfrak{a}_0): (A_0)] = a_0 = \Pi e(\mathfrak{p}) \cdot h_F / [H^1(G, E_K)]$, we have $[(\mathfrak{a}_0): (A_0)(\mathfrak{a}_F)] = \Pi e(\mathfrak{p}) \cdot h_0 / [H^1(G, E_K)]$.

From now in this \S , we suppose especially that K/F is cyclic of finite degree n, and let σ be a generator of the Galois group G.

LEMMA 3.

$$Q(E_K) = \Pi e(\mathfrak{p}_{\infty})/n^{8j}$$
 and $Q(\mathbf{C}_K) = 1$.

namely $[H^r(G, C_K)]$ is a constant which does not depend on r.

Proof. If we let E'_K be any G-subgroup of E_K with finite index, then by the lemma of Herbrand we have $Q(E'_K) = Q(E_K)$. In particular, we may choose the unit group of Artin⁹⁾ as E'_K , and we have $Q(E'_K) = \Pi e(\mathfrak{p}_{\infty})/n$. Hence we

⁷⁾ Cf. K. Iwasawa [13] or A. Brumer-M. Rosen [3].

⁸⁾ Cf. C. Chevalley [5] for the case where K/F is cyclic of prime degree.

⁹⁾ Cf. E. Artin [2].

get $Q(E_K) = \Pi e(\mathfrak{p}_{\infty})/n$.

On the other hand, since C_K is a finite G-group, we have $Q(C_K) = 1$, namely $[H^0(G, C_K)] = [H^1(G, C_K)]$, and since K/F is cyclic, we know that $[H^r(G, C_K)]$ is a constant which does not depend on r^{10} .

LEMMA 4. Let n_1 , n_2 be invariants of K/F determined by $\frac{h_F}{n_1} = [C_K : {}_NC_K]$ and $\frac{\widetilde{\Pi}e(\mathfrak{v})}{n_2 \cdot [\varepsilon : \eta]} = [{}_NC_K : C_K^{1-\sigma}] = [H^r(G, C_K)]$ for any integer r. Then, for the ambiguous class number a, we have $a = \frac{h_F}{n_1} \times \frac{\widetilde{\Pi}e(\mathfrak{v})}{n_2 \cdot [\varepsilon : \eta]} \cdot n_1 \times n_2 = n$. In particular, $h_F \times \widetilde{\Pi}e(\mathfrak{v}) \equiv 0 \mod n^{11}$.

Proof. Since $[C_K : {}_NC_K] = [NC_K]$ is a divisor of h_F and $[{}_NC_K : C_K^{1-\sigma}]$ is a divisor of $[(\alpha) : (\nu)] = \widehat{\Pi}e(\mathfrak{p})/[\epsilon : \eta]^{12}$, we may obtain integers n_1 , n_2 such that

$$h_{F} = [\mathbf{C}_{K} : {}_{N}\mathbf{C}_{K}] \times n_{1}, \quad \frac{\widetilde{n}e(\mathfrak{p})}{[\varepsilon : \eta]} = [{}_{N}\mathbf{C}_{K} : \mathbf{C}_{K}^{1-\sigma}] \times n_{2}.$$

Since $a = [A] = [C_K : C_K^{1-\sigma}] = [C_K : {}_N C_K][_N C_K : C_K^{1-\sigma}],$ we have

(1)
$$a = \frac{h_F}{n_1} \times \frac{\widetilde{\Pi}e(\mathfrak{v})}{n_2 \cdot [\varepsilon : \eta]}.$$

Furthermore, from lemma 3 we have for any integer r

$$\frac{\widetilde{H}e(\mathfrak{b})}{n_2 \cdot [\varepsilon : \eta]} = [_{N}\mathbf{C}_{K} : \mathbf{C}_{K}^{1-\sigma}] = [H^{-1}(G, \mathbf{C}_{K})] = [H^{r}(G, \mathbf{C}_{K})].$$

On the other hand, since for $a = [A] = [A : (A)(a_0)] \times [(A)(a_0) : (A)] = [A : (A)(a_0)] \times a_0$ we have $[A : (A)(a_0)] = [\eta : NE_K]^{13}$, we see at once from lemma 1

$$a = h_F \times \frac{IIe(\mathfrak{p})}{[H^1(E_K)]} \times [\eta : NE_K].$$

Since $\frac{[H^0(G, E_K)]}{[H^1(G, E_K)]} = Q(E_K) = \frac{\Pi e(\mathfrak{p}_{\infty})}{n}$ by lemma 3, and $[H^0(G, E_K)] = [\varepsilon : NE_K]$ = $[\varepsilon : \eta][\eta : NE_K]$, we have

(2)
$$a = h_F \times \frac{\widetilde{\Pi}e(\mathfrak{p})}{n \cdot [\varepsilon : \eta]}.$$

¹⁰⁾ Cf. lemma 4,

¹¹⁾ For the absolutely cyclic extension, this relation is already found in S. Iyanaga-T. Tamagawa [15]. Cf. H. W. Leopoldt [17], too.

¹²⁾ Cf. lemma 5.

¹³¹ Cf. lemma 6.

Consequently, we obtain $n = n_1 \times n_2$ from (1) and (2), and it is clear from (2) that $h_r \times \tilde{\Pi} e(\mathfrak{p}) \equiv 0 \mod n$ holds. Thus we have proved all the assertions of our lemma 4.

LEMMA 5. $\widetilde{\Pi}e(\mathfrak{p})$ is divisible by $[\varepsilon:\eta]$ and the conditions:

(I)
$$a = h_F$$
, (II) $\frac{\widetilde{n}e(\mathfrak{p})}{[\varepsilon:\eta]} = n$

are equivalent to each other.

36

Proof. Let (ν) be the group of principal ideals (ν) in F such that ν is a norm residue of mod an ideal \mathfrak{m} with respect to K/F. If we choose the ideal \mathfrak{m} suitably, then the index of (ν) in (α) is equal to $\widetilde{H}e(\mathfrak{p})/[\varepsilon:\eta]$. Hence $\widetilde{H}e(\mathfrak{p})$ is divisible by $[\varepsilon:\eta]$.

On the other hand, it is evident from lemma 4 that $a = h_F$ and $\widetilde{H}e(\mathfrak{p}) = n \cdot [\varepsilon : \eta]$ are equivalent to each other.

LEMMA 6. In the decomposition

$$a = [A] = [A : (A)(a_0)][(A)(a_0) : (A)(a_F)][(A)(a_F) : (A)]$$

of a, we have $[A:(A)(\mathfrak{a}_0)] = [\eta:NE_K]$, $[(A)(\mathfrak{a}_0):(A)(\mathfrak{a}_F)] = \frac{\Pi e(\mathfrak{p}) \cdot h_0}{[H^1(G,E_K)]}$ and $[(A)(\mathfrak{a}_F):(A)] = \frac{h_F}{h_0}$. Hence

$$a = [\eta : NE_K] \times \frac{\pi e(\mathfrak{p}) \cdot h_0}{[H^1(G, E_K)]} \times \frac{h_F}{h_0}.$$

Proof. To any ideal α belonging to an ambiguous class in K/F, there corresponds an unit η in (η) in the following way: since $\alpha^{1-\sigma}$ is a principal ideal, there exists a number θ in K such that $\alpha^{1-\sigma} = (\theta)$, and $N\theta$ is clearly an unit η in F. In this correspondence, an ideal which belongs to an ideal class represented by an ambiguous ideal in K/F corresponds to an element in NE_K . Hence we have

$$[\mathbf{A}:(A)(\mathfrak{a}_0)]=[\eta:NE_K].$$

 $[(A)(a_F): (A)] = h_F/h_0$ is evident from the definition of h_0 .

Finally, from the above two assertions and lemma 4 we see easily $[(\mathbf{A})(\mathfrak{a}_0):(\mathbf{A})(\mathfrak{a}_F)]=He(\mathfrak{p})\cdot h_0/[H^1(G,E_K)].$

§ 3. Ideal class group

We shall, here, consider the relative genus field (Geschlechterkörper). Let K/F be an abelian extension of a number field F of finite degree, and let K^* be the maximal extension field which is abelian over F and unramified over K. After Hasse-Leopoldt we shall call such a extension field K^* the relative genus field with respect to K/F, and call the relative degree $g^* = [K^* : K]$ the relative genus number with respect to K/F. Moreover, we shall call the ideal group H^* , to which the relative genus field K^* corresponds by class field theory, the relative principal genus with respect to K/F.

Proposition 1. If K/F is a cyclic extension of F, then the relative principal genus H^* with respect to K/F is the $(1-\sigma)$ -th power of the ideal class group C_K of K, i.e. $H^* = C_K^{1-\sigma}$, where σ is a generator of the Galois group G = G(K/F). (Relative principal genus theorem)

Moreover, the relative genus number g^* with respect to K/F is equal to the ambiguous class number a with respect to K/F, i.e. $g^* = a$.

Proof. Since K^* is an unramified abelian extension over K, K^* is contained in the absolute class field of K. Hence the relative principal genus H^* with respect to K/F contains the group of principal ideals in K and is composed of ideal classes in K. By the criterion of Hasse 15, the relative principal genus H^* must contain the $(1-\sigma)$ -th power $C_K^{1-\sigma}$ of the ideal class group C_K . Moreover, H^* must be equal to $C_K^{1-\sigma}$ because of the maximal property of the relative genus field K^* .

Next, in the homomorphism of C_K onto $C_K^{1-\sigma}$ the kernel is evidently the group of ambiguous ideal classes A with respect to K/F. Hence from the theorem of homomorphism and the above relation $H^* = C_K^{1-\sigma}$, it follows at once that

$$g^* = [K^* : K] = [C_K : H^*] = [C_K : C_K^{1-\sigma}] = [A] = a.$$

PROPOSITION 2. Let K/F be a cyclic extension of degree n, and denote by a_1 the order of $A \cap C_K^{1-\sigma}$, i.e. $a_1 = [A \cap C_K^{1-\sigma}]$. Then we have

- (i) $C_K = A + C_K^{1-\sigma}$ is direct if and only if $a_1 = 1$,
- (ii) a is not prime to the degree n if $a_1 \neq 1$,

¹⁴⁾ Cf. H. Hasse [9] and H. W. Leopoldt [17].

¹⁵¹ Cf. H. Hasse [10], II, § 5.

38 HIDEO YOKOI

where we denote by σ a generator of the Galois group G = G(K/F).

Proof. It is evident from the fact $h_K = a \times b_1$ that $C_K = A + C_K^{1-\sigma}$ is direct if and only if $a_1 = [A \cap C_K^{1-\sigma}] = 1$, where $b_1 = [C_K^{1-\sigma}]$.

Next, we consider the factor group $B = C_K/A$ of the ideal class group C_K modulo the group of ambiguous classes A with respect to K/F. Since the group of ambiguous classes A is a G-invariant subgroup of C_K , the factor group B is also a G-module and B is isomorphic with the group $C_K^{1-\sigma}$ as G-module. Therefore, if $a_1 \neq 1$, then there exists an element $B \notin A$ of B such that $B^{\sigma} = B$ holds. Namely, there exists an ideal class C of C_K such that $C^{\tau} = CA$ holds for some ambiguous class A which is not the principal ideal class of C_K . Since $C = C^{\sigma^n} = CA^n$, A^n is the principal ideal class of C_K . Hence the order a of the group A is not prime to n.

PROPOSITION 3. Let K/F be a cyclic extension of a prime power degree l^{ν} , and put $a_i = [A \cap C_K^{(1-\sigma)^i}]$, $b_j = [C_K^{(1-\sigma)^j}]$ (i, j = 0, 1, 2, ...). Then there exists an integer s (≥ 0) such that

- (i) $h_K = a_0 \times a_1 \times \cdots \times a_{s-1} \times a_s \times b_{s+1}$
- (ii) a_i is divisible by a_{i+1} (i = 0, 1, ..., s-1),

(iii)
$$\begin{cases} a_0 \equiv a_1 \equiv \cdots \equiv a_{s-2} \equiv 0 \\ a_{s-1} > a_s = 1, b_{s+1} \equiv 1 \end{cases}$$
 (mod l).

Proof. Since the group C_K is an abelian group with finite order h_K , there exists an integer $s \ge 0$ such that $C_K = C_K^{1-\sigma} = C_K^{(1-\sigma)^2} = \cdots = C_K^{(1-\sigma)^{s-1}} = C_K^{(1-\sigma)^{s-1}} = C_K^{(1-\sigma)^{s-1}} = C_K^{(1-\sigma)^{s-1}}$. where σ is a generator of the Galois group G = G(K/F).

Put here $A_i = A \cap C_K^{(1-\sigma)^i}$ for convenience. Then, since $b_i = a_i \times b_{i+1}$ (i = 0, 1, 2, ...) and

$$\mathbf{A_0} = \mathbf{A} \supseteq \mathbf{A_1} \supseteq \mathbf{A_2} \supseteq \cdots \supseteq \mathbf{A_{s-1}} \supseteq \mathbf{A_s} = \mathbf{A_{s+1}} = \cdots = \{1\},$$

we have first

$$h_K = b_0 = a_0 \times b_1 = a_0 \times (a_1 \times b_2) = \cdots = (\prod_{i=0}^s a_i) \times b_{s+1}$$

and $a_{s-1} + a_s = 1$.

Next, since each A_{i+1} is a subgroup of A_i , a_i is divisible by a_{i+1} for every integer $i = 0, 1, 2, \ldots, s-1$.

Finally, since $[A \cap C_K^{(1-\sigma)^{s-1}}] = a_{s-1} + 1$ holds, we know easily by the same way as in the proof of proposition 2 that the order a_{s-2} of $A \cap C_K^{(1-\sigma)^{s-2}}$ is not

prime to the degree l of K/F, namely a_{s-2} is divisible by l. Therefore we get $a_0 \equiv a_1 \equiv \cdots \equiv a_{s-2} \equiv 0 \mod l$. Since the order of the Galois group G = G(K/F) is a prime power l, each element of $\mathbf{C}_K^{(1-\sigma)^i}$ which is not in $\mathbf{A} \cap \mathbf{C}_K^{(1-\sigma)^i}$ has at least two, and so a multiple of the prime l different G-conjugates for every $i=0,1,\ldots$ Therefore we have at once $b_i \equiv a_i \mod l$ in the decomposition of b_i , i.e. $b_i = a_i \times b_{i+1}$. In particular, since $a_s = 1$ we have $b_{s+1} = a_s \times b_{s+1} = b_s \equiv a_s = 1 \mod l$.

§ 4. Ideal class number and unit group

Proposition 4. Let K/F be any Galois extension of finite degree n. If h_F is prime to the degree n, i.e. $(h_F, n) = 1$, then

- (i) $\mathbf{A}_F = (A)(\mathfrak{a}_F) \cong \mathbf{C}_F$ i.e. $h_F = [\mathbf{A}_F : (A)]$ and $h_0 = n_1 = 1$,
 - (ii) $\mathbf{C}_K = \mathbf{A}_F + {}_{N}\mathbf{C}_K$ is direct,
 - (iii) $He(\mathfrak{p}) = [H^1(G, E_K)][(A)(\mathfrak{a}_0) : (A)(\mathfrak{a}_F)].$

Proof. (i) By the assumption $(h_F, n) = 1$ and lemma 2, 4, we have $h_0 = 1$, $n_1 = 1$ at once. Hence we obtain $h_F = [A_F : (A)]$ and a natural isomorphism $A_F \cong C_F$.

(ii) Let C be any ideal class in $A_F \cap {}_N C_K$. Then, since C belongs to ${}_N C_K$. $N_{K/F}C$ is the principal ideal class I_F in C_F . Moreover, since C also belongs to A_F , we have $N_{K/F}C = \mathfrak{a}_F^n \cdot I_F$ for an ideal \mathfrak{a}_F in F. Hence \mathfrak{a}_F^n is a principal ideal of F. On the other hand, from the assumption $(h_F, n) = 1$, \mathfrak{a}_F itself must be a principal ideal of F. Hence C is the principal ideal class of C_K , namely $A_F + {}_N C_K$ is direct in C_K .

Next, since h_F is prime to n, A_F is isomorphic to C_F and $N_{K/F}A_F = C_F$ holds. Hence we obtain $N_{K/F}C_K = N_{K/F}A_F = C_F$. Thus we know that C_K is contained in $A_F + {}_N C_K$, namely we know that $C_K = A_F + {}_N C_K$ is direct.

(iii) By proposition 4, (i) we have $a_0 = h_F \cdot [(A)(a_0) : (A)(a_F)]$. Hence we have $\Pi e(\mathfrak{p}) = [H^1(G, E_K)][(A)(a_0) : (A)(a_F)]$ by lemma 1.

PROPOSITION 5. If K/F is a cyclic extension of finite degree n and a is prime to the degree n, i.e. (a, n) = 1, then we have

- (i) $C_K = A + C_K^{1-\sigma}$ is direct,
- (ii) $a = h_F/h_0$, $h_0 = n_1$ and $a_1 = 1$,
- (iii) $[H^1(G, E_K)] = \Pi e(\mathfrak{p}) \cdot h_0$, $[H^0(G, E_K)] = [\varepsilon : \eta] = h_0 \cdot \widetilde{\Pi} e(\mathfrak{p})/n$, $H^r(G, C_K)$

40 HIDEO YOKOI

 $= \{1\}$ for any integer r.

Moreover, if we assume that K/F is cyclic with a prime power degree l^{ν} , then we have $b_1 = b_2 \equiv 1 \mod l$, where $b_i = [C_K^{(1-\sigma)^i}]$ (i = 1, 2).

Remark. The natural homomorphism $C_F \to C_K$ gives an isomorphism of $NC_K \subset C_F$ into C_K . For, since $[NC_K : (\alpha)] = h_F/n_1$, $[(A)(\mathfrak{a}_F) : (A)] = h_F/h_0 = [A]$ and $h_0 = n_1$ by proposition 5, (ii), we have $[NC_K : (\alpha)] = [(A)(\mathfrak{a}_F) : (A)]$.

Proof. By the assumption (a, n) = 1 and proposition 2, we know that $a_1 = 1$ and $C_K = A + C_K^{1-\sigma}$ is direct. In particular, we have $b_1 = b_2 \equiv 1$ mod. l by proposition 3 provided that K/F is cyclic with a prime power degree l^{ν} .

On the other hand, the numbers

$$\frac{h_F}{n_1}$$
, $\frac{\widetilde{\Pi}e(\mathfrak{p})}{n_2 \cdot [\varepsilon : \eta]}$, $[\eta : NE_K]$, $\frac{\Pi e(\mathfrak{p})}{[H^1(G, E_K)]} \cdot h_0$ and $\frac{h_F}{h_0}$

appearing in the representations

$$a = \frac{h_F}{n_1} \times \frac{\tilde{\Pi}e(\mathfrak{p})}{n_2 \cdot [\varepsilon : \eta]} = [\eta : NE_K] \cdot \frac{\Pi e(\mathfrak{p})}{[H^1(G, E_K)]} \cdot h_0 \times \frac{h_F}{h_0} \text{ of a,}$$

are all integers. Moreover $\frac{\widetilde{H}e(\mathfrak{p})}{n_2 \cdot [\varepsilon : \eta]}$, $[\eta : NE_K]$, $\frac{He(\mathfrak{p})}{[H^1(G, E_K)]} \cdot h_0$ are composed of the prime factors of n. Hence we have $\frac{\widetilde{H}e(\mathfrak{p})}{n_2 \cdot [\varepsilon : \eta]} = [\eta : NE_K] = \frac{He(\mathfrak{p})}{[H^1(G, E_K)]} \cdot h_0 = 1$ and $[H^1(G, E_K)] = He(\mathfrak{p}) \cdot h_0$, $[H^0(G, E_K)] = [\varepsilon : \eta] = \widetilde{H}e(\mathfrak{p})/n_2$. Furthermore we have $a = h_F/h_0 = h_F/n_1$. Therefore we obtain $h_0 = n_1$ and hence $[H^0(G, E_K)] = \widetilde{H}e(\mathfrak{p})/n_2 = \widetilde{H}e(\mathfrak{p})/n_2 = \widetilde{H}e(\mathfrak{p})/n_2$.

§ 5. Main theorems

THEOREM 1. Let K/F be a finite extension over a number field F of finite degree such that K and the absolute class field \tilde{F} of F are disjoint over F, i.e. $\tilde{F} \cap K = F$. Then we have

- (i) if K/F is Galois, then h_K is divisible by h_F , i.e. h_F/h_K ,
- (ii) if K/F is abelian, then the relative genus number g^* with respect to K/F is divisible by h_F , i.e. h_F/g^* ,
 - (iii) if K/F is cyclic, then a is divisible by h_F , i.e. h_F/a ,
- (iv) if K/F is cyclic and has one and only one ramified prime divisor, then h_F is equal to a and $[\varepsilon: \eta] = 1$.

Proof. (i) This assertion is already known¹⁶, but for the sake of completeness, we add a simple proof.

Since $\widetilde{F}K/K$ is unramified and its Galois group $G(\widetilde{F}K/K)$ is isomorphic to the Galois group $G(\widetilde{F}/F)$, $\widetilde{F}K$ is contained in the absolute class field \widetilde{K} of K and the relative degree $[\widetilde{F}K:K]$ is equal to the relative degree $[\widetilde{F}:F]=h_F$. Hence h_K is divisible by h_F .

- (ii) Since $\tilde{F}K/K$ is unramified and $\tilde{F}K/F$ is abelian, $\tilde{F}K$ is contained in the relative genus field K^* with respect to K/F. Therefore the relative genus number g^* with respect to K/F is divisible by $[\tilde{F}K:K] = [\tilde{F}:F] = h_F$.
- (iii) Since by proposition 1 the number a of ambiguous ideal classes with respect to K/F is equal to the relative genus number g^* with respect to K/F, our assertion (iii) is obvious by (ii).
- (iv) By the above proved (ii) and lemma 4, $a/h_F = \tilde{H}e(\mathfrak{p})/[K:F][\epsilon:\eta]$ is a rational integer. On the other hand, from the assumption that K/F has one and only one ramified prime divisor and $\tilde{F} \cap K = F$, we have at once $\tilde{H}e(\mathfrak{p}) = [K:F]$. Hence we obtain $[\epsilon:\eta] = 1$ and $a/h_F = 1$.

Theorem 2. Let K/F be a cyclic extension of a finite degree n. If we assume $a = h_F$, then we have

- (i) $\widetilde{\Pi}e(\mathfrak{p}) = n \cdot [\varepsilon : \eta],$
- (ii) $[H^1(G, E_K)] = \Pi e(\mathfrak{p}) \cdot [\eta : NE_K],$
- (iii) h_K is divisible by h_F , h_F is divisible by h_0 and h_0 is divisible by $[\eta : NE_K]$, i.e. $[\eta : NE_K]/h_0/h_F/h_K$.

Furthermore, if we assume that K/F is cyclic with a prime power degree l^* , then h_F is not prime to l provided that h_K is not prime to l.

- *Proof.* (i) This assertion follows trivially from lemma 5 and assumption $a = h_F$.
 - (ii) By lemma 3 and (i) we have easily

$$[H^{1}(G, E_{K})] = \frac{n \cdot [H^{0}(G, E_{K})]}{I I e(\mathfrak{p}_{\infty})} = \frac{n \cdot [\varepsilon : \eta] [\eta : NE_{K}]}{I I e(\mathfrak{p}_{\infty})} = \frac{\tilde{H} e(\mathfrak{p}) [\eta : NE_{K}]}{I I e(\mathfrak{p}_{\infty})} = I e(\mathfrak{p}) [\eta : NE_{K}].$$

(iii) Since $h_K = a \times b_1$ is divisible by $a = h_F$, we know first h_F/h_K . Next, h_0/h_F is evident from lemma 2. Finally, from lemma 6 and theorem 2, (ii),

¹⁶⁾ Cf. e.g. C. Chevalley [4], K. Iwasawa [12] or N. C. Ankeny-S. Chowla-H. Hasse [1].

it follows that $[(A)(\mathfrak{a}_0):(A)(\mathfrak{a}_F)] = \Pi e(\mathfrak{p}) \cdot h_0/[H^1(G, E_K)] = h_0/[\eta:NE_K]$ is integer, and so $[\eta:NE_K]/h_0$.

Moreover, we assume that K/F is cyclic with a prime power degree l^{ν} . If h_F is prime to l, then by the assumption $a = h_F$, a is prime to l. Hence we have $b_1 \equiv 1 \mod l$ by proposition 5.

Since $h_K = a \times b_1$, we know that h_K is prime to l provided h_F is prime to l.

It is evident that those theorems 1, 2 are a generalization of the theorem of K. Iwasawa.

Next, we give a corollary of this theorem 2 which is a generalization of the result of S.-N. Kuroda¹⁷⁾ for a cyclic extension of prime degree.

Corollary. Let K/F be a cyclic extension of finite degree n and denote by σ a generator of the Galois group G = G(K/F). If we assume that $a = h_F$ and h_F is prime to n, then we have

- (i) $a=a_0=h_F$, $a_1=h_0=n_1=1$,
- (ii) $\mathbf{C}_K = \mathbf{A} + \mathbf{C}_K^{1-\sigma} = \mathbf{A}_F + {}_{\kappa}\mathbf{C}_K \ (direct),$
- (iii) $[\eta : NE_K] = 1$, $[H^0(G, E_K)] = [\varepsilon : \eta] = \tilde{H}e(\mathfrak{p})/n$, $[H^1(G, E_K)] = He(\mathfrak{p})$, $H^r(G, \mathbf{C}_K) = \{1\}$ for every integer r.

Moreover, if we assume that K/F is cyclic with a prime power degree l^{\vee} , then we have

- (iv) h_K is prime to l,
- (v) $b_1 = h_K/h_F \equiv 1 \mod l$.

Proof. This corollary is evident by theorem 2 and proposition 4, 5.

Appendix. Unramified cyclic extension.

In this appendix we shall consider an unramified cyclic extension K/F over an algebraic number field F of finite degree. Namely, we prove the following proposition:

PROPOSITION. Let K/F be an unramified cyclic extension, then we have

- (i) $[\varepsilon:\eta]=1$, i.e. $[H^0(G,E_K)]=[\eta:NE_K]$,
- (ii) $a = h_F/[K : F],^{18}$ i.e. $\tilde{F} = K^*$,
- (iii) $h_0 = [H^1(G, E_K)] = [K : F][\eta : NE_K],$

¹⁷⁾ Cf. S.-N. Kuroda [16].

¹⁸⁾ For the cyclic extension of prime degree, this relation is already found in M. Moriya [18], T. Honda [11] etc.

where G = G(K/F) is the Galois group of K/F, and K^* is the relative genus field with respect to K/F.

Remark. Assertion (iii) says that the number h_0 of ideal classes of F which become principal in K is a multiple of the degree [K:F], and that the principal ideal theorem of Terada-Tannaka¹⁹¹ claiming that all the ambiguous ideal classes with respect to K/F become principal in the absolute class field \widetilde{F} of F is truely a generalization of the original principal ideal theorem of Hilbert-Furtwängler²⁰¹ when $[H^0(G, E_K)] = [\eta : NE_K] \neq 1$. For, by assertion (iii), $[\eta : NE_K] = 1$ holds if and only if $h_0 = [K:F]$, and moreover by the assertion (ii) the condition $h_0 = [K:F]$ is equivalent to $a = h_F/h_0$. On the other hand, the relation $a = h_F/h_0$ is equivalent to $[A:(A)(a_F)] = 1$ by lemma 6, namely the group of ambiguous ideal classes A with respect to K/F is exactly the group of ideal classes of K represented by ideals of F.

- *Proof.* (i) Since K/F is an unramified cyclic extension, $[\epsilon : \eta] = 1$ is evident from lemma 5.
- (ii) From (i) and lemma 4 we obtain at once $a = h_F/[K : F]$. Hence we have easily $\tilde{F} = K^*$ by proposition 1.
- (iii) Since K/F is unramified, we have $a_0 = h_F/[H^1(G, E_K)]$ by lemma 1 and $a_0 = [(A)(\alpha_F) : (A)]$ from the definition of a_0 , respectively. On the other hand, we have $[(A)(\alpha_F) : (A)] = h_F/h_0$ by lemma 6. Hence we obtain $h_0 = [H^1(G, E_K)]$ for any unramified extension K/F. In particular, if K/F is cyclic and unramified, then we obtain moreover $[H^1(G, E_K)] = [K : F][\eta : NE_K]$ by lemma 3 and assertion (i).

REFERENCES

- [1] N. C. Ankeny-S. Chowla-H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
- [2] E. Artin, Über Einheiten relativ Galoischer Zahlkörper, J. reine angew. Math., 167 (1931), 153-156.
- [3] A. Brumer-M. Rosen, Class number and ramification in number fields, Nagoya Math. J., 23 (1963), 97-101.
- [4] C. Chevalley, Relation entre le nombre de classes d'un sous-corps et celui d'un surcorps, C. R. Sci. Paris, 192 (1931), 257-258.

¹⁹⁾ Cf. F. Terada [20] and T. Tannaka [19].

²⁰⁾ Cf. Ph. Furtwängler [8] etc.

- [5] C. Chevalley, Class field theory, (Th. 10.3), Notes at Nagoya University 1954.
- [6] Ph. Furtwängler, Über die Klassenzahlen abelscher Zahlkörper, J. reine angew. Math., 134 (1908), 91-94.
- [7] Ph. Furtwängler, Über die Klassenzahlen der Kreisteilungskörper, J. reine angew. Math., 140 (1911), 29-32.
- [8] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Hamburg, 7 (1930), 14-36.
- [9] H. Hasse, Zur Geschlechtertheorie in quadratischen Zahlkörper, J. Math. Soc. Japan., 3 (1951), 45-51.
- [10] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper II, (1930), Jahresberichte der D.M.V.
- [11] T. Honda, On absolute class fields of certain algebraic number field, J. reine angew. Math., 203 (1960), 80-89.
- [12] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Hamburg, 20 (1956), 257-258.
- [13] K. Iwasawa, A note on the group of units of algebraic number field, J. math. pure appl., 35 (1956), 189-192.
- [14] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math., 76 (1962), 171-179.
- [15] S. Iyanaga-T. Tamagawa, Sur la théorie du corps de classes sur le corps de nombres rationelles, J. Math. Soc. Japan, 3 (1951), 220-227.
- [16] S.-N. Kuroda, Über die Klassenzahl eines relativzyklischen Zahlkörpers von Primzahlgrade, Proc. Japan Acad., 40 (1964), 623-626.
- [17] H. W. Leopoldt, Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr., 9 (1953), 351-362.
- [18] M. Moriya, Über die Klassenzahl eines relativzyklischen Zahlkörpern von Primzahlgrad, Japanese J. Math., 10 (1933), 1-18.
- [19] T. Tannaka, Some remarks concerning principal ideal theorem, Tōhoku Math. J., 1 (1949), 270-278.
- [20] F. Terada, On a generalization of the principal ideal theorem, Tohoku Math. J., 1 (1949), 229-269.
- [21] H. Weber, Theorie der algebraischen Zahlkörper, Acta Math., 8 (1886), 193-263.

Mathematical Institute

Nagoya University