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Introduction

Let / be a rational prime. For each #»=0, denote by {» a primitive /"-th
root of unity and by Q(¢x) the cyclotomic field obtained by adjoining & to the
rational field Q. Then a theorem which was proved by H. Weber® is well
known :

TueoreM (H. WeBgr). The class number of Q&) s odd.
As a generalization of this theorem of Weber, Ph. Furtwingler® gave:

TueoreM (Pu. FURTWANGLER). The class number of Q(Cp) is divisible by the
prime | if and only if the class number of Q&) is divisible by 1.

Moreover, Ph. Furtwiingler® obtained

TueoreM {Pu. FurTwWANGLER). Let F and K be two subfields of Qin). Jf
F is contained in K, then the class number of K is divisible by the class number
of F.

Afterwards, K. Iwasawa® generalized these theorems, and got

TueoreM (K. Iwasawa)®. Let F be an algebraic number field, and let K be
a finite Galois extension of F. Then we have the following facts:

(1) If there exists a prime divisor P of F which is fully ramified in the
extension K/|F, then the class number of K is divisible by the class number of F.

(ID) If, furthermore, K/F is a cyclic extension of prime power degree I¥ and

Received February 16, 1966.

b Cf. H. Weber [21].

2) Cf. Ph. Furtwiingler [7].

3) Cf. Ph. Furtwiingler [6].

4 Cf. K. Iwasawa [12].

5) This theorem is often referred to e.g. in S.-N.Kuroda [16], K. Iwasawa [14] etc.
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has no ramified prime divisor other than P, then conversely the class number of F
is divisible by | provided the class number of K is divisible by |.

In the present paper, we shall give some results on the ideal class number
of a relatively cyclic number field including, in particular, a generalization of
the theorem of Iwasawa. We shall first give some preliminaries in §2. Next
we shall consider in §3 the ideal class group of a relatively cyclic number
field, and in §4 ideal class numbers and unit groups.  Finally in §5 we shall

give main theorems which include the theorem of Iwasawa.

§1. Notations

Generally, for an arbitrary abelian group B and its subgroup B’, the order
of B and the index of B’ in B are denoted by [B] and [ B : B'], respectively.

The notations which are used throughout this paper for an arbitrary number
field % are: |

E: the group of units in &.

Cr: the group of absolute ideal classes in k.

% : the absolute class field of k.

hi: the number of absolute ideal classes in .

Let K/F be a Galois extension with finite degree # over an algebraic number
field F of finite degree, and G = G(K/F) be the Galois group of K/F. Then,
as usual, we shall denote by H"(G, B) or sometimes simply by H’(B) the r-
dimensional Galois cofxomology group of G acting on an abelian group B, and
by Q(B) the Herbrand quotient of B, i.e. Q(B)=[H"(G, BYJ/[H' (G, B)].
Furthermore, we used the notations

He(p): product of the ramification exponents of all the finite prime
divisors p-in F with respect to K/F.

Me(p,) : product of the ramification exponents of all the infinite prime
divisors p» in F with respect to K/F.

Ile(p): product of the ramification exponents of all the finite and infinite
prime divisors in F* with respect to K/F, i.e. ITe(p) = e(p) x Me(p).

(A) : the group of principal ideals in K.

(a) : the group of principal ideals in F.

(¢) : the group of units in F.

() : the group of units which are norms of numbers in K,
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(Ao) : the group of ambiguous principal ideals in K/F.

(ar) : the group of ideals in F.

(a0) : the group of ambiguous ideals in K/F.

A : the group of ambiguous ideal classes in K/F.

A, : the group of ideal classes represented by ambiguous ideals in K/F.
Ar : the group of ideal classes of K represented by ideals of F.

NCg : the image by the norm homomorphism of Cx with respect to K/F.

~Cx : the kernel by the norm homomorphism of Cx with respect to K/F.

a : the number of ambiguous ideal classes in K/F, ie. a=[Al.

a : the number of ideal classes represented by ambiguous ideals in K/F,
i.e. ao=[A,l

o : the number of ideal classes of F which become principal in K.

§ 2. Preliminaries

Let K/F be a Galois extension with finite degree n over an algebraic
number field F of finite degree. Then we have the following two lemmas:

LemMMma 1.

ITe(p)

@ =he TG, BT

Proof. For a, we have

CTAT— . - . (4= Llao) ()]
ao—[Ao]—[(A)(ao) . (A)]—[(Qo) N (Ao)]— [(A") : (“)]»-

On the other hand, we know that H'(G, Ex) is canonically isomorphic with
the factor group of the group of ambiguous principal ideals of K modulo the

group of principal ideals of F®, i.e.
HUG, Ex)=(Ap)/(a).
Since [(ao) : (a)1=[(a0) : (ap)1(ar) : (a)]= Ie(p) X hy, lemm;‘xv 1 is clear.
LemMma 2. In the following diagram:

6 Cf. K. Iwasawa [13] or A. Brumer-M. Rosen [3].
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(ﬂo)

/(Ao)(ar)
(40"

H /(QF)
(Ao) n (CIF)/

|

(a)

we have
[(A) N (ar) : (@)] = ha,
[(ar) : (Ao N(ar)]=[(A0)(ar) : (A0)] = hr/ho,
[(Ao) (40N (UF)J =[(Ao)(ar) : (ap)l= [HI(G, Ex)]/ho,
[(ao) : (Ao)(ap)] = Ie(p) +ho/[H' (G, Ex)].
In particular, hy is a common divisor of hy and [H'(G, Ex)].

Proof. [(Ao N (ar) : (a)]=h, is a direct consequence of our definition of
hy.  Since [(ar) : (a)] = hy, we have [(ar) : (Ao) N (ap)]=kr/ky, and hence
[(A4y) (ar) : (Ao)] = hr/hy. On the other hand, since [(A4,) : (a«)]=[H'(G, Ex)T",
we have [(Ao) : (A4o) N (ar)]=L[H' (G, Ex)1/hy, and hence [(A,)(ar) : (ar)]=
CH'(G, Ex)1/h.

Finally, since by lemma 1 we know [(a0) : (Ao)] =as = Me(p) «he/LHYG, Ex)],
we have [(a0) : (Ao)(ar)] = IMe(p) +ho/[H'(G, Ex)].

From now in this §, we suppose especially that K/F is cyclic of finite
degree 7, and let ¢ be a generator of the Galois group G.

LemMMma 3.
Q(Ex) = Ne(p)/n® and Q(Ck) =1,
namely [H'(G, Cx)] is a constant which does not depend on r.

Proof. 1f we let Eik be any G-subgroup of Ex with finite index, then by
the lemma of Herbrand we have Q(E%) = Q(Ex). In particular, we may choose
the unit group of Artin® as E%, and we have Q(Ek) = ITe(p,)/n. Hence we

") Cf. K. Iwasawa [13] or A. Brumer-M. Rosen [3].
8 Cf. C. Chevalley [5] for the case where K/F is cyclic of prime degree.
9 Cf. E. Artin [2].

https://doi.org/10.1017/50027763000024119 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024119

ON THE CLASS NUMBER OF A RELATIVELY CYCLIC NUMBER FIELD 35

get Q(Ex) = Me(po)/n.

On the other hand, since Cx is a finite G-group, we have Q(Cx) = 1, namely
[HYG;C)] =[HYG, Cx)], and since K/F is cyclic, we know that [H" (G, Cx)]
is a constant which does not depend on 7"

Lemma 4. Let ny, ne be invariants of K/F determined by =L = [Cg * ~Ck]
and mHEED) 7 =[sCx : Cx"1=UH"(G, Cx)] for any integer r. Then, for the
ambiguous class number a, we have a = hr X —== Te(») XN =n

ny nz-[e 1)]
In particular, hyx f1e(p) =0 mod. n'®

Proaf. Since [Cx : yCx1=INCx] is a divisor of 4r and [\Cx : CX "1 is a
divisor of [(a) : (»)] = ITe(p)/Le : v1*®, we may obtain integers »;, s such that

Tle(p)
[e:7]

Since @ =[A] =[€x : C°1=[Cx : yCxIxCx * €5 °], we have

he=[Cg : ¥Cx1Xny, =[,Cx : Cx°1X na.

(1) a=tr  _Te)

M1 N2 [e ‘0]
Furthermore, from lemma 3 we have for any integer 7

ITe(p)

nz.[e 7] =[Cx : C}(_a] = [H_I(G, CK)] = [H'(G, C)l.

On the - other hand, since for a=[A1=TA : (A)(a)IxL(A)a) : (A)]=
[A : (A)(a)1 X ay we have [A : (A)(a)]=[y : NEI™, we see at once from

lemma 1
a=hsx e é’,‘i‘ﬁln x [z * NEg).
0 >
Since Eg,zg{%% = Q(Ex) = ”e‘”’) by lemma 3, and LHYG, Ex)] = [e: NEx]
=[e : yJ(y : NEk], we have
- fTe(v)
(2) a=hpX m .

10) Cf, lemma 4,

) For the absolutely cyclic extension, this relation is already found in S. Iyanaga-
T. Tamagawa [15]. Cf. H. W. Leopoldt [17], too.

12) Cf, lemma 5.

13 Cf. lemma 6.
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Consequently, we obtain # =#; X7, from (1) and (2), and it is clear from
(2) that s» X fTe(p)'=0 mod » holds. Thus we have proved all the assertions

of our lemma 4.

LemMma 5. ITe(p) is divisible by [e : 9] and the conditions:

— 7. e _
D a=hs, (In) Ceigl =7

are equivalent to each other.

Proof. Let (») be the group of principal ideals (») in F such that » is
a norm residue of mod an ideal m with respect to K/F. If we choose the
ideal m suitably, then the index of (») in («) is equal to fTe(p)/[e : v]. Hence
ire(p) is divisible by [e : 1.

On the other hand, it is evident from lemma 4 that @ = 4r and Te(p) = n-[e: 7]
are equivalent to each other.

LeEMMA 6. In the decomposition

a=[A1=[A : (4A)(a)I(A)(a) : (A)(ar)IL(A)(ar) : (A)]

of a, we have [A : (A)(ag)] = [n : NE:], [(A)(a) : (A)(ap)]= —fEIII%(GD,l};ZL)]"
and [(A)(ar) : (A)]= %- Hence
a=[77 . NEK_]X ”e(b)‘ho hF

H\G E)] " o~

Proof. To any ideal a belonging to an ambiguous class in K/F, there
corresponds an unit » in () in the following way:

1—-0

since a is a principal ideal, there exists a number 6 in K such that o' = 0,
and NO is clearly an unmit y in F.  In this correspondence, an ideal which
belongs to an ideal class represented by an ambiguous ideal in K/F ,cofresponds

to an element in NEx. Hence we have
[A: (A ()]=[y: NE]

[(A)(ar) ¢ (A)]= hs/he is evident from the definition of k..
Finally, from the above two assertions and lemma 4 we see easily
[(A)(a) : (Aap)]= He(b)‘ho/[Hl(G, Eo)]
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§ 3. Ideal class group

We ‘shall, here, consider the relative genus ﬁéld (Geschlechterkorper). Let
K/F be an abelian extension of a number field F of finite degree, and let K*
be the maximal extension field which is abelian over F and unramified over K.
After Hasse-Leopoldt'® we shall call such a extension field K™ the relative
genus field with respect to K/F, and call the relative degree g*=[K* : K] the
relative genus number with respect to K/F. Moreover, we shall call the ideal
group H*, to which the relative genus field K * corresponds byv class field theory,
the relative principal genus with respect to K/F.

ProrosiTiON 1. If K/F is a cyclic extension of F, then the relative principal
genus H* with respect to K/F is the (1 — o)-th power of the ideal class group Cx
of K, i.e. H*=Cx", where ¢ is a generator of the Galois group G =G(K/F).
(Relative principal genus theorem) ‘

Movreover, the relative genus number g* with respect to K/F is equal to the

ambiguous class number a with respect to K/F, i.e. g* = a.

Proof. Since K* is an unramified abelian extension over K, K is contained
in the absolute class field of K. Hence the relative principal genus H* with
respect to K/F contains the group of principal-ideals in K and is composed of
ideal classes in K. By the criterion of Hasse'”, the relative principal genus
H* must contain the (1 — ¢)-th power Cx° of the ideal class group Cx. More-
over, H* must bé equal to Cx” because of the maximal property of the relative
genus field K*.

Next, in the homomorphism of Ck onto Ck° the kernel is evidently the
group of ambiguous ideal classes A with respect to K/F. Hence from the
theorem of homomorphism and the above relation H* = Cx™°, it follows at once
that

g*=L[K*: K1=[Cx : H*]=[Cx : Ck"]=[Al=0.

ProrosiTioN 2. Let K/F be a cyclic extension of degree n, and denote by a,
the order of ANCK°, i.e. ay=[ANCK°). Then we have -

(i) Cg = A +Ck° is direct if and only if ay =1,

(ii) a is not prime to the degree n if a;=1,

1 Cf. H. Hasse [9] and H. W. Leopoldt [17].
15) Cf. H. Hasse [10], II, §5.
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where we denote by o a generator of the Galois group G = G(K/F).

Proof. It is evident from the fact hx =ax b, that Cx= A+ Cx° is direct
if and only if ai:=[ANCK°]=1, where b =[Cx "]

Next, we consider the factor group B =Cx/A of the ideal class group Cx
modulo the group of ambiguous classes A with respect to K/F. Since the
group of ambiguous classes A is a G-invariant subgroup of Cx, the factor
group B is also a G-module and B is isomorphic with the group Cx° as G-
module. Therefore, if a1, then there exists an element B& A of B such that
B° =B holds. Namely, there exists an ideal class C of Cx such that C’=CA
holds for some ambiguous class A which is not the principal ideal class of Cxk.
Since C=C®" =CA", A" is the principal ideal class of Cx. Hence the order
a of the group A is not prime to »n.

Prorosition 3. Let K/F be a cyclic extension of a prime power degree l®, and
put ai=[ANCE ], b= [Cﬁé”f”j] (4,7=0,1, 2, ...). * Then there exists an integer
s (=0) such that

(1) hAx=arXaiX *+** Xas-1XasXbs+1,
(i1) a; is divisible by ai+1 (1=0,1, ...,s—1),
BH=EG=** =as2=0
ai { 707 TN (mod .
As—1> As = 1, bsﬂ =1
Proof. Since the group Cx is an abelian group with finite order Ak, there
exists aninteger s=0 such that Cx=Cx "2Cs 'z - - 2CE " "z=Ca™ " = ¢~
= ++ -, where s is a generator of the Galois group G = G(K/F).
Put here A; = A NCY¥ " for convenience. Then, since b;=a; X bisy (i =
1,2, ...) and

/1=0)3—1

Av=A2A2A:2 ¢ 2ARA= A= - ={1},
we have first
he=bo=ayX b = aoX(a1sz)_’ e = (]If=oa;)xb,+1

and a@s-1xas=1.

Next, since each A;.; is a subgroup of A;, a; is divisible by ai+: for every
integer i=0,1,2, ...,s—1.

Finally, since [ANCY " 1=g,_;%1 holds, we know easily by the same

(1=73)8~2

way as in the proof of proposition 2 that the order as;-. of A NCxk is not,
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prime to the degree !/ of K/F, namely as-: is divisible by /. - Therefore we get
a=a1=*** =as-2=0 mod. /. Since the order of the Galois group G = G(K/F)
is a prime power [”, each element of C¢ °" which is not in ANCE "' has at
least two, and so a multiple of the prime / different G-conjugates for every
i=0,1,.... Therefore we have at once b;=a; mod. / in the decomposition
of b;, i.e. b; =a; X bi+;. In particular, since as =1 we have bss; = as X bs+1 = bs =
as=1 mod. .

§ 4. Ideal class number and unit group

ProrosiTioN 4. Let K/F be any Galois extension of finite degree n. If hr is
prime to the degree n, i.e. (hr, n) =1, then

(i) Ar=(A)(ar)=Cr ie hr=[Ar: (4)]
and hy=m =1,

(ii) Cx= Ar+ ~Cxk s direct,

(iii) Ie(p) = LHYG, Ex)IL(A)(a0) " (A)ar)].

Proof. (i) By the assumption (%r, #) =1 and lemma 2, 4, we have Ao =1,
n =1 at once. Hence we obtain s2»=[Ar : (4)] and a natural isomorphism
Ar=Cr.

(ii) Let C be any ideal class in A»N yCx. Then, since C belongs to ~Ck.
Nx#C is the principal ideal class Ir in Cr. Moreover, since C also belongs to
Ar, we have Ng/»C = ap+Ir for an ideal ar in F. Hence a} is a principal ideal
of F. On the other hand, from the assumption (kr, #) =1, ar itself must be a
principal ideal of F. Hence C is the principal ideal class of Cx, namely Ay + xCk
is direct in Ck.

Next, since ks is prime to n, Ay is isomorphic to Cr and NgxrAr=Cr
holds. Hence we obtain Nk/»Ck = Nx;rAr=Cr. Thus we know that Cx is
contained in Ar+ »Cx, namely we know that Cx = Ar+ yCx is direct.

(iii) By proposition 4, (i) we have ay= 4 [(A4)(a,) : (A)(ar)]. Hence we
have Ie(p) = [H'(G, Ex)I[(A)(a) : (A)(ar)] by lemma 1.

ProrosiTiON 5. If K/F is a cyclic extension of finite degree n and a is prime
to the degree n, i.e. (a, n) =1, then we have

(i) Cxk=A +Cx’ is direct,

(i) a=hr/h, ho=n, and a, =1,

(iii) LH'(G, Ex)] = Ie(p)+ho, [H*(G, Ex)]=L[e : 71 = ho*ITe(p)/n, H'(G, Ck)
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={1} for any integer r.
Moreover, if we assume that K/ F is cyclic with a prime power degree 1*, then
we have by =by=1 mod. 1, where b; = [C "1 (i=1, 2).

Remark. The natural homomorphism Cr-Cx gives an isomorphism of
NC«C Cy into Cx. For, since [NCxk : (a)]= kr/ny, [(A)(ar): (A)]= he/ho=[A]
and %, = n; by proposition 5, (ii), we have [NCx : («)1=[(4)(ar) : (4)]1

Proof. By the assumption (a, #) =1 and proposition 2, we know that a; =1
and Cx = A +Cx° is direct. In particular, we have b, = b, =1 mod. / by pro-
position 3 provided that K/F is cyclic with a prime power degree /”.

On the other hand, the numbers

hr ﬁeg’l » [y 1 NE]

I el p) _hL
m  maele: ] *ho and

LHNG, Ex)] 0

appearing in the representations

_ hr fde(®) _r . . Te() hr
8= G X e ] — 0 NE tEiG BT X g of
) Te(p) ) _ Mey) ;
are all integers. Moreover eleia]’ [» : NEx], [HG Eo)] ko are com
posed of the prime factors of n. Hence we have n_II[ee(D)ﬂ = [»: NEx] =
' . 2° *

A =1 and [HYG, Ex)]=Me(p)-ho, LHYG, E)]=[e: 7] = e/,

Furthermore we have a = hy/ho= hr/n;. Therefore we obtain %, = #; and hence
[HD(G, Ex)] = er(p)/nz = ﬁe(l)) *hol/ n.

§ 5. Main theorems

TueoreM 1. Let K/F be a finite extension over a number field F of finite
degree such that K and the absolute class field F of F are disjoint over F, ie.
FNK=F. Then we have

(i) if K/F is Galois, then hx is divisible by hr, i.e. hrlhx,

(ii) if K/F is abelian, then the relative genus number g* with respect to K/F
is divisible by hr, i.e. hr/g*,

(iii) if K/F is cyclic, then a is divisible by hr, i.e. hrla,

(iv) if K/ F is cyclic and has one and only one ramified prime divisor, then

hr is equal to a and (e : y]=1.
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Proof. (i) This assertion is already known'®, but for the sake of com-
pleteness, we add a simple proof.

Since FK/K is unramified and its Galois group G(FK/K) is isomorphic to
the Galois group G(F/F), FK is contained in the absolute class field X of X
and the relative degree [FK : K] is equal to the relative degree [F : F]= h».
Hence %« is divisible by %».

(ii) Since FK/K is unramified and FK/F is abelian, FK is contained in
the relative genus field K* with respect to K/F. Therefore the relative genus
number g* with respect to K/F is divisible by [FK : K1=[F : F1=hs.

(iii) Since by proposition 1 the number a of ambiguous ideal classes with
respect to K/F is equal to the relative genus number g* with respect to K/F,
our assertion (iii) is obvious by (ii).

(iv) By the above proved (ii) and lemma 4, a/kr=Me(p) /LK : F1[e : 7]
is a rational integer. On the other hand, from the assumption that K/F has
one and only one ramified prime divisor and FNK=F, we have at once
ITe(p) =[K : F1. Hence we obtain [e : 7v1=1 and a/kr=1.

TueoreM 2. Let K/F be a cyclic extension of a finite degree n. If we assume
a=hr, then we have

(i) Te) =nle: 7],

(i) [HYG, Ex)1= Ie(p)+[y : NEx],

(iil) %k is divisible by hr, hr is divisible by hy and hy is divisible by [y : NEx],
i.e. [n 2 NEx1/ holhrlhx.

Furthermore, if we assume that K/F is cyclic with a prime power degree 1*,

then hr is not prime to | provided that hi is not prime to I,

Proof. (i) This assertion follows trivially from lemma 5 and assumption
a= h}r.

(ii) By lemma 3 and (i) we have easily

[HNG, Ex)] = n[HG, E))] _ nele: nlln: NEc] _ He(w)ln : NE«]

ITe(p») =TT T Te(ps) TTe(po)
=U8(D)[ﬂ ¢ NE¢].

(iii) Since hx=axb, is divisible by @ = ks, we know first #r/hx. Next,

ho/hr is evident from lemma 2. Finally, from lemma 6 and theorem 2, (ii),

16) Cf. e.g. C. Chevalley [4], K. Iwasawa [12] or N. C. Ankeny-S. Chowla-H. Hasse [1].
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it follows that [(A)(a) : (A)(ar)]= Me(p) » ho/[H'(G, Ex)] = ho/[» : NEx] is
integer, and so fﬁ : NE1/ ho.

Moreover, we assume that K/F is cyclic with a prime power degree /.
If 4y is prime to /, then by the assumption a = k», a is prime to /. Hence we
have &, =1 mod. / by proposition 5.

Since kg = axb,, we know that kg is prime to / provided % is prime to .

It is evident that those theorems 1, 2 are a generalization of the theorem
of K. Iwasawa.

Next, we give a corollary of this theorem 2 which is a generalization of
the result of S.-N. Kuroda' for a cyclic extension of prime degree.

CoroLLARY. Let K/F be a cyclic extension of finite degree n and denote by o
a generator of the Galois group G=G(K/F). If we assume that a=hr and hr
is prime to n, then we have

() a=a=hr, ai=ho=m=1,

(ii) Cx=A +Ck°=Ar+ +Cx (direct),

(iii) [y : NE«] =1, [HYG, Ex)1=Le : 1= Me(p)/n, [H'(G, Ex)] = Oe(p),
H' (G, Cx) = {1} for every integer 7.

Movreover, if we assume that K/F is cyclic with a prime power degree I”, then
we have

(iv) kg is prime to I,

(V) bi=hg/hr=1 mod. I

Proof. This corollary is evident by theorem 2 and proposition 4, 5.

Appendix. Unramified cyclic extension.

In this appendix we shall consider an unramified cyclic extension K/F over
an algebraic number field F of finite degree. Namely, we prove the following
proposition :

ProrosiTioN. Let K/F be an unramified cyclic extension, then we have
(1) [e:9l=1, ie. [HYG, Ex)]=[%: NEg],

(i) a=hs/[K: F1,"™ ie F =K%

(iii) ko =[H'G, Ex)1=[K : Fl[y : NEx],

1) Cf. S.-N. Kuroda [16].
1) For the cyclic extension of prime degree, this relation is already found in M.
Moriya [18], T. Honda [11] etc.
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where G = G(K/F) is the Galois group of K/F, and K* is the relative genus field
with respect to K/F.

Remark. Assertion (iii) says that the number %, of ideal classes of F
which become principal in K is a multiple of the degree [K : F], and that the

principal ideal theorem of Terada-Tannaka'®

claiming that all the ambiguous
ideal classes with respect to K/F become principal in the absolute class field
F of F is truely a generalization of the original principal ideal theorem of
Hilbert-Furtwingler® when [H%G, Ex)1=[» : NEx1x1. For, by assertion
(iii), [% : NEx]1=1 holds if and only if A,=[K : F], and moreover by the
assertion (ii) the condition %, =[K : F] is equivalent to a= hr/hy. On the
other hand, the relation a = kx/k is equivalent to [A : (A)(ar)]=1 by lemma
6, namely the group of ambiguous ideal classes A with respect to K/F is

exactly the group of ideal classes of K represented by ideals of F.

Proof. (i) Since K/F is an unramified cyclic extension, [¢:9]=1 is
evident from lemma 5.

(ii) From (i) and lemma 4 we obtain at once @ = hz/LK : F]. Hence we
have easily F = K* by proposition 1.

(iii) Since K/F is unramified, we have a,=Az/[H'(G, Ex)] by lemma 1
and ar=[(A)(ar) : (A)] from the definition of a;, respectively. On the other
hand, we have [(A)(ar) : (A4)]=hs/hy by lemma 6. Hence we obtain %, =
[HG, Ex)] for any unramified extension K/F. In particular, if K/F is cyclic
and unramified, then we obtain moreover [H(G, Ex)1=[K : F1ly : NEx] by

lemma 3 and assertion (i).
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