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SPHERICAL SUBMANIFOLDS WHICH ARE OF 2-TYPE

VIA THE SECOND STANDARD IMMERSION

OF THE SPHERE

MANUEL BARROS AND BANG-YEN CHEN

§1. Introduction

Let Sm(r) be an m-sphere of constant sectional curvature 1/r2 and M
an n-dimensional compact minimal submanifold of Sm(r). If Sm(r) is im-
bedded in Em+1 by its first standard imbedding, then, by a well-known
result of Takahashi [11], the Euclidean coordinate functions restricted to
M are eigenfunctions of Δ on M with the same eigenvalue n[r2. Moreover,
the center of mass of M in £ m + 1 coincides with the center of the hyper-
sphere Sm(r) in Em+1. Thus, M is mass-symmetric in Sm(r) c Em+\ Con-
sequently, we see that if one wants to study the spectral geometry of a
submanifold of Sm(r), it is natural to immerse Sm(r) by its £-th standard
immersion, in particular, by its second standard immersion.

In [9], A. Ros has used this idea to study compact minimal submani-
folds of Sm(r) via the second standard immersion. In [9], he obtained a
formal characterization of a compact minimal submanifold M9 fully in Sm,
such that the Euclidean coordinate functions restricted to M via the second
standard immersion / of Sm are described by means of two different
eigenvalues of Δ, i.e., M is of 2-type via /. He showed that such sub-
manifolds are Einstein and mass-symmetric via /. However, he did not
obtain any classification result for such submanifolds.

In this paper, we study compact submanifolds of a sphere which are
mass-symmetric and of 2-type via the second standard immersion of the
sphere. In Section 3, we obtain a generalization of Ros' characterization
(Lemma 1). Some primary classifications are obtained in this section
(Theorems 1 and 2). In Section 4, hypersurfaces of a sphere which are
mass-symmetric and of 2-type via / are completely classified (Theorem 3).
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In Section 5, submanifolds of S m with "maximal possible'' codimension

are studied. In the last section, results in previous sections are applied

to obtain a classification theorem of compact surfaces of Sm which have

the desired properties via /.

§ 2. Basics

Let x : M —> Em be an isometric immersion of a compact, connected,

^-dimensional, Riemannian manifold M into a Euclidean m-space. Denote

by Spec(M) = {0 = λQ < λt < < λk < | °°} the spectrum of Δ acting

on differentiable functions in C°°(M). If we extend the Laplace-Beltrami

operator Δ to £Jm-valued functions on M in a natural fashion, then, we

have the following spectral decomposition of x (in L2-sense) (cf. [1, 3, 5,

6, 9]):

(2.1) x = xQ + Σ xt, Δxt == Xtχt, xt : M > Em ,
ί = l

where x0 is the center of mass of M in Em. The submanifold M is said

to be of finite type if the spectral decomposition of x consists of only

finitely many nonzero terms. More precisely, M is said to be of k-type

if there are exactly k nonzero xt

9s (t ^ 1) in the decomposition of x ([5, 6]).

From the Takahashi Theorem [11] we know that M is of 1-type if

and only if M is a minimal submanifold of a hypersphere Sm~\r) of Em.

In this case, M i s mass-symmetric in Sm~\r) C Em, i.e., the center of mass

of M in Em coincides with the center of Sm-\r) in Em (cf. [6]).

Let x : M—>Em be a 2-type submanifold with mean curvature vector

H. Then we have

(2.2) x = x, + xp + xq9 Δxp = λpxp, Δxq = λqxq

for some integers p, q (g > p ^ 1). Since Δx — — nH, (2.2) implies

(2.3) AH= bH+e(x- x0),

where b = λp + λq and e = λpλjn.

On Em we consider an inner product < , ) given by (u, v} = u-v1 for

any u, v e Em, where each vector in Em is regarded as a row matrix and

ι/ is the transpose of v. Let r > 0. Then the sphere Sm~\r) = {x e Em\

(x9 x) = r2} with the induced metric has constant sectional curvature 1/r2.

Let SM(m) — {P egl(m; R)\Pι = P} be the space of symmetric m hy m

matrices over R endowed with the metric g(P, Q) = (l/2r2)tr(PQ) for
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P,Qe SM(m). Consider the mapping / : Sm(r) -> SM(m + 1) defined by

f(u) = uι 'U. Then / is an isometric immersion which is in fact the second

standard immersion of Sm(r). The image f(Sm(r)) is a real projective space

which lies fully in an (m + m(m + l)/2)-dimensional linear space of

SM(m + 1). We call f(Sm(r)) a Veronese submanίfold.

For each point u e Sm(r), the normal space of Sm(r) in SM(m + 1)

at u (or more precisely at f(u)) is given by

(2.4) Ti(Sm(r)) - { P e SM(m + ΐ)\uP = μu for some μeR}.

In particular, we have f(u) e Ti(Sm(r)).

If σ is the second fundamental form of /, we have

(2.5) σ(X, Y) = X ι Y +YιX- ( 2 / r 2 ) < X , Y}f(u)

for X, Y in Tu(Sm(r)). It is known that σ is parallel and it satisfies

(2.6) g(σ(X, Y), σ(V, W)) = (l/r2){2<X, Y)(V, W) + <X

(2.7) g(j(X, 7), /(M)) = - <X, F> , ^(σ(X, Y), /) = 0 ,

(2.8) AHX, γ) V = (l/r2){2<X, Y> V + <Z, V> Y + < Y,

where A is the Weingarten map of /, X, Y,V,We Tu(Sm(r)), and I the

identity matrix.

It is known that Sm(r) is immersed by the second standard immersion

/ as a minimal submanifold of a hypersphere of SM(m + 1) centered at

r2ll(m + 1) and with radius (r2m/2(w + 1))1/2. For more details, see [6, 9,

10].

In the following, we simply denote Sm(l) by Sm.

% 3. Submanifolds of Sm which are of 2-type via /

Let ψ : M-> Sm be an isometric immersion of M into Sm. We denote

by σ\ H/ and A the second fundamental form, the mean curvature vector

and the Weingarten map of ψ, respectively. Denote by V and F the Levi-

Civita connections on M and Sm, respectively, and by D the normal con-

nection of ψ.

We consider the isometric immersion x : M -> SM(m + 1) defined by

x = foψ: M-^> Sm -L+ SM(m + 1).

Then the mean curvature vector H of x satisfies
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(3.1)

where Hf is identified with the image f*Hf of W under f% and Eu , En

is an orthonormal frame tangent to M.

Let u be an arbitrary point in M. We may assume that FEjEt — 0
at u. We compute ΔW at u.

(JH')(u) = - ± EtEtH'
ί = l

β ^ 4 + 3{EU AH,Et) - FEiDEiH>

u DEiH') + A , ^ , , ^ - DEtσ(Eu H')},

where D denotes the normal connection of /. By applying (2.8) and the
fact that σ is parallel, we find

(3.2) (dH')(u) = Δ»W + tr(VAH) + £ σ\Eu AB.Et) + 2 Σ &(Ei9 As,Et)

- 2 Σ σ(£ί? D^HO + T I ^ - nσ(H\ H')

where ΔD is the Laplacian with respect to the normal connection D and

(3.3) tx(VAH) - Σ (F*%A*>)Et + Σ A^Et.

For each point u in M, we choose an orthonormal basis {ξn + 1, , fw}
of the normal space of M is Sw at u such that fn + 1 is parallel to Hf at
u (if H7 = 0 at u, any orthonormal frame satisfies this condition). Simply
denote Aξr (r = 7i + 1, , m) by Ar. We have

(3.4) ± of{Eu AH,EZ) = \An + ί fH> +

where 3X/(iί/) = ΣΓ=«+2tr(A^,Ar)|:r is the so-called allied mean curvature
vector of M in Sm. It is clear that if H' = 0 at w, then 21^0 = \An+ί\Ή'
= 0 at u. It is easy to see that W(Hf) and both sides of (3.4) are inde-
pendent of the choice of ξn + l9 , ξm such that ξn+1 is parallel to Hf. By
combining (3.2) and (3.4) we obtain

(3.5) {ΔHf){u) = Jΰff' + tr(FAH,) + (|Λn + 1|
2 + n)H' +

+ 2 Σ ?(£?,, A ^ J ~ 2 Σ 3(Ei9 DEίH
f) -

On the other hand, from (2.6), (2.7) and parallelism of σ, we have
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n V

(3.6)

^Γ 1 — / TTT

/ (J \ HJ

n u:

ϊl i,:

Eήiu) = 2(

^((Fσ'KE,,!

n + 2)H' +

I £ . ) - — '
n

Zj, Ej), E,),

(n
n 3

'Et, E,\

— / TP 77' \

o'{Eit E,

where Fσ; denotes the covariant derivative of σ'. From Codazzi's equation,

we have

(3.7) Σ (FσKEi, Ej, Ej) = nDEtH'.

Thus, we obtain, from (3.1), (3.5), (3.6) and (3.7),

(ΔH)(u) = ΔDH> + tr{VAH,) + ST'tfΓ) + (l|An + 1||
2 + 3n + 4)H'

+ _2C^+_1)_ v ϋ(Ej9 Ej) + 2 Σ ϋ(E^ A H > E I )

Tϊ 3 i

(8.8)
+ A Σ δ(A..<Eι,Ej)Et, E}) - 4 Σ 3(.Eit DEiH')

- nσ(H', fΓ) - - Σ <f(°'(Et, E}), σ'(Eu E,)).
n id

As we mentioned in Section 2, / : Sm —• SM(m + 1) is of 1-type and

S"z is isometrically immersed in a hypersphere, say W, of SM(m + 1)

centered at Z/(m + 1) as a minimal submanifold.

The general assumptions we made in this paper are

( l ) x = foψ: M-+ Sm -> SM(m + 1) is of 2-type and

( 2 ) χ = foψ is mass-symmetric, i.e., the center of mass of M in

SM(m + 1) is the center of the hypersphere W in SM(m + 1),

which means that x0 = I/(m + 1); and

( 3 ) the immersion ψ :M-+Sm is full, i.e., ψ(M) is not contained in

any great hypersphere of Sm.

Under these assumptions we have

(3.9) ΔH=bH> + - Σ 3{EU Et) + eίx
\

Σ {U t) +
n ί=i \ m + i

where b = λp + λq and e = λvλqln. We put

(3.10) L = Σ*(Ei,DJStH').

Then, by using (2.6) and (3.8), we obtain
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(3.11) g(ΔH, L) = - 4g(L, L) = - 4 g (E,, E^φEtH\ DEjH>}

= - A\DHf\\

On the other hand, (2.6), (2.7) and (3.9) imply

(3.12) g(ΔH, L) = eg(x, L) = - e Σ <Ei9 DEίH'} = 0 .

Therefore, from (3.11) and (3.12), we see that ψ :M->Sm has parallel

mean curvature vector, i.e., ΌW — 0. Thus, we have ΔDW = tr(PAH,) — 0.

For the immersion x:M->Sm we may regard the Weingarten map

A as a linear map from the normal bundle TLM into the space of self-

adjoint endomorphisms Sn(TM) of the tangent bundle TM:

A:T±M->Sn(TM)

which carries ξ e TLM onto Aξ. On Sn(TM) there is a canonical inner

product defined by «B, C» = (l/n)tr(BC) for B, C e Sn(TM), We say that

the Weingarten map A is homothetic if there exists a positive number ^

such that ({Aζ) Aη}) = p<?, 57) for f, η e TLM. Submanifolds with conformal

or homothetic Weingarten map were investigated in [2].

LEMMA 1. Let ψ : M —• Sm be a full isometric immersion. If x = /oψ

is mass-symmetric and of 2-type, then

( 1 ) ίλe mean curvature vector of ψ is parallel, i.e., ΌW = 0,

( 2 ) Sί'OffO = 0, i.e., Σ <r'(Ei, AH,Et) is parallel to W,

( 3 ) Il-A l̂l is constant,

(4 ) the Weίngarten map A of ψ is homothetic on (H')1, where (H')L

is the orthogonal complement of <ίΓ> = Span {H'}, and

( 5 ) the Rίccί tensor S of M satisfies

S(X, Y) = 2n(AH,X, Y) + k(X, 7>

for some constant k. (k depends only on λp and λq).

Proof. Since x = foψ : M—>-SM(m + 1) is assumed to be mass-

symmetric and of 2-type, H' is parallel in the normal bundle of M in Sm.

In particular, the length of H' is constant. Since ΔDH' = tr(PAH,) = 0,

(3.8) and (3.9) imply W(H') = 0 and ||An+1 | |
! + 3n + 4 = b. This proves

(2) and (3).

From (2.6) and (3.8) we have

g(ΔH, a{ξ, η)) = [4(Λ + 1) + 2re||H'||l]<f, η)
(3.13) ,

- 2n(H>, £><#', ,> - i-tr(A {A τ)
7t»
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for any normal vector fields ξ, η of M in Sm.

On the other hand, (2.7) and (3.9) give

(3.14) g{ΔΉ, σ(ξ, η)) = (2b - e)<£, η} .

From (3.13) and (3.14) we find

((As, Λ,» = l [ 4 ( n + 1) + 2n||tf'||2 + e - 2b](ξ,v}

(3.15)

which proves the homotheticy of A on ( f l 7 ) 1 .

From (2.6) and (3.8) we find

g(άH,

(3.16)

+ 4 M £ , ^ ) , ff;) + - Σ <σ'(Et9 E,\ a\Eu E,)} .

From (2.6), (2.7) and (3.9) we get

(3.17) g(AH, σ(Ek, Et)) = (26 + -** -

Since the Ricci tensor S of M satisfies

(3.18) S(Sfc, E,) = (/ι - l)(Ek, Ety - Σ M ^ f c , Et), σ'(El9 Ez

+ n(af(Ek, Et), H'} ,

(3.16), (3.17) and (3.18) imply

S(Et9 Ej) = ΊniAx.E,, Ej)

+ [n(n + 3) + ^ I I H T + ^ -

This proves (5). (Q.E.D.)

Remark 1. ( i ) It is not difficult to verify that if a siibmanifold M of

*Sm satisfies conditions (l)-(5) of Lemma 1, then x = /Ό ψ is mass-symmetric

and it is of 1 or 2-type.

(ii) Lemma 1 was obtained in [9] in the special case when M is a

minimal submanifold of Sm. So Lemma 1 is a generalization of Ros'

characterization theorem.
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By applying Lemma 1, we have the following,

THEOREM 1. Let ψ :M-+Sm he an isometric immersion of a compact

Riemannian manifold such that the immersion is full. If x = /Ό ψ is mass-

symmetric and of 2-type in SM(m + 1), then either

(a) M is of 1-type in Em+1 and so M is minimal in a hypersphere of

Em+1 or

(b) M is of 2-type in Em+1 and mass-symmetric in SmdEm+1.

Proof. Under the hypothesis, Lemma 1 implies ΌΈL' = 0 %'(H') = 0

and \\AH,\\ being constant. Therefore, by applying Theorem 4.4 of [6, p.

278], we conclude that either M is of 1-type in Em+ί or M is mass-sym-

metric and of 2-type in SmdEm+1. (Q.E.D.)

If M is Einsteinian, then case (b) of Theorem 1 cannot occur. In

fact, we have

THEOREM 2, Let ψ:M->Sm be an isometric immersion of a compact

Einstein manifold M into Sm such that the immersion is full. If x = /o ψ

is mass-symmetric and of 2-type, then either M is minimal in Sm or M is

minimal in a small hypersphere of Sm. In both cases, M is of 1-type in

Em+\

Proof. Under the hypothesis, statement (5) of Lemma 1 implies that

M is pseudo-umbilical in Sm. Moreover, from statement (1) of Lemma 1,

M has parallel mean curvature vector W in Sm. Thus, by applying Propo-

sition 4.2 of [6, p. 133], we obtain the theorem. (Q.E.D.)

We give the following lemma for later use.

LEMMA 2. Let M = Sn(r) be a small hypersphere of radius r ( r < l ) of

Sn+ί. Then M is of 2-type in SM(n + 2) via f: Sn+1 -* SM(n + 2). More-

over, M is mass-symmetric and of 2-type in SM(n + 2) if and only if r2 =

(n + l)/(n + 2).

Proof. Let Vi be the eigenspace of Δ on M with eigenvalue λt. Then

we have Vi Vic Vo + Vx + V2. Without loss of generality we may assume

that M is given by the intersection of Sn+1dEn+2 and the hyperplane P

of En+1 whose last coordinate is given by Vl — r\ Thus, M = {(y, Vl — r2)

e En+2\y'yι = r2}. Since the immersion / : Sn+1 -> SM(n + 2) is denned by

f(u) = uι u for u e S n + 1, it is clear that M is of 2-type in SM(n + 2) via /.

Since M is immersed in SM(n + 2) by (y, Vl — r1)1 (y, Vl — r2), we see
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that the center of mass x0 of M in SM(n + 2) is proportional to the

identity matrix I of SM(n + 2) if and only if r2 = (n + l)/(ra + 2). More-

over, in this case, we have xQ = (l/(n + 2))I which is exactly the center

of the hypersphere W which SΏ+1 lies via /. (Q.E.D.)

In the following three sections, we shall apply previous results to

obtain some classifications results.

§ 4. Hypersurface of Sm which are of 2-type via /

The main purpose of this section is to classify hypersurfaces of Sm

which are mass-symmetric and of 2-type via /.

Let M = Svfa) X Sn~p(r%) be the Riemannian product of two spheres

with radii rί and r2, respectively. Let M be a hypersurface of Sw + 1 =

Sn+1(ί). Then we have r\ + r\ = 1. We recall that

Spec (S'fa)) = {λk = k(p + k- l)lr\\k > 0} and

Spec(Sw-^(r2)) = {λ't = k(n - p + k - l)lr\\k > 0}.

Moreover, the coordinate functions of xt of Sp{r^) in Ep+ί are eigenfunctions

with eigenvalue λx and the coordinate functions yt of Sn~p(r2) in En~p+1

are eigenfunctions with eigenvalue λ[. Therefore, the coordinate functions

of M = Sp(rϊ) X Sn~p(r2) in SM(n + 2) via / are given by the following

matrix

iJ ί • JtJs Ji<;s,ί<7z+i-ί)

So the coordinate functions of M in SM(n + 2) are eigenfunctions on M

associated with at most three eigenvalues of Δ on M given by λ2, λ'2 and

LEMMA 3. M = Sp{rλ) X Sn~p(r2) (r\ + r2

2 = 1) is of 2-type in SM(n + 2)

via f if and only if either

( 1 ) r\ = (p + l)/(n + 2) and r\ = (n - p + l)/(n + 2) or

( 2 ) r? = (p + 2)/(Λ + 2) and r\ = (n - p)l(n + 2), or

( 3 ) ϊi =pl(n + 2) and r2

2 = (n -p + 2)/(n + 2).

Proof. M is of 2-type via / if and only if two of λ2, 2!2 and λ[ + λx

are equal. This implies the Lemma.

LEMMA 4. M = S^fa) X Sn~p(rz) (r\ + rj = 1) is mass-symmetric in
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SM(n + 2) via f if and only if r\ = (p + ί)l(n + 2) and r\ = (n - p + 1)/

(n + 2).

Proof. First we regard M — S11^^ X Sn~p(r2) as a submanifold in

En+2 = Ep+1 ® En~p+ί in a natural way. It is easy to see that the center

of mass of M in SM(n + 2) via / is given by

0
rc-p + 1 " *x-

Thus, M is mass-symmetric if and only if (n — p + l)ri = (p + l)r|. Be-

cause r\ + r\ — 1, we obtain the Lemma.

Now, we give the following main result of this section.

THEOREM 3. Let ψ : M—> Sn+1 be an isometric immersion of a compact

n-dimensional Rίemannίan manifold M into Sn+ί. Then x = /oψ is mass-

symmetric and of 2-type if and only if either

(1) M is a small hypersphere of Sn+ί with radius

r = [(n + ΐ)l(n + 2)]1'2, or

(2) M = S*(rd X Sn~p(r2) with r\ = (p + l)/(n + 2) and

l ( p + )l( + )
The immersions of M into Sn+1 in (1) and (2) are given in natural

way.

Proof. If M is mass-symmetric and of 2-type in SM(n + 2) via /,

then Lemma 1 implies that DH' = 0, ||AH,|| is constant and the Ricci

tensor S of M satisfies

(4.2) S(X, Y) - 2n(AH,X, Y) + k(X, Y> ,

where ^ is a constant. On the other hand, from Gauss' equation, we have

(4.3) S(X, Y) = (n- 1)<X, Y> + na\AX, Y> - <A2Z, Y>

where A is the Weingarten map of M in Sn+ί Combining (4.2) and (4.3)

we find A2 + na'A + (k + 1 — τι)/ = 0. This shows that M has at most

two distinct principal curvatures and the principal curvatures are constant.

If M has only one principal curvature, M i s a small hypersurface of Sn+\

In this case, Theorem 3 follows from Lemma 2. If M has two distinct

principal curvatures, then M is the product of two spheres. In this case,

Theorem 3 follows from Lemma 3 and Lemma 4. (Q.E.D.)
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Remark. Let W be the hypersphere of SM(n + 2) in which Sn+1 is

immersed as a minimal submanifold via /. Examples (2) and (3) of Lemma

3 give the first known examples of 2-type submanifolds in W which are

not mass-symmetric.

§ 5. Submanifolds with maximal codimension

Let M be an ^-dimensional submanifold of Sm. Consider the associated

Weingarten map A : TλM-^ Sn(TM) from the normal space of M in Sm

into the vector bundle of self-adjoint endomorphisms of TM. In the vector

bundle Sn(TM) we consider the subbundle Mn = {βe Sn(TM)\ trace B = 0}.

Then we have

(5.1) Sn(TM) = Mn® RIn .

With respect to the usual inner product (( , )> on Sn(TM), the subbundles

Mn and RIn are orthogonal. It is easy to see that the fibres of Sn(TM)

are of %n(n + l)-dimensional.

LEMMA 5. Let ψ:M->Sm be an isometric immersion of a compact

n-dίmensional Rίemannίan manifold M into Sm such that the immersion is

full. If χ=foψ is mass-symmetric and of 2-type, then we have m<n(n+ S)/2.

In particular, if m = n(n + 3)/2, then M is immersed as a minimal sub-

manifold in a small hypersphere of Sm via ψ.

Proof. Under the hypothesis, Lemma 1 implies that M has parallel

mean curvature vector in Sm. Thus, M has constant mean curvature.

If M i s minimal in Sm, then A(TLM)dMn. Since ψ is full, statement (4)

of Lemma 1 implies m — n < n(n + l)/2 — 1 which gives m < n(n + 3)/2 — 1.

Therefore, we may assume that M has nonzero constant mean curvature

in Sm. In this case, we obtain m < n(n + 3)/2. If m = n(n + 3)/2, then

we see that A : TLM~> Sn(TM) = Mn®RI is surjective. Since A maps

v = (H'}-1 onto Mn9 we have A(H') e RIn. This shows that M is pseudo-

umbilical in Sm. Because M has parallel mean curvature vector H; in

Sm, we conclude that M lies in a hypersphere S™'1^) of Sm as a minimal

submanifold. Since M is not minimal in Sm, we have r < 1. (Q.E.D.)

By applying Lemma 5 we may obtain the following.

THEOREM 4. Let ψ : M—>Sn U + 3 ) / 2 be an isometric immersion of a com-

pact, n-dimensional, Rίemannίan manifold M into Sn{n+3)β such that the
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immersion is full. If x = /Ό ψ is mass-symmetric and of 2-type, then M is

a real-space-form which is immersed fully in a small hypersphere of Snin+Z)β

as a minimal, isotropic submanifold.

Proof. Under the hypothesis, Lemma 5 implies that M is immersed

as a minimal submanifold in a small hypersphere Sn{n+Z)β-\r) = S of

SΛ(n+3)/z. Moreover, from Lemma 1, we know that the Weingarten map

A of M in S is homothetic. Thus, for any fixed point p eM, the Weingarten

map at p; A(p) : T^M -+ Mn(p) is an isomorphism. Since A(p) is homo-

thetic, we have

«A€, Aη)) = c2<f, η)

for some constant c. Let v be a given unit vector in TPM. We choose

an orthonormal basis B = {eu , en} such that ex — v. Since A(p) : T^-M

-+Mn(p) is an isomorphism, there exists an orthonormal basis ξn + u •••,

f«(n+3)/2-i in 7^-M such that, with respect to B, the associated Weingarten

endmorphisms are given by

= c

= c

- in - l)an_! 0

a«-i4-i J

0

0 - ( / x

0

—

0

2)a π _ 2

0

-i — c

- 2a2

0

0

0

0

- «i

0

ί C12I2

0

a,

— C

IL 0

https://doi.org/10.1017/S002776300000266X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000266X


SPHERICAL SUBMANIFOLDS 89

where [ί,;] - i + i(j - ί)(2n + 1 - j + i) - 1, a*n_k - nl(n - k){n - k + 1);

1 < k < n — 1 and 1 < i < j < n. From these we see that the second

fundamental form σ of M in S satisfies \\σ(v, v)\\2 = (n — l)c2 which shows

the isotropy of M in S. The constancy of sectional curvature of M follows

from the equation of Gauss. (Q.E.D.)

Remark. Isotropic isometric immersions from a real-space-form into

another real-space-form have been studied by Itoh and Ogiue [8].

By a similar argument we have the following.

THEOREM 5. Let ψ :M->Sm be an isometric minimal immersion of a

compact, n-dίmensional, Rίemannian manifold such that the immersion is

full. If x = / o | is mass-symmetric and of 2-type, then m < n(n + 3)/2 — 1.

In particular, if m = n(n + 3)/2 — 1, then M is a real-space-form which is

immersed as an isotropic submanίfold.

Since this theorem can be proved in the same way as that of Theorem

4, so we omit it.

§ 6. Classification of 2-type surfaces

In this section we classify surfaces in Sm which are mass-symmetric

and of 2-type via /.

THEOREM 6. Let ψ :M^Sm be an isometric immersion of a compact

surface M into S m such that the immersion is full. If x = /Ό ψ is mass-

symmetric and of 2-type, then one of the following statements holds:

( 1 ) m = 3 and M is immersed as a small hypersphere S\r) with

radius r = Λ/IΓ/2;

( 2 ) m = 3 and M is immersed as a Clifford (minimal) torus

SXlU~2) X S^l/v^") in S3;

(3) m — 4 and M is immersed as a Veronese (minimal) surface in S4;

( 4 ) m = 5 and M is immersed as a Veronese (minimal) surface in a

small hypersphere »S4(V5/6) of S\

The converse is also true.

Proof. Under the hypothesis, Lemma 1 implies that M has parallel

mean curvature vector in Sm. Thus, by applying a result of Chen and

Yau (cf. [4, p. 106]), we have m > 3 and either M is a minimal surface of

Sm or M is a minimal surface of a small hypersphere Sm'ι(r) of Sm, or M

lies in totally geodesic S3 of Sm. If the later case holds, then m = 3 since

https://doi.org/10.1017/S002776300000266X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000266X


90 MANUEL BARROS AND BANG-YEN CHEN

ψ is full. In this case, Theorem 3 implies that either case (1) or case (2)

occurs.

If m > 3, then, by Lemma 5, m = 4 or m = 5. If m = 4, Theorem 5

and Theorem 2 of [8] imply that M is a Veronese surface in S\ If m = 5,

by using Theorem 4, we see that M is immersed in a small hypersphere

S\r) of S5 as a Veronese surface. Without loss of generality, we may

assume that S\r) is given by u6 = Vl — r2, where (ι/j, , u6) are the

Euclidean coordinates of S5 in i?6. From direct computation, we see that

the center of mass of M in SM(6) via / is given by

r2

5 J

0

i

ίl

0

r2

Since M i s mass-symmetric in WdSM(6), we have xQ = 1/6. Thus, we see

that M is mass-symmetric in SM(6) if and only if r2 = 5/6.

The converse follows from direct computation. (Q.E.D.)
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