SPHERICAL SUBMANIFOLDS WHICH ARE OF 2-TYPE VIA THE SECOND STANDARD IMMERSION OF THE SPHERE

MANUEL BARROS AND BANG-YEN CHEN

§1. Introduction

Let $S^{m}(r)$ be an m-sphere of constant sectional curvature $1 / r^{2}$ and M an n-dimensional compact minimal submanifold of $S^{m}(r)$. If $S^{m}(r)$ is imbedded in E^{m+1} by its first standard imbedding, then, by a well-known result of Takahashi [11], the Euclidean coordinate functions restricted to M are eigenfunctions of Δ on M with the same eigenvalue n / r^{2}. Moreover, the center of mass of M in E^{m+1} coincides with the center of the hypersphere $S^{m}(r)$ in E^{m+1}. Thus, M is mass-symmetric in $S^{m}(r) \subset E^{m+1}$. Consequently, we see that if one wants to study the spectral geometry of a submanifold of $S^{m}(r)$, it is natural to immerse $S^{m}(r)$ by its k-th standard immersion, in particular, by its second standard immersion.

In [9], A. Ros has used this idea to study compact minimal submanifolds of $S^{m}(r)$ via the second standard immersion. In [9], he obtained a formal characterization of a compact minimal submanifold M, fully in S^{m}, such that the Euclidean coordinate functions restricted to M via the second standard immersion f of S^{m} are described by means of two different eigenvalues of Δ, i.e., M is of 2 -type via f. He showed that such submanifolds are Einstein and mass-symmetric via f. However, he did not obtain any classification result for such submanifolds.

In this paper, we study compact submanifolds of a sphere which are mass-symmetric and of 2-type via the second standard immersion of the sphere. In Section 3, we obtain a generalization of Ros' characterization (Lemma 1). Some primary classifications are obtained in this section (Theorems 1 and 2). In Section 4, hypersurfaces of a sphere which are mass-symmetric and of 2 -type via f are completely classified (Theorem 3).

Received May 22, 1986.

In Section 5, submanifolds of S^{m} with "maximal possible" codimension are studied. In the last section, results in previous sections are applied to obtain a classification theorem of compact surfaces of S^{m} which have the desired properties via f.

§ 2. Basics

Let $x: M \rightarrow E^{m}$ be an isometric immersion of a compact, connected, n-dimensional, Riemannian manifold M into a Euclidean m-space. Denote by $\operatorname{Spec}(M)=\left\{0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{k}<\cdots \uparrow \infty\right\}$ the spectrum of Δ acting on differentiable functions in $C^{\infty}(M)$. If we extend the Laplace-Beltrami operator Δ to E^{m}-valued functions on M in a natural fashion, then, we have the following spectral decomposition of x (in L^{2}-sense) (cf. [1, 3, 5 , 6, 9]):

$$
\begin{equation*}
x=x_{0}+\sum_{t=1}^{\infty} x_{t}, \Delta x_{t}=\lambda_{t} x_{t}, x_{t}: M \longrightarrow E^{m} \tag{2.1}
\end{equation*}
$$

where x_{0} is the center of mass of M in E^{m}. The submanifold M is said to be of finite type if the spectral decomposition of x consists of only finitely many nonzero terms. More precisely, M is said to be of k-type if there are exactly k nonzero x_{t} 's $(t \geqq 1)$ in the decomposition of $x([5,6])$.

From the Takahashi Theorem [11] we know that M is of 1-type if and only if M is a minimal submanifold of a hypersphere $S^{m-1}(r)$ of E^{m}. In this case, M is mass-symmetric in $S^{m-1}(r) \subset E^{m}$, i.e., the center of mass of M in E^{m} coincides with the center of $S^{m-1}(r)$ in E^{m} (cf. [6]).

Let $x: M \rightarrow E^{m}$ be a 2-type submanifold with mean curvature vector H. Then we have

$$
\begin{equation*}
x=x_{0}+x_{p}+x_{q}, \quad \Delta x_{p}=\lambda_{p} x_{p}, \quad \Delta x_{q}=\lambda_{q} x_{q} \tag{2.2}
\end{equation*}
$$

for some integers $p, q(q>p \geqq 1)$. Since $\Delta x=-n H$, (2.2) implies

$$
\begin{equation*}
\Delta H=b H+e\left(x-x_{0}\right), \tag{2.3}
\end{equation*}
$$

where $b=\lambda_{p}+\lambda_{q}$ and $e=\lambda_{p} \lambda_{q} / n$.
On E^{m} we consider an inner product \langle,$\rangle given by \langle u, v\rangle=u \cdot v^{t}$ for any $u, v \in E^{m}$, where each vector in E^{m} is regarded as a row matrix and v^{t} is the transpose of v. Let $r>0$. Then the sphere $S^{m-1}(r)=\left\{x \in E^{m}\right\}$ $\left.\langle x, x\rangle=r^{2}\right\}$ with the induced metric has constant sectional curvature $1 / r^{2}$. Let $S M(m)=\left\{P \in \operatorname{gl}(m ; \boldsymbol{R}) \mid P^{t}=P\right\}$ be the space of symmetric m by m matrices over \boldsymbol{R} endowed with the metric $g(P, Q)=\left(1 / 2 r^{2}\right) \operatorname{tr}(P Q)$ for
$P, Q \in S M(m)$. Consider the mapping $f: S^{m}(r) \rightarrow S M(m+1)$ defined by $f(u)=u^{t} \cdot u$. Then f is an isometric immersion which is in fact the second standard immersion of $S^{m}(r)$. The image $f\left(S^{m}(r)\right)$ is a real projective space which lies fully in an $(m+m(m+1) / 2)$-dimensional linear space of $S M(m+1)$. We call $f\left(S^{m}(r)\right)$ a Veronese submanifold.

For each point $u \in S^{m}(r)$, the normal space of $S^{m}(r)$ in $S M(m+1)$ at u (or more precisely at $f(u)$) is given by

$$
\begin{equation*}
T_{u}^{\perp}\left(S^{m}(r)\right)=\{P \in S M(m+1) \mid u P=\mu u \text { for some } \mu \in R\} \tag{2.4}
\end{equation*}
$$

In particular, we have $f(u) \in T_{u}^{\perp}\left(S^{m}(r)\right)$.
If $\bar{\sigma}$ is the second fundamental form of f, we have

$$
\begin{equation*}
\bar{\sigma}(X, Y)=X^{t} \cdot Y+Y^{t} \cdot X-\left(2 / r^{2}\right)\langle X, Y\rangle f(u) \tag{2.5}
\end{equation*}
$$

for X, Y in $T_{u}\left(S^{m}(r)\right)$. It is known that $\bar{\sigma}$ is parallel and it satisfies

$$
\begin{align*}
& g(\bar{\sigma}(X, Y), \bar{\sigma}(V, W))=\left(1 / r^{2}\right)\{2\langle X, Y\rangle\langle V, W\rangle+\langle X, V\rangle\langle Y, W\rangle \tag{2.6}\\
&+\langle X, W\rangle\langle Y, V\rangle\} \\
& g(\bar{\sigma}(X, Y), f(u))=-\langle X, Y\rangle, \quad g(\bar{\sigma}(X, Y), I)=0, \tag{2.7}\\
& \bar{A}_{\bar{\sigma}(X, Y)} V=\left(1 / r^{2}\right)\{2\langle X, Y\rangle V+\langle X, V\rangle Y+\langle Y, V\rangle X\}, \tag{2.8}
\end{align*}
$$

where \bar{A} is the Weingarten map of $f, X, Y, V, W \in T_{u}\left(S^{m}(r)\right)$, and I the identity matrix.

It is known that $S^{m}(r)$ is immersed by the second standard immersion f as a minimal submanifold of a hypersphere of $S M(m+1)$ centered at $r^{2} I /(m+1)$ and with radius $\left(r^{2} m / 2(m+1)\right)^{1 / 2}$. For more details, see $[6,9$, 10].

In the following, we simply denote $S^{m}(1)$ by S^{m}.

§3. Submanifolds of S^{m} which are of 2-type via f

Let $\psi: M \rightarrow S^{m}$ be an isometric immersion of M into S^{m}. We denote by $\sigma^{\prime}, H^{\prime}$ and A the second fundamental form, the mean curvature vector and the Weingarten map of ψ, respectively. Denote by \bar{V} and $\bar{\nabla}$ the LeviCivita connections on M and S^{m}, respectively, and by D the normal connection of ψ.

We consider the isometric immersion $x: M \rightarrow S M(m+1)$ defined by

$$
x=f \circ \psi: M \xrightarrow{\psi} S^{m} \xrightarrow{f} S M(m+1) .
$$

Then the mean curvature vector H of x satisfies

$$
\begin{equation*}
H=H^{\prime}+\frac{1}{n} \sum_{i=1}^{n} \bar{\sigma}\left(E_{i}, E_{i}\right) \tag{3.1}
\end{equation*}
$$

where H^{\prime} is identified with the image $f_{*} H^{\prime}$ of H^{\prime} under f_{*} and E_{1}, \cdots, E_{n} is an orthonormal frame tangent to M.

Let u be an arbitrary point in M. We may assume that $\nabla_{E_{j}} E_{i}=0$ at u. We compute ΔH^{\prime} at u.

$$
\begin{aligned}
\left(\Delta H^{\prime}\right)(u)= & -\sum_{i=1}^{n} E_{i} E_{i} H^{\prime} \\
= & \sum_{i=1}^{n}\left\{\bar{V}_{E_{i}} A_{H^{\prime}} E_{i}+\bar{\sigma}\left(E_{i}, A_{H^{\prime}} E_{i}\right)-\bar{\nabla}_{E_{i}} D_{E_{i}} H^{\prime}\right. \\
& \left.-\bar{\sigma}\left(E_{i}, D_{E_{i}} H^{\prime}\right)+\bar{A}_{\bar{\sigma}\left(E_{i}, H^{\prime}\right)} E_{i}-\bar{D}_{E_{i}} \bar{\sigma}\left(E_{i}, H^{\prime}\right)\right\}
\end{aligned}
$$

where \bar{D} denotes the normal connection of f. By applying (2.8) and the fact that $\bar{\sigma}$ is parallel, we find

$$
\begin{align*}
\left(\Delta H^{\prime}\right)(u)= & \Delta^{D} H^{\prime}+\operatorname{tr}\left(\bar{\nabla} A_{H^{\prime}}\right)+\sum \sigma^{\prime}\left(E_{i}, A_{H^{\prime}} E_{i}\right)+2 \sum \bar{\sigma}\left(E_{i}, A_{H^{\prime}} E_{i}\right) \tag{3.2}\\
& -2 \sum \bar{\sigma}\left(E_{i}, D_{E_{i}} H^{\prime}\right)+n H^{\prime}-n \bar{\sigma}\left(H^{\prime}, H^{\prime}\right)
\end{align*}
$$

where Δ^{D} is the Laplacian with respect to the normal connection D and

$$
\begin{equation*}
\operatorname{tr}\left(\overline{\bar{V}} A_{H^{\prime}}\right)=\sum\left(\nabla_{E_{\imath}} A_{H^{\prime}}\right) E_{i}+\sum A_{D_{E_{i} H^{\prime}}} E_{i} . \tag{3.3}
\end{equation*}
$$

For each point u in M, we choose an orthonormal basis $\left\{\xi_{n+1}, \cdots, \xi_{m}\right\}$ of the normal space of M is S^{m} at u such that ξ_{n+1} is parallel to H^{\prime} at u (if $H^{\prime}=0$ at u, any orthonormal frame satisfies this condition). Simply denote $A_{\xi r}(r=n+1, \cdots, m)$ by A_{r}. We have

$$
\begin{equation*}
\sum_{i=1}^{n} \sigma^{\prime}\left(E_{i}, A_{H^{\prime}}, E_{i}\right)=\left|A_{n+1}\right|^{2} H^{\prime}+\mathfrak{Y}^{\prime}\left(H^{\prime}\right) \tag{3.4}
\end{equation*}
$$

where $\mathfrak{X}^{\prime}\left(H^{\prime}\right)=\sum_{r=n+2}^{m} \operatorname{tr}\left(A_{H^{\prime}} A_{r}\right) \xi_{r}$ is the so-called allied mean curvature vector of M in S^{m}. It is clear that if $H^{\prime}=0$ at u, then $\mathfrak{Y}^{\prime}\left(H^{\prime}\right)=\left|A_{n+1}\right|^{2} H^{\prime}$ $=0$ at u. It is easy to see that $\mathfrak{Y}^{\prime}\left(H^{\prime}\right)$ and both sides of (3.4) are independent of the choice of $\xi_{n+1}, \cdots, \xi_{m}$ such that ξ_{n+1} is parallel to H^{\prime}. By combining (3.2) and (3.4) we obtain

$$
\begin{align*}
\left(\Delta H^{\prime}\right)(u)= & \Delta^{D} H^{\prime}+\operatorname{tr}\left(\overline{\bar{V}} A_{H^{\prime}}\right)+\left(\left|A_{n+1}\right|^{2}+n\right) H^{\prime}+\mathfrak{X}^{\prime}\left(H^{\prime}\right) \tag{3.5}\\
& +2 \sum \bar{\sigma}\left(E_{i}, A_{H^{\prime}} E_{i}\right)-2 \sum \bar{\sigma}\left(E_{i}, D_{E_{i}} H^{\prime}\right)-n \bar{\sigma}\left(H^{\prime}, H^{\prime}\right) .
\end{align*}
$$

On the other hand, from (2.6), (2.7) and parallelism of $\bar{\sigma}$, we have

$$
\begin{align*}
& \frac{1}{n} \Delta\left(\sum_{i=1}^{n} \bar{\sigma}\left(E_{i}, E_{i}\right)\right)(u)=2(n+2) H^{\prime}+\frac{2}{n}(n+1) \sum_{j} \bar{\sigma}\left(E_{j}, E_{j}\right) \\
& \quad+\frac{2}{n} \sum_{i, j} \bar{\sigma}\left(A_{\sigma^{\prime}\left(E_{i}, E_{j}\right)} E_{j}, E_{i}\right)-\frac{2}{n} \sum_{\imath, j} \bar{\sigma}\left(\sigma^{\prime}\left(E_{i}, E_{j}\right), \sigma^{\prime}\left(E_{i}, E_{j}\right)\right) \tag{3.6}\\
& \quad-\frac{2}{n} \sum_{i, j} \bar{\sigma}\left(\left(\tilde{\nabla} \sigma^{\prime}\right)\left(E_{i}, E_{j}, E_{j}\right), E_{i}\right),
\end{align*}
$$

where $\tilde{\Gamma} \sigma^{\prime}$ denotes the covariant derivative of σ^{\prime}. From Codazzi's equation, we have

$$
\begin{equation*}
\sum\left(\tilde{\nabla} \sigma^{\prime}\right)\left(E_{i}, E_{j}, E_{j}\right)=n D_{E_{i}} H^{\prime} \tag{3.7}
\end{equation*}
$$

Thus, we obtain, from (3.1), (3.5), (3.6) and (3.7),

$$
\begin{align*}
& (\Delta H)(u)=\Delta^{D} H^{\prime}+\operatorname{tr}\left(\bar{\nabla} A_{H^{\prime}}\right)+\mathfrak{Q}^{\prime}\left(H^{\prime}\right)+\left(\left\|A_{n+1}\right\|^{2}+3 n+4\right) H^{\prime} \\
& \quad+\frac{2(n+1)}{n} \sum_{j} \bar{\sigma}\left(E_{j}, E_{j}\right)+2 \sum_{i} \bar{\sigma}\left(E_{i}, A_{H^{\prime}} E_{i}\right) \tag{8.8}\\
& \quad+\frac{2}{n} \sum_{i, j} \bar{\sigma}\left(A_{\sigma^{\prime}\left(E_{i}, E_{j}\right)} E_{i}, E_{j}\right)-4 \sum_{\imath} \bar{\sigma}\left(E_{i}, D_{E_{i}} H^{\prime}\right) \\
& \quad-n \bar{\sigma}\left(H^{\prime}, H^{\prime}\right)-\frac{2}{n} \sum_{i, j} \bar{\sigma}\left(\sigma^{\prime}\left(E_{i}, E_{j}\right), \sigma^{\prime}\left(E_{i}, E_{j}\right)\right) .
\end{align*}
$$

As we mentioned in Section 2, $f: S^{m} \rightarrow S M(m+1)$ is of 1-type and S^{m} is isometrically immersed in a hypersphere, say W, of $S M(m+1)$ centered at $I /(m+1)$ as a minimal submanifold.

The general assumptions we made in this paper are
(1) $\quad x=f \circ \psi: M \rightarrow S^{m} \rightarrow S M(m+1)$ is of 2-type and
(2) $x=f \circ \psi$ is mass-symmetric, i.e., the center of mass of M in $S M(m+1)$ is the center of the hypersphere W in $S M(m+1)$, which means that $x_{0}=I /(m+1)$; and
(3) the immersion $\psi: M \rightarrow S^{m}$ is full, i.e., $\psi(M)$ is not contained in any great hypersphere of S^{m}.
Under these assumptions we have

$$
\begin{equation*}
\Delta H=b H^{\prime}+\frac{b}{n} \sum_{i=1}^{n} \bar{o}\left(E_{i}, E_{i}\right)+e\left(x-\frac{1}{m+1} I\right), \tag{3.9}
\end{equation*}
$$

where $b=\lambda_{p}+\lambda_{q}$ and $e=\lambda_{p} \lambda_{q} / n$. We put

$$
\begin{equation*}
L=\sum \bar{\sigma}\left(E_{i}, D_{E_{i}} H^{\prime}\right) . \tag{3.10}
\end{equation*}
$$

Then, by using (2.6) and (3.8), we obtain

$$
\begin{align*}
g(\Delta H, L) & =-4 g(L, L)=-4 \sum_{i, j}\left\langle E_{i}, E_{j}\right\rangle\left\langle D_{E_{i}} H^{\prime}, D_{E_{j}} H^{\prime}\right\rangle \tag{3.11}\\
& =-4\left|D H^{\prime}\right|^{2} .
\end{align*}
$$

On the other hand, (2.6), (2.7) and (3.9) imply

$$
\begin{equation*}
g(\Delta H, L)=e g(x, L)=-e \sum\left\langle E_{i}, D_{E_{i}} H^{\prime}\right\rangle=0 \tag{3.12}
\end{equation*}
$$

Therefore, from (3.11) and (3.12), we see that $\psi: M \rightarrow S^{m}$ has parallel mean curvature vector, i.e., $D H^{\prime}=0$. Thus, we have $\Delta^{D} H^{\prime}=\operatorname{tr}\left(\vec{\nabla} A_{H^{\prime}}\right)=0$.

For the immersion $x: M \rightarrow S^{m}$ we may regard the Weingarten map A as a linear map from the normal bundle $T \perp M$ into the space of selfadjoint endomorphisms $S_{n}(T M)$ of the tangent bundle $T M$:

$$
A: T^{\perp} M \rightarrow S_{n}(T M)
$$

which carries $\xi \in T^{\perp} M$ onto A_{ξ}. On $S_{n}(T M)$ there is a canonical inner product defined by $\langle\langle B, C\rangle\rangle=(1 / n) \operatorname{tr}(B C)$ for $B, C \in S_{n}(T M)$. We say that the Weingarten map A is homothetic if there exists a positive number ρ such that $\left\langle\left\langle A_{\xi}, A_{\eta}\right\rangle\right\rangle=\rho\langle\xi, \eta\rangle$ for $\xi, \eta \in T^{\perp} M$. Submanifolds with conformal or homothetic Weingarten map were investigated in [2].

Lemma 1. Let $\psi: M \rightarrow S^{m}$ be a full isometric immersion. If $x=f \circ \psi$ is mass-symmetric and of 2-type, then
(1) the mean curvature vector of ψ is parallel, i.e., $D H^{\prime}=0$,
(2) $\mathfrak{U}^{\prime}\left(H^{\prime}\right)=0$, i.e., $\sum \sigma^{\prime}\left(E_{i}, A_{H^{\prime}}, E_{i}\right)$ is parallel to H^{\prime},
(3) $\left\|A_{H^{\prime}}\right\|$ is constant,
(4) the Weingarten map A of ψ is homothetic on $\left\langle H^{\prime}\right\rangle \perp$, where $\left\langle H^{\prime}\right\rangle^{\perp}$ is the orthogonal complement of $\left\langle H^{\prime}\right\rangle=\operatorname{Span}\left\{H^{\prime}\right\}$, and
(5) the Ricci tensor S of M satisfies

$$
S(X, Y)=2 n\left\langle A_{H^{\prime}} X, Y\right\rangle+k\langle X, Y\rangle
$$

for some constant k. (k depends only on λ_{p} and λ_{q}).
Proof. Since $x=f \circ \psi: M \rightarrow S M(m+1)$ is assumed to be masssymmetric and of 2-type, H^{\prime} is parallel in the normal bundle of M in S^{m}. In particular, the length of H^{\prime} is constant. Since $\Delta^{D} H^{\prime}=\operatorname{tr}\left(\bar{\nabla} A_{H^{\prime}}\right)=0$, (3.8) and (3.9) imply $\mathfrak{X}^{\prime}\left(H^{\prime}\right)=0$ and $\left\|A_{n+1}\right\|^{2}+3 n+4=b$. This proves (2) and (3).

From (2.6) and (3.8) we have

$$
\begin{align*}
g(\Delta H, \bar{\sigma}(\xi, \eta))= & {\left[4(n+1)+2 n\left\|H^{\prime}\right\|^{2}\langle\langle\xi, \eta\rangle\right.} \\
& -2 n\left\langle H^{\prime}, \xi\right\rangle\left\langle H^{\prime}, \eta\right\rangle-\frac{4}{n} \operatorname{tr}\left(A_{\xi} A_{\eta}\right) \tag{3.13}
\end{align*}
$$

for any normal vector fields ξ, η of M in S^{m}.
On the other hand, (2.7) and (3.9) give

$$
\begin{equation*}
g(\Delta H, \bar{\sigma}(\xi, \eta))=(2 b-e)\langle\xi, \eta\rangle \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14) we find

$$
\begin{align*}
\left\langle\left\langle A_{\xi}, A_{\eta}\right\rangle\right\rangle= & \frac{1}{4}\left[4(n+1)+2 n\left\|H^{\prime}\right\|^{2}+e-2 b\right]\langle\xi, \eta\rangle \tag{3.15}\\
& -\frac{n}{2}\left\langle H^{\prime}, \xi\right\rangle\left\langle H^{\prime}, \eta\right\rangle
\end{align*}
$$

which proves the homotheticy of A on $\left\langle H^{\prime}\right\rangle^{\perp}$.
From (2.6) and (3.8) we find

$$
\begin{align*}
& g\left(\Delta H, \bar{\sigma}\left(E_{k}, E_{l}\right)\right)=\left[4(n+1)+\frac{4(n+1)}{n}+2 n\left\|H^{\prime}\right\|^{2}\right]\left\langle E_{k}, E_{\imath}\right\rangle \tag{3.16}\\
& \quad+4\left\langle\sigma^{\prime}\left(E_{k}, E_{l}\right), H^{\prime}\right\rangle+\frac{4}{n} \sum_{i}\left\langle\sigma^{\prime}\left(E_{k}, E_{i}\right), \sigma^{\prime}\left(E_{l}, E_{i}\right)\right\rangle
\end{align*}
$$

From (2.6), (2.7) and (3.9) we get

$$
\begin{equation*}
g\left(\Delta H, \bar{\sigma}\left(E_{k}, E_{l}\right)\right)=\left(2 b+\frac{2 b}{n}-e\right)\left\langle E_{k}, E_{l}\right\rangle . \tag{3.17}
\end{equation*}
$$

Since the Ricci tensor S of M satisfies

$$
\begin{align*}
S\left(E_{k}, E_{l}\right)= & (n-1)\left\langle E_{k}, E_{l}\right\rangle-\sum_{\imath}\left\langle\sigma^{\prime}\left(E_{k}, E_{i}\right), \sigma^{\prime}\left(E_{l}, E_{\imath}\right)\right\rangle \tag{3.18}\\
& +n\left\langle\sigma^{\prime}\left(E_{k}, E_{l}\right), H^{\prime}\right\rangle
\end{align*}
$$

(3.16), (3.17) and (3.18) imply

$$
\begin{aligned}
& S\left(E_{i}, E_{j}\right)=2 n\left\langle A_{H^{\prime}}, E_{i}, E_{j}\right\rangle \\
& \quad+\left[n(n+3)+\frac{n^{2}}{2}\left\|H^{\prime}\right\|^{2}+\frac{n e}{4}-\frac{b(n+1)}{2}\right]\left\langle E_{i}, E_{j}\right\rangle .
\end{aligned}
$$

This proves (5).
(Q.E.D.)

Remark 1. (i) It is not difficult to verify that if a submanifold M of S^{m} satisfies conditions (1)-(5) of Lemma 1 , then $x=f \circ \psi$ is mass-symmetric and it is of 1 or 2-type.
(ii) Lemma 1 was obtained in [9] in the special case when M is a minimal submanifold of S^{m}. So Lemma 1 is a generalization of Ros' characterization theorem.

By applying Lemma 1 , we have the following,
Theorem 1. Let $\psi: M \rightarrow S^{m}$ be an isometric immersion of a compact Riemannian manifold such that the immersion is full. If $x=f \circ \psi$ is masssymmetric and of 2-type in $S M(m+1)$, then either
(a) M is of 1-type in E^{m+1} and so M is minimal in a hypersphere of E^{m+1} or
(b) M is of 2-type in E^{m+1} and mass-symmetric in $S^{m} \subset E^{m+1}$.

Proof. Under the hypothesis, Lemma 1 implies $D H^{\prime}=0 \mathfrak{X}^{\prime}\left(H^{\prime}\right)=0$ and $\left\|A_{H^{\prime}}\right\|$ being constant. Therefore, by applying Theorem 4.4 of [6, p. 278], we conclude that either M is of 1-type in E^{m+1} or M is mass-symmetric and of 2-type in $S^{m} \subset E^{m+1}$.
(Q.E.D.)

If M is Einsteinian, then case (b) of Theorem 1 cannot occur. In fact, we have

Theorem 2. Let $\psi: M \rightarrow S^{m}$ be an isometric immersion of a compact Einstein manifold M into S^{m} such that the immersion is full. If $x=f \circ \psi$ is mass-symmetric and of 2-type, then either M is minimal in S^{m} or M is minimal in a small hypersphere of S^{m}. In both cases, M is of 1-type in E^{m+1}.

Proof. Under the hypothesis, statement (5) of Lemma 1 implies that M is pseudo-umbilical in S^{m}. Moreover, from statement (1) of Lemma 1, M has parallel mean curvature vector H^{\prime} in S^{m}. Thus, by applying Proposition 4.2 of [6, p. 133], we obtain the theorem.
(Q.E.D.)

We give the following lemma for later use.
Lemma 2. Let $M=S^{n}(r)$ be a small hypersphere of radius $r(r<1)$ of S^{n+1}. Then M is of 2-type in $S M(n+2)$ via $f: S^{n+1} \rightarrow S M(n+2)$. Moreover, M is mass-symmetric and of 2-type in $S M(n+2)$ if and only if $r^{2}=$ $(n+1) /(n+2)$.

Proof. Let V_{i} be the eigenspace of Δ on M with eigenvalue λ_{i}. Then we have $V_{1} V_{1} \subset V_{0}+V_{1}+V_{2}$. Without loss of generality we may assume that M is given by the intersection of $S^{n+1} \subset E^{n+2}$ and the hyperplane P of E^{n+1} whose last coordinate is given by $\sqrt{1-r^{2}}$. Thus, $M=\left\{\left(y, \sqrt{1-r^{2}}\right)\right.$ $\left.\in E^{n+2} \mid y \cdot y^{t}=r^{2}\right\}$. Since the immersion $f: S^{n+1} \rightarrow S M(n+2)$ is defined by $f(u)=u^{t} \cdot u$ for $u \in S^{n+1}$, it is clear that M is of 2 -type in $S M(n+2)$ via f. Since M is immersed in $S M(n+2)$ by $\left(y, \sqrt{1-r^{2}}\right)^{t} \cdot\left(y, \sqrt{1-r^{2}}\right)$, we see
that the center of mass x_{0} of M in $S M(n+2)$ is proportional to the identity matrix I of $S M(n+2)$ if and only if $r^{2}=(n+1) /(n+2)$. Moreover, in this case, we have $x_{0}=(1 /(n+2)) I$ which is exactly the center of the hypersphere W which S^{n+1} lies via f.
(Q.E.D.)

In the following three sections, we shall apply previous results to obtain some classifications results.

§4. Hypersurface of S^{m} which are of 2-type via f

The main purpose of this section is to classify hypersurfaces of S^{m} which are mass-symmetric and of 2-type via f.

Let $M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ be the Riemannian product of two spheres with radii r_{1} and r_{2}, respectively. Let M be a hypersurface of $S^{n+1}=$ $S^{n+1}(1)$. Then we have $r_{1}^{2}+r_{2}^{2}=1$. We recall that

$$
\begin{aligned}
& \operatorname{Spec}\left(S^{p}\left(r_{1}\right)\right)=\left\{\bar{\lambda}_{k}=k(p+k-1) / r_{1}^{2} \mid k \geq 0\right\} \quad \text { and } \\
& \operatorname{Spec}\left(S^{n-p}\left(r_{2}\right)\right)=\left\{\lambda_{k}^{\prime}=k(n-p+k-1) / r_{2}^{2} \mid k \geq 0\right\}
\end{aligned}
$$

Moreover, the coordinate functions of x_{i} of $S^{p}\left(r_{1}\right)$ in E^{p+1} are eigenfunctions with eigenvalue $\bar{\lambda}_{1}$ and the coordinate functions y_{t} of $S^{n-p}\left(r_{2}\right)$ in E^{n-p+1} are eigenfunctions with eigenvalue λ_{1}^{\prime}. Therefore, the coordinate functions of $M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ in $S M(n+2)$ via f are given by the following matrix

$$
\left[\begin{array}{c:c}
x_{i} x_{j} & x_{i} y_{t} \tag{4.1}\\
\hdashline x_{i} y_{t} & y_{t} y_{s}
\end{array}\right]_{1 \leq i \leq, j \leq p+1, i \leq n+1-p} .
$$

So the coordinate functions of M in $S M(n+2)$ are eigenfunctions on M associated with at most three eigenvalues of Δ on M given by $\bar{\lambda}_{2}, \lambda_{2}^{\prime}$ and $\lambda_{1}^{\prime}+\bar{\lambda}_{1}$.

Lemma 3. $M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)\left(r_{1}^{2}+r_{2}^{2}=1\right)$ is of 2-type in $S M(n+2)$ via f if and only if either
(1) $r_{1}^{2}=(p+1) /(n+2)$ and $r_{2}^{2}=(n-p+1) /(n+2)$ or
(2) $r_{1}^{2}=(p+2) /(n+2)$ and $r_{2}^{2}=(n-p) /(n+2)$, or
(3) $r_{1}^{2}=p /(n+2)$ and $r_{2}^{2}=(n-p+2) /(n+2)$.

Proof. M is of 2 -type via f if and only if two of $\bar{\lambda}_{2}, \lambda_{2}^{\prime}$ and $\lambda_{1}^{\prime}+\bar{\lambda}_{1}$ are equal. This implies the Lemma.

Lemma 4. $\quad M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)\left(r_{1}^{2}+r_{2}^{2}=1\right)$ is mass-symmetric in
$S M(n+2)$ via f if and only if $r_{1}^{2}=(p+1) /(n+2)$ and $r_{2}^{2}=(n-p+1) /$ $(n+2)$.

Proof. First we regard $M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ as a submanifold in $E^{n+2}=E^{p+1} \oplus E^{n-p+1}$ in a natural way. It is easy to see that the center of mass of M in $S M(n+2)$ via f is given by

$$
\left(\begin{array}{cc}
\frac{r_{1}^{2}}{p+1} I_{p+1} & 0 \\
0 & \frac{r_{2}^{2}}{n-p+1} I_{n-p+1}
\end{array}\right)
$$

Thus, M is mass-symmetric if and only if $(n-p+1) r_{1}^{2}=(p+1) r_{2}^{2}$. Because $r_{1}^{2}+r_{2}^{2}=1$, we obtain the Lemma.

Now, we give the following main result of this section.
Theorem 3. Let $\psi: M \rightarrow S^{n+1}$ be an isometric immersion of a compact n-dimensional Riemannian manifold M into S^{n+1}. Then $x=f \circ \psi$ is masssymmetric and of 2-type if and only if either
(1) M is a small hypersphere of S^{n+1} with radius

$$
r=[(n+1) /(n+2)]^{1 / 2}, \text { or }
$$

(2) $\quad M=S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ with $r_{1}^{2}=(p+1) /(n+2)$ and

$$
r_{2}^{2}=(n-p+1) /(n+2)
$$

The immersions of M into S^{n+1} in (1) and (2) are given in natural way.

Proof. If M is mass-symmetric and of 2-type in $S M(n+2)$ via f, then Lemma 1 implies that $D H^{\prime}=0,\left\|A_{H^{\prime}}\right\|$ is constant and the Ricci tensor S of M satisfies

$$
\begin{equation*}
S(X, Y)=2 n\left\langle A_{H^{\prime}} X, Y\right\rangle+k\langle X, Y\rangle, \tag{4.2}
\end{equation*}
$$

where k is a constant. On the other hand, from Gauss' equation, we have

$$
\begin{equation*}
S(X, Y)=(n-1)\langle X, Y\rangle+n \alpha^{\prime}\langle A X, Y\rangle-\left\langle A^{2} X, Y\right\rangle \tag{4.3}
\end{equation*}
$$

where A is the Weingarten map of M in $S^{n+1} \quad$ Combining (4.2) and (4.3) we find $A^{2}+n \alpha^{\prime} A+(k+1-n) I=0$. This shows that M has at most two distinct principal curvatures and the principal curvatures are constant. If M has only one principal curvature, M is a small hypersurface of S^{n+1}. In this case, Theorem 3 follows from Lemma 2. If M has two distinct principal curvatures, then M is the product of two spheres. In this case, Theorem 3 follows from Lemma 3 and Lemma 4.
(Q.E.D.)

Remark. Let W be the hypersphere of $S M(n+2)$ in which S^{n+1} is immersed as a minimal submanifold via f. Examples (2) and (3) of Lemma 3 give the first known examples of 2 -type submanifolds in W which are not mass-symmetric.

§5. Submanifolds with maximal codimension

Let M be an n-dimensional submanifold of S^{m}. Consider the associated Weingarten map $A: T^{\perp} M \rightarrow S_{n}(T M)$ from the normal space of M in S^{m} into the vector bundle of self-adjoint endomorphisms of $T M$. In the vector bundle $S_{n}(T M)$ we consider the subbundle $M_{n}=\left\{B \in S_{n}(T M) \mid\right.$ trace $\left.B=0\right\}$. Then we have

$$
\begin{equation*}
S_{n}(T M)=M_{n} \oplus R I_{n} \tag{5.1}
\end{equation*}
$$

With respect to the usual inner product $\langle\langle\rangle$,$\rangle on S_{n}(T M)$, the subbundles M_{n} and $R I_{n}$ are orthogonal. It is easy to see that the fibres of $S_{n}(T M)$ are of $\frac{1}{2} n(n+1)$-dimensional.

Lemma 5. Let $\psi: M \rightarrow S^{m}$ be an isometric immersion of a compact n-dimensional Riemannian manifold M into S^{m} such that the immersion is full. If $x=f \circ \psi$ is mass-symmetric and of 2-type, then we have $m \leq n(n+3) / 2$. In particular, if $m=n(n+3) / 2$, then M is immersed as a minimal submanifold in a small hypersphere of S^{m} via ψ.

Proof. Under the hypothesis, Lemma 1 implies that M has parallel mean curvature vector in S^{m}. Thus, M has constant mean curvature. If M is minimal in S^{m}, then $A\left(T^{\perp} M\right) \subset M_{n}$. Since ψ is full, statement (4) of Lemma 1 implies $m-n \leq n(n+1) / 2-1$ which gives $m \leq n(n+3) / 2-1$. Therefore, we may assume that M has nonzero constant mean curvature in S^{m}. In this case, we obtain $m \leq n(n+3) / 2$. If $m=n(n+3) / 2$, then we see that $A: T^{\perp} M \rightarrow S_{n}(T M)=M_{n} \oplus R I$ is surjective. Since A maps $\nu=\left\langle H^{\prime}\right\rangle^{\perp}$ onto M_{n}, we have $A\left(H^{\prime}\right) \in R I_{n}$. This shows that M is pseudoumbilical in S^{m}. Because M has parallel mean curvature vector H^{\prime} in S^{m}, we conclude that M lies in a hypersphere $S^{m-1}(r)$ of S^{m} as a minimal submanifold. Since M is not minimal in S^{m}, we have $r<1$. (Q.E.D.)

By applying Lemma 5 we may obtain the following.
Theorem 4. Let $\psi: M \rightarrow S^{n(n+3) / 2}$ be an isometric immersion of a compact, n-dimensional, Riemannian manifold M into $S^{n(n+3) / 2}$ such that the
immersion is full. If $x=f \circ \psi$ is mass-symmetric and of 2-type, then M is a real-space-form which is immersed fully in a small hypersphere of $S^{n(n+3) / 2}$ as a minimal, isotropic submanifold.

Proof. Under the hypothesis, Lemma 5 implies that M is immersed as a minimal submanifold in a small hypersphere $S^{n(n+3) / 2-1}(r)=S$ of $S^{n(n+3) / 2}$. Moreover, from Lemma 1, we know that the Weingarten map A of M in S is homothetic. Thus, for any fixed point $p \in M$, the Weingarten map at $p ; A(p): T_{p}^{\perp} M \rightarrow M_{n}(p)$ is an isomorphism. Since $A(p)$ is homothetic, we have

$$
\left\langle\left\langle A_{\xi}, A_{\eta}\right\rangle\right\rangle=c^{2}\langle\xi, \eta\rangle
$$

for some constant c. Let v be a given unit vector in $T_{p} M$. We choose an orthonormal basis $B=\left\{e_{1}, \cdots, e_{n}\right\}$ such that $e_{1}=v$. Since $A(p): T_{p}^{\perp} M$ $\rightarrow M_{n}(p)$ is an isomorphism, there exists an orthonormal basis ξ_{n+1}, \cdots, $\xi_{n(n+3) / 2-1}$ in $T_{p}^{\perp} M$ such that, with respect to B, the associated Weingarten endmorphisms are given by

$$
\begin{aligned}
& A_{n+1}=c\left(\begin{array}{c|c}
-(n-1) a_{n-1} & 0 \\
\hline 0 & a_{n-1} I_{n-1}
\end{array}\right), \\
& A_{n+2}=c\left(\begin{array}{cc|c}
0 & 0 & 0 \\
0 & -(n-2) a_{n-2} & \\
\hline 0 & a_{n-2} I_{n-2}
\end{array}\right), \\
& A_{2 n-2}=c\left[\begin{array}{c|c|c}
0 & \frac{0}{0} & 0 \\
\hline 0 & -2 a_{2} & \\
\hline 0 & a_{2} I_{2}
\end{array}\right], \\
& A_{2 n-1}=c\left(\begin{array}{cc|c}
0 & 0 & 0 \\
0 & -a_{1} & \\
\hline 0 & a_{1}
\end{array}\right), \\
& A_{n+[i, j]}=c\left(\begin{array}{ccc}
i & j \\
\vdots & \vdots \\
\cdots \cdots & \cdots & \sqrt{\frac{n}{2}} \cdots \cdots \\
\vdots & \vdots \\
\cdots & \sqrt{\frac{n}{2}} \cdots \cdots & \cdots \cdots \\
\vdots & \vdots
\end{array}\right), \quad,
\end{aligned}
$$

where $[i, j]=i+\frac{1}{2}(j-i)(2 n+1-j+i)-1, a_{n-k}^{2}=n /(n-k)(n-k+1)$; $1 \leq k \leq n-1$ and $1 \leq i<j \leq n$. From these we see that the second fundamental form $\bar{\sigma}$ of M in S satisfies $\|\bar{\sigma}(v, v)\|^{2}=(n-1) c^{2}$ which shows the isotropy of M in S. The constancy of sectional curvature of M follows from the equation of Gauss.
(Q.E.D.)

Remark. Isotropic isometric immersions from a real-space-form into another real-space-form have been studied by Itoh and Ogiue [8].

By a similar argument we have the following.
Theorem 5. Let $\psi: M \rightarrow S^{m}$ be an isometric minimal immersion of a compact, n-dimensional, Riemannian manifold such that the immersion is full. If $x=f \circ \psi$ is mass-symmetric and of 2-type, then $m \leq n(n+3) / 2-1$. In particular, if $m=n(n+3) / 2-1$, then M is a real-space-form which is immersed as an isotropic submanifold.

Since this theorem can be proved in the same way as that of Theorem 4, so we omit it.

§6. Classification of 2-type surfaces

In this section we classify surfaces in S^{m} which are mass-symmetric and of 2 -type via f.

Theorem 6. Let $\psi: M \rightarrow S^{m}$ be an isometric immersion of a compact surface M into S^{m} such that the immersion is full. If $x=f \circ \psi$ is masssymmetric and of 2-type, then one of the following statements holds:
(1) $m=3$ and M is immersed as a small hypersphere $S^{2}(r)$ with radius $r=\sqrt{3} / 2$;
(2) $m=3$ and M is immersed as a Clifford (minimal) torus $S^{1}(1 / \sqrt{2}) \times S^{1}(1 / \sqrt{2})$ in $S^{3} ;$
(3) $m=4$ and M is immersed as a Veronese (minimal) surface in S^{4};
(4) $m=5$ and M is immersed as a Veronese (minimal) surface in a small hypersphere $S^{4}(\sqrt{5 / 6})$ of S^{5}.
The converse is also true.
Proof. Under the hypothesis, Lemma 1 implies that M has parallel mean curvature vector in S^{m}. Thus, by applying a result of Chen and Yau (cf. [4, p. 106]), we have $m>3$ and either M is a minimal surface of S^{m} or M is a minimal surface of a small hypersphere $S^{m-1}(r)$ of S^{m}, or M lies in totally geodesic S^{3} of S^{m}. If the later case holds, then $m=3$ since
ψ is full. In this case, Theorem 3 implies that either case (1) or case (2) occurs.

If $m>3$, then, by Lemma $5, m=4$ or $m=5$. If $m=4$, Theorem 5 and Theorem 2 of [8] imply that M is a Veronese surface in S^{4}. If $m=5$, by using Theorem 4, we see that M is immersed in a small hypersphere $S^{4}(r)$ of S^{5} as a Veronese surface. Without loss of generality, we may assume that $S^{4}(r)$ is given by $u_{6}=\sqrt{1-r^{2}}$, where (u_{1}, \cdots, u_{6}) are the Euclidean coordinates of S^{5} in E^{6}. From direct computation, we see that the center of mass of M in $S M(6)$ via f is given by

$$
x_{0}=\left(\begin{array}{c:c}
\frac{r^{2}}{5} I_{5} & 0 \\
\hline 0 & 1-r^{2}
\end{array}\right]
$$

Since M is mass-symmetric in $W \subset S M(6)$, we have $x_{0}=I / 6$. Thus, we see that M is mass-symmetric in $S M(6)$ if and only if $r^{2}=5 / 6$.

The converse follows from direct computation.

References

[1] Barros, M. and B. Y. Chen, Classification of stationary 2-type surfaces of hyperspheres, C.R. Math. Rep. Acad. Sci. Canada, 7 (1985), 309-314.
[2] Barros, M. and B. Y. Chen, Finite type spherical submanifolds, Proc. II Intern. Symp. Diff. Geom., Lecture Notes in Math., Springer-Verlag, 1209 (1986), 73-93.
[3] Barros, M. and A. Ros, Spectral geometry of submanifolds, Note Mat., 4 (1984), 1-56.
[4] Chen, B. Y., Geometry of submanifolds, M. Dekker, 1973,
[5] Chen, B. Y., On total curvature of immersed manifolds, IV, Bull. Math. Acad. Sinica, 7 (1979), 301-311; ——, VI, ibid, 11 (1983), 309-328.
[6] Chen, B. Y., Total mean curvature and submanifolds of finite type, World Scientific, 1984.
[7] Chen, B. Y., 2-type submanifolds and their applications, Chinese J. Math., 14 (1986), 1-14.
[8] Itoh, T. and K. Ogiue, Isotropic immersions, J. Differential Geom., 8 (1973), 305-316.
[9] Ros, A., Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math. Z., 187 (1984), 393-404.
[10] Sakamoto, K., Planar geodesic immersions, Tôhoku Math. J., 29 (1977), 25-56.
[11] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.

M. Barros
Departamento de Geometria y Topologia Universidad de Granada
18071-Granada, Spain

B.-Y. Chen

Department of Mathematics Michigan State University East Lansing, Michigan 48824 USA

