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Recently Hing Tong [3], M. Katetov [4] and C. H. Dowker [2] have es-

tablished two sorts of insertion theorems for semi-continuous functions defined

on normal and countably paracompact normal spaces. The purpose of this paper

is to give the insertion theorem for some typical semi-continuous functions

defined on a T-space. The relations between Baire sets and Borel sets in some

topological spaces are also studied.

Throughout this paper, unless in a special context we explicitly say other-

wise, any function defined on a space is real-valued and a sequence of functions

means a countable sequence of them. A family of functions defined on a space

R is called complete if the limit of any sequence of functions in it is also con-

tained in it. The minimal complete family of functions defined on R which con-

tains all continuous functions is called the family of Baire functions and its ele-

ment a Baire function. A subset of R is called a Baire set if its characteristic

function is a Baire function. A subset of R is called respectively elementary-

open or elementary-closed if it is written as {x fix) > 0} or {x I fix) ^ 0} by

a suitable continuous function fix) defined on R. The minimal completely

additive class of sets which contains all open sets in R is called the family of

Borel sets and its element a Borel set. It is well known that the family of

Borel sets contains the family of Baire sets and that the family of Baire sets

coincides with the minimal completely additive class of sets which contains all

the elementary open (closed) sets.

THEOREM 1. In oder that a subset A of a T-space R is elementary-open or

elementary-closed, it is necessary and sufficient that the characteristic function

ΨA(X) of A is the limit of a monotonically increasing or decreasing sequence of

continuous functions, respectively.
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Proof. Let A be an elementary closed set:

where fix) is a continuous function defined on R- As the real line is homeo-

morphic to the open interval (1, 2) preserving the order, we can assume with

no loss of generality that 1 <fix) < 2 everywhere and λ > 0. Let hix) = min

(fix),λ)/λ and hix), h2ix)9 . . . -I ψAix) where hιix) is evidently continuous.

Thus <ρAix) is the limit of a monotonΐcally decreasing sequence of continuous

functions. When A is elementary-open, R- A is elementary-closed. Let ftix) be

continuous functions such that fiix) I <fn-Aix). And then 1 -fax) ί 1 - ψs-Ax)

= φA(χ). Thus φA(x) is the limit of a monotonically increasing sequence of

continuous functions.

Conversely let A be the set, the characteristic function <ρAix) of which is

the limit of a monotonically increasing sequence of continuous functions fiix)

defined on R, where we can assume with no loss of generality that 0 = /;(#) ^ 1

everywhere. Let

fix) = ΣΛ(*)/2'.

Then fix) is evidently a continuous function. It is not hard to verify that

A = {x fix) > 0}. Thus A is elementary-open. When A is a set, the charac-

teristic function <fAix) of which is the limit of a monotonically decreasing sequence

of continuous functions, R — A is elementary-open by the above argument and

A is an elementary closed set. Q.E.D.

This theorem shows that elementary-open and elementary closed sets are

Baire sets.

COROLLARY. A countable sum and a finite intersection of elementary open

sets are elementary-open. A countable intersection and a finite sum of elementary

closed sets are elementary-closed.

This can be easily seen from the above theorem.

THEOREM 2. If fix) defined on a T-space R is the limit of a monotonically

increasing sequence of continuous functions fiix), {x fix)> λ} becomes an ele-

mentary open set for any λ. If fix) is the limit of a monotonically decreasing

sequence of continuous functions, {x fix)^λ} becomes an elementary closed
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set for any λ.

Proof. We shall only prove the first half, since the last half of the theorem

is proved by the dual argument to the first one. Since {x fix) > λ} = {x fix)

- λ > 0} and fiin) - λ Ίfix) - λ, it is sufficient only to prove that {x /(ΛΓ)> 0>
00

is elementary-open. Let Ax• = {x ', fi(x)> 0}. We have A— U Ai. Since A'
i = l

are all elementary-open, A is also elementary-open by the corollary of Theorem

1. Q.E.D.

The converse of this theorem also holds as follows.

THEOREM 3. Let fix) be a function defined on a T-space R. If{x fix)

> λ} is elementary-open for any λ, fix) becomes the limit of a monotonically

increasing sequence of continuous functions. If {x ;fix)^λ} is elementary-

closed for any λ, fix) becomes the limit of a monotonically decreasing sequence

of continuous functons.

Proof. We shall only prove the first half, since the last half can be proved

by the dual argument to the first. Let fit) be the order-preserving homeo-

morphism of the real line onto the open interval (0, 1), and then

{x ;fiχ)>λ} = {χ ψifiχ))>ψiλ)}.

If ψifix)) is the limit of a monotonically increasing sequence of continuous

functions, fix) has the same property. Hence it suffices to consider the case

where 0 <fix) < 1. Let gjix) be the characteristic function of {x fix)>jln)

where n is an arbitrary positive integer. And then, by Theorem 1, gjix) is the

limit of a monotonically increasing sequence of continuous functions. Let

then we can easily see that fnix) is the limit of a monotonically increasing

sequence of continuous functions and that \fnix) -fix) I ̂  1/n everywhere. Thus

fix) is the limit of uniformly convergent sequence {fnix)} and so is the limit

of a monotonically increasing sequence of continuous functions. Q.E.D.

THEOREM 4. If A and B are disjoint elementary closed sets of a T-spacc,

there are elementary open sets U and V such that A<ZU, BC.V and UΓ) V= φ

ithe empty set). Moreover, there is a continuous function fix) defined on the

space such that AC{x ; / ( * ) = 0 } , BC{x ; / ( * ) = !}.
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Proof. Let A = {x fι(x) ^ 0} and B = {x fs(χ) ^ 0}, where A(x) and

f*{x) are continuous functions defined on the space. Then £/= {x fι(x) —ft(x)

>0) and V={* fax) - / iU) < 0} are the desired sets. The last half of the

theorem can be proved analogously to the proof of the Urysohn lemma. Q.E.D.

As an immediate consequence of Theorems 2, 3 and 4, we get the follow-

ing result established by Hing Tong [3D.

COROLLARY 1 (Hing Tong). In a T-space R the following conditions are

equivalent:

i) R satisfies the ^-separation axiom and every closed set in R is a Gδ-set.

it) Every closed set in R is an elementary closed set.

in) Every lower semi-continuous function defined on R is the limit of

a monotonically increasing sequence of continuous functions.

COROLLARY 2. If a T-space R satisfies any one of the conditions stated in

the preceding corollary, the family of Borel sets coincides with the family of Baire

sets.

This can easily verified from ii) of the preceding corollary and from the

well-known fact that the family of Baire sets coincides with the minimal com-

pletely additive class of sets which contains all the elementary open (closed) sets.

THEOREM 5. If a space R is regular and has the Lindelόf property, an

open set G in R is elementary-open if and only if G has the Lindelof property.

Proof. If G is elementary-open, G is an Fσ-set. Since any closed subset

of R has obviously the Lindelof property, G has also the same property as a

countable sum of sets with the property.

Conversely, if G is an open set with the Lindelof property, G has the star-

finite property ([4, Theorem 10]). Hence G is a paracompact T2-sρace and is,

therefore, normal ([1, Theorem 1]). We can construct the covering {Ua} of G, the

elements of which are all elementary-open. On account of the Lindelof property

of G, there is a countable sub-family {£/,} of {U*} such that G= U Ui. Thus

G becomes an elementary open set as a countable sum of elementary open

sets. Q.E.D.

COROLLARY 1. If R satisfies the same conditions in the theorem, the family

of Baire sets is contained in the completely additive class of sets generated by
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ayτ arbitrary open basis of R.

This is obvious from the theorem.

COROLLARY 2. Let R be a paracompact T2-space ivith the local Lindelof pro-

perty1' and lei {Ua} be an arbitrary open basis of R. Then every Baire set is a

sum of sets which are elements of the completely additive class of sets generated

by {Ua) and together form a discrete collection^

Proof. Let A be an arbitrary Baire set in R and let U be the completely

additive class of sets generated by {Ua}. R can be decomposed into mutually

disjoint open sets {R?} each of which has the Lindelof property by Πl? Theorem

7] and [5? Theorem 11]. Since the characteristic function of each i?β is con-

tinuous, Rn is a Baire set. Hence A Π R? = Aβ is a Baire set and A? e U by the

above corollary. It can be easily seen that {Ap} forms a discrete collection.

Q.E.D.

THEOREM 6. Every countably compact Baire set in a T-space R is an ele-

mentary closed set.

In order to prove this we begin with the following

LEMMA.3) For every Baire function fix) defined on a T-space R, there exists

a sequence of continuous functions fiix) defined on R such that fix) =/(v)

whenever fiix) —fiiy) for all i. In other ivords every Baire function is deter-

mined by a countable number of continuous functions.

Proof. Let £y be the family of all the functions which are determined by a

countable number of continuous functions. Let fix) be the limit of a sequence

of functions//(#) €Ξ v$. If {fijix) \ j = 1, 2, . . .} is a sequence of continuous func-

tions which determines fiix), {fijix) i, .7 = 1, 2, . . .} determines fix). Hence

fix)EΞ #, which shows the completeness of %. Since φ contains all the continuous

functions defined on R, $ contains all the Baire functions defined on R. Q.E.D.

Proof of Theorem. Let F be a Baire set which is countably compact

1 } A space is called to have the local Lindelof property, if each point has a neighbour-
hood with the Lindelof property.

2J A collection of sets is called discrete, if the closures of these sets are mutually dis-
joint and any sub-collection of these closures has a closed sum.

3 This lemma was stated in the lecture of Prof. K. Itό at Nagoya University.
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and let {fax)} be a sequence of continuous functions defined on R which deter-

mines φF(x), the characteristic function of F, in the sense of the lemma. Let

o(χ,y) = ΣI//U) -My)\/2?a+\Mχ) -My)\).
i = l

And then p gives a general metric on R. By means of p, R is decomposable

into classes #*, y*, . . ., where

** = {*' p(x, * ' )=0}.

We consider # * = {#*} as a metric space with the metric p*:

P*(#*, /*) = ρ(x, y), where * G **, y e 3>*.

p* is clearly independent of the choice of x and y. The mapping #(#) = x* from

2? onto /?* is continuous, since ρ(x, y) is a continuous function defined on R as

a function of y for every fixed x e /?. F * = {<§
Γ(ΛΓ) # e F} is the continuous

image of coutably compact F and is also countably compact. Hence F* is closed

in /?*. By Corollary 1 of Theorem 4, F* is an elementary closed set and is-

expressible as

where /*(**) is continuous on /?*. Let /(^) = / * ( ^ ( Λ : ) ) , then fix) becomes

continuous on R. p(χ,y)=0 implies fiix) =fi(y) for all i and hence ψF(x}

= φr(y). In other words g'Hx*) ΠF* <ρ implies g*(x*) C F . Therefore,

and is an elementary closed set. Q.E.D.

COROLLARY. A locally countably compact Ti-group G is metrizable if and

only if the family of Borel sets coincides with the family of Baire sets.

Proof. 'Only i f part has been already shown in Corollary 2 of Theorem 4.

' I f part: Let e be the unit element of G. Since e is obviously countably

compact, e is a Gδ-set by the assumption and the above theorem. Now e is

represented as

30

e = Π Vi,

where Vi is countably compact and every Vi is open. Then it can be easily
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seen that {Vi} forms a complete system of neighbourhoods of e from the

countable compactness of V\. Hence G is metrizable. Q.E.D.

THEOREM 7. Let {Ui} be a countable covering of a T-space R, the elements

of which are all elementary-open. Then there is a locally finite refinement {Vi)9

the elements of which are all elementary-open so that Vi C Ui for every i.
i i

Proof. Since U Uk is elementary-open, U Uk = {x ifiix) > 0}, where fi(x)

is a continuous function defined on R. Let

then it can easily be seen that

fr = l J = l J = l

UijCUijCUij+u

Let

Vi = Ui - U U'ji,

then Vi is elementary-open. { Vi} is nothing but we seek for. Let x be an arbi-

trary point of R and let Ui be the first element of {Ui} which contains x. Then

and { Vi} is a covering of R. If x €Ξ Ui, there is a / such that x G Uij. If

* > i, Λ

This shows that £/# meets only a finite number of sets Vk. Hence {V;} is

locally finite. Since clearly ViCUi for every /, {Vi} satisfies the conditions

stated in the theorem. Q.E.Ό.

THEOREM 8. Let g(x) and hix) be respectively the limit of a monotonically

decreasing sequence and a monotonically increasing sequence of continuous func-

tions defined on a T-space R such that g(x) < hix) everywhere. Then there is

a continuous function fix) defined on R such that gix) <fix) < hix) every-

where.
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Proof, (Our proof is an application of Dowker's method [2, Theorem 4].)

The rational numbers are countable. Denote them by {n). Let Ui = {x g(x)

<Π<h(x)}. Then

x h(x)>n).

Hence U% is elementary-open by Theorem 2. Since g(x) < h(x) for every x E R,

there is a rational number n{x) with g(x) < n{x) < h(x). Hence x & Ui{x).

Thus {Ui} is a covering of R, the elements of which are all elementary-open, By

Theorem 7 there is a locally finite covering { Vi} of R, the elements of which are

all elementary-open so that V/CZ7/ for every i. Since {Vi} is a covering of
CO

R, Vi contains an elementary closed set Wι = R — U V, . By Theorem 4, there

are an elementary closed set Aι and an elementary open set Bι such that

V1DAιDB1D Wu Then

{Bl9 Vi ί *2}

is a covering of i?, the elements of which are all elementary-open. Repeating this

procedure, we can construct, for any j , a covering

{B\, B'2, . . . , Bj, Vj+2, Vj + 2, . . . }

of R, the elements of which are all elementary-open so that Vk "D Bk and

Vk"D Ak~DBk for some elementary closed Ak and for any k ~ j . Then {jBi ,' i=l,

2, . . .} is a covering of R for every point * e i? there is the maximal num-

ber i(x) such that x E: Vi{X), since {F^} is a locally finite covering of R.
i(β)

A; ΐ U By leads to a contradictory fact that {Bι, . . . , β, (*), K w + i , . . .} is

not a covering of i?. Hence {B, } is a covering of i? which has evidently the

locally finite property. There are, by Theorem 4, continuous functions fi(x)

defined on R such that fι{x) = r% for xE At, fi(x)= — oo for xER- Vi and

- ™ ̂ fi(x)^ n for Λ G /?. Putting

f{x) = sup/, (x),

we get a function defined on R. Each point #0 G R is contained in some

open set G(x0) which meets only a finite number of sets Vi. Hence, in G(XQ),

for all but a finite number of values of i,fι(x) = — oo. Thus, in each G(xQ),

fix) is the supremum of a finite number of continuous functions. Hence fix)

is a continuous function defined on R. In Ui, fi(x) ^ r, < h(x) and, in i?~ ίΛ,
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fι(x) = - co < h(x). Thus ft(x) < h(x) everywhere and, for every x & R, f(x)

is the supremum of a finite number of /Ax), each of which is less than h(x).

Therefore fix) < h(x) everywhere. Each x is in some B% and, for this /, fi(x)

= rtl hence gix) <n=fi(x) =fix) and g(x) <f(x) everywhere. Therefore

g(x) <f(x) < h(x) everywhere. Q.E.D,

If we replace " = ' instead of ' < ' in the above, the theorem thus obtained

holds also: This is a trivial consequence of Hing Tong's result [3, Theorem 1].
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