ON MAXIMAL SPACELIKE HYPERSURFACES IN A LORENTZIAN MANIFOLD

SEIKI NISHIKAWA*

Abstract. We prove a Bernstein-type property for maximal spacelike hypersurfaces in a Lorentzian manifold.

§1. Introduction

The object of this note is to prove the following
Theorem A. Let N be a Lorentzian manifold satisfying the strong energy condition. Let M be a complete maximal spacelike hypersurface in N. Suppose that N is locally symmetric and has nonnegative spacelike sectional curvature. Then M is totally geodesic.

For the terminology in the theorem, see Section 2.
It has been proved by Calabi [2] (for $n \leqq 4$) and Cheng-Yau [4] (for all n) that a complete maximal spacelike hypersurface in the flat Minkowski $(n+1)$-space L^{n+1} is totally geodesic. In particular, the only entire nonparametric maximal spacelike hypersurfaces in L^{n+1} are spacelike hyperplanes. This is remarkable since the Euclidean counterpart, the Bernstein theorem, holds only for $n \leqq 7$: the entire nonparametric minimal hypersurfaces in the Euclidean space $R^{n+1}, n \leqq 7$, are hyperplanes (cf. [8]).

Theorem A implies, for instance, that a complete maximal spacelike hypersurface in the Einstein static universe is totally geodesic. In the proof of Theorem A, a refinement of a Bernstein-type theorem of ChoquetBruhat [5, 6] will be also given.

§2. Definitions

First we set up our terminology and notation. Let $N=(N, \bar{g})$ be a

[^0]Lorentzian manifold with Lorentzian metric \bar{g} of signature $(-,+, \cdots,+)$. N has a uniquely defined torsion-free affine connection V compatible with the metric \bar{g}. N is said to satisfy the strong energy condition (the timelike convergence condition in Hawking-Ellis [7]) if the Ricci curvature Ric of N is positive semidefinite for all timelike vectors, that is, if $\overline{\operatorname{Ric}}(v, v) \geqq 0$ for every timelike vector $v \in T N$ (cf. [1, 6]). N is called locally symmetric if the curvature tensor \bar{R} of N is parallel, that is, $\nabla \bar{R}=0$. We say that N has nonnegative spacelike sectional curvature if the sectional curvature $\bar{K}(u \wedge v)$ of N is nonnegative for every nondegenerate tangent 2-plane spanned by spacelike vectors $u, v \in T N$.

Let M be a hypersurface immersed in $N . \quad M$ is said to be spacelike if the Lorentzian metric \bar{g} of N induces a Riemannian metric g on M. For a spacelike M there is naturally defined the second fundamental form (the extrinsic curvature) S of $M . \quad M$ is called maximal spacelike if the mean (extrinsic) curvature $H=\operatorname{Tr} S$, the trace of S, of M vanishes identically. M is maximal spacelike if and only if it is extremal under the variations, with compact support through spacelike hypersurfaces, for the induced volume. M is said to be totally geodesic (a moment of time symmetry) if the second fundamental form S vanishes identically.

§3. Local formulas

Let M be a spacelike hypersurface in a Lorentzian $(n+1)$-manifold $N=(N, \bar{g})$. We choose a local field of Lorentz orthonormal frames e_{0}, e_{1}, \cdots, e_{n} in N such that, restricted to M, the vectors e_{1}, \cdots, e_{n} are tangent to M. Let $\omega_{0}, \omega_{1}, \cdots, \omega_{n}$ be its dual frame field so that the Lorentzian metric \bar{g} can be written as $\bar{g}=-\omega_{0}^{2}+\sum_{i} \omega_{i \cdot}^{2}{ }^{*)}$ Then the connection forms $\omega_{\alpha \beta}$ of N are characterized by the equations

$$
\begin{align*}
& d \omega_{i}=-\sum_{k} \omega_{i k} \wedge \omega_{k}+\omega_{i 0} \wedge \omega_{0} \tag{1}\\
& d \omega_{0}=-\sum_{k} \omega_{0 k} \wedge \omega_{k}, \quad \omega_{\alpha \beta}+\omega_{\beta \alpha}=0
\end{align*}
$$

The curvature forms $\bar{\Omega}_{\alpha \beta}$ of N are given by

$$
\begin{align*}
& \bar{\Omega}_{i j}=d \omega_{i j}+\sum_{k} \omega_{i k} \wedge \omega_{k j}-\omega_{i 0} \wedge \omega_{0 j} \tag{2}\\
& \bar{\Omega}_{0 i}=d \omega_{0 i}+\sum_{k} \omega_{0 k} \wedge \omega_{k i}
\end{align*}
$$

[^1]and we have
\[

$$
\begin{equation*}
\bar{\Omega}_{\alpha \beta}=\frac{1}{2} \sum_{\gamma, \dot{o}} \bar{R}_{\alpha \beta \gamma \bar{\delta}} \omega_{\gamma} \wedge \omega_{\dot{\partial}}, \tag{3}
\end{equation*}
$$

\]

where $\bar{R}_{\alpha \beta \gamma \delta}$ are components of the curvature tensor \bar{R} of N.
We restrict these forms to M. Then

$$
\begin{equation*}
\omega_{0}=0, \tag{4}
\end{equation*}
$$

and the induced Riemannian metric g of M is written as $g=\sum_{i} \omega_{i}^{2}$. From formulas (1)-(4), we obtain the structure equations of M

$$
\begin{align*}
& d \omega_{i}=-\sum_{k} \omega_{i k} \wedge \omega_{k}, \quad \omega_{i j}+\omega_{j i}=0 \\
& d \omega_{i j}=-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\omega_{i 0} \wedge \omega_{0 j}+\bar{\Omega}_{i j} \tag{5}\\
& \Omega_{i j}=d \omega_{i j}+\sum_{k} \omega_{i k} \wedge \omega_{k j}=\frac{1}{2} \sum_{k, \ell} R_{i j k c} \omega_{k} \wedge \omega_{\ell}
\end{align*}
$$

where $\Omega_{i j}$ and $R_{i j k l}$ denote the curvature forms and the components of the curvature tensor R of M, respectively. We can also write

$$
\begin{equation*}
\omega_{i 0}=\sum_{j} h_{i j} \omega_{j} \tag{6}
\end{equation*}
$$

where $h_{i j}$ are components of the second fundamental form $S=\sum_{i, j} h_{i j} \omega_{i}$ $\otimes \omega_{j}$ of M. Using (6) in (5) then gives the Gauss formula

$$
\begin{equation*}
R_{i j k \ell}=\bar{R}_{i j k \ell}-\left(h_{i k} h_{j \ell}-h_{i \ell} h_{j k}\right) . \tag{7}
\end{equation*}
$$

Let $h_{i j k}$ denote the covariant derivative of $h_{i j}$ so that

$$
\begin{equation*}
\sum_{k} h_{i j k} \omega_{k}=d h_{i j}-\sum_{k} h_{k j} \omega_{k i}-\sum_{k} h_{i k} \omega_{k j} . \tag{8}
\end{equation*}
$$

Then, by exterior differentiating (6), we obtain the Coddazi equation

$$
\begin{equation*}
h_{i j k}-h_{i k j}=\bar{R}_{0 i j k} \tag{9}
\end{equation*}
$$

Next, exterior differentiate (8) and define the second covariant derivative of $h_{i j}$ by

$$
\sum_{\ell} h_{i j k \ell} \omega_{\ell}=d h_{i j k}-\sum_{\ell} h_{\ell j k} \omega_{\ell i}-\sum_{\ell} h_{i \ell k} \omega_{\ell j}-\sum_{\ell} h_{i j \ell} \omega_{\ell k} .
$$

Then we obtain the Ricci formula

$$
\begin{equation*}
h_{i j k \ell}-h_{i j \ell k}=\sum_{m} h_{m j} R_{m i k \ell}+\sum_{m} h_{i m} R_{m j k \ell} . \tag{10}
\end{equation*}
$$

Let us now denote the covariant derivative of $\bar{R}_{\alpha \beta r^{\gamma}}$, as a curvature tensor of N, by $\bar{R}_{\alpha \beta \gamma \bar{\gamma}, \varepsilon}$. Then restricting on $M, \bar{R}_{0 i j k ; \ell}$ is given by

$$
\begin{equation*}
\bar{R}_{0 i j k ; \ell}=\bar{R}_{0 i j k \ell}-\bar{R}_{0 i 0 k} h_{j \ell}-\bar{R}_{0 i j 0} h_{k \ell}-\sum_{m} \bar{R}_{m i j k} h_{m \ell} \tag{11}
\end{equation*}
$$

where $\bar{R}_{0 i j k c}$ denote the covariant derivative of $\bar{R}_{0 i j k}$ as a tensor on M so that

$$
\sum_{\ell} \bar{R}_{0 i j k \ell} \omega_{\ell}=d \bar{R}_{0 i j k}-\sum_{\zeta} \bar{R}_{0 \ell j k} \omega_{\ell i}-\sum_{\ell} \bar{R}_{0 i \ell k} \omega_{\ell j}-\sum_{\ell} \bar{R}_{0 i j \ell} \omega_{\ell k}
$$

The Laplacian $\Delta h_{i j}$ of the second fundamental form $h_{i j}$ is defined by

$$
\Delta h_{i j}=\sum_{k} h_{i j k k} .
$$

From (9) we then obtain

$$
\begin{equation*}
\Delta h_{i j}=\sum_{k} h_{k i j k}+\sum_{k} \bar{R}_{0 i j k k}, \tag{12}
\end{equation*}
$$

and from (10)

$$
\begin{equation*}
h_{k i j k}=h_{k i k j}+\sum_{m} h_{m i} R_{m k j k}+\sum_{m} h_{k m} R_{m i j k} \tag{13}
\end{equation*}
$$

Replace $h_{k i k j}$ in (13) by $h_{k k i j}+\bar{R}_{0 k i k j}$ (by (9)) and substitute the right hand side of (13) into $h_{k i j k}$ in (12). Then we obtain

$$
\begin{align*}
\Delta h_{i j}= & \sum_{k}\left(h_{k k i j}+\bar{R}_{0 k i k j}+\bar{R}_{0 i j k k}\right) \tag{14}\\
& +\sum_{k}\left(\sum_{m} h_{m i} R_{m k j k}+\sum_{m} h_{k m} R_{m i j k}\right) .
\end{align*}
$$

From (7), (11) and (14) we then obtain
(15)*)

$$
\begin{aligned}
\Delta h_{i j}= & \sum_{k} h_{k k i j}+\sum_{k} \bar{R}_{0 k i k ; j}+\sum_{k} \bar{R}_{0 i j k ; k} \\
& +\sum_{k}\left(h_{k k} \bar{R}_{0 i j 0}+h_{i j} \bar{R}_{0 k 0 k}\right) \\
& +\sum_{m, k}\left(h_{m j} \bar{R}_{m k i k}+2 h_{m k} \bar{R}_{m i j k}+h_{m i} \bar{R}_{m k j k}\right) \\
& -\sum_{m, k}\left(h_{m i} h_{m j} h_{k k}+h_{k m} h_{m j} h_{i k}-h_{k m} h_{m k} h_{i j}-h_{m i} h_{m k} h_{k j}\right) .
\end{aligned}
$$

Now we assume that N is locally symmetric, that is, $\bar{R}_{\alpha \beta \gamma \delta ; \varepsilon}=0$ and that M is maximal in N, so that $\sum_{k} h_{k k}=0$. Then, from (15) we obtain

$$
\begin{align*}
\sum_{i, j} h_{i j} \Delta h_{i j}= & \sum_{i, y, k} h_{i j}^{2} \bar{R}_{0 k 0 k}+\sum_{i, j, k, m} 2\left(h_{i j} h_{m j} \bar{R}_{m k i k}+h_{i j} h_{m k} \bar{R}_{m i j k}\right) \tag{16}\\
& +\left(\sum_{i, j} h_{i j}^{2}\right)^{2} .
\end{align*}
$$

[^2]
§4. Proof of Theorem A

Theorem A is an immediate consequence of the following
Theorem B. Let $N=(N, \bar{g})$ be a locally symmetric Lorentzian $(n+1)$ manifold and M be a complete maximal spacelike hypersurface in N. Assume that there exist constants c_{1}, c_{2} such that
(i) $\overline{\operatorname{Ric}}(v, v) \geqq c_{1}$ for all timelike vectors $v \in T N$,
(ii) $\bar{K}(u \wedge v) \geqq c_{2}$ for all nondegenerate tangent 2-planes spanned by spacelike vectors $u, v \in T N$, and
(iii) $c_{1}+2 n c_{2} \geqq 0$.

Then M is totally geodesic.
To prove Theorem B, we first note
Lemma 1. Under the assumptions of Theorem B,

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\sum_{i, j} h_{i j}^{2}\right) \geqq\left(\sum_{i, j} h_{i j}^{2}\right)^{2} . \tag{17}
\end{equation*}
$$

Proof. For any point $p \in M$, we may choose our frame $\left\{e_{1}, \cdots, e_{n}\right\}$ at p so that $h_{i j}=\lambda_{i} \delta_{i j}$. Then, by assumption (ii) of Theorem B, we have at p

$$
\begin{array}{rl}
\sum_{i, j, k, m} & 2\left(h_{i j} h_{m j} \bar{R}_{m k i k}+h_{i j} h_{m k} \bar{R}_{m i j k}\right) \\
& =\sum_{i, k} 2\left(\lambda_{i}^{2} \bar{R}_{i k i k}+\lambda_{i} \lambda_{k} \bar{R}_{k i i k}\right) \\
& =\sum_{i, k}\left(\lambda_{i}-\lambda_{k}\right)^{2} \bar{R}_{i k i k} \geqq c_{2} \sum_{i, k}\left(\lambda_{i}-\lambda_{k}\right)^{2} \\
& =2 c_{2}\left(n \sum_{i} \lambda_{i}^{2}-\left(\sum_{i} \lambda_{i}\right)^{2}\right)=2 n c_{2} \sum_{\imath, j} h_{\imath j}^{2} .
\end{array}
$$

Also we have by assumption (i)

$$
\sum_{k} \bar{R}_{0 k 0 k} \geqq c_{1}
$$

It then follows from (16) and assumption (iii) that

$$
\begin{aligned}
\frac{1}{2} \Delta\left(\sum_{i, j} h_{i j}^{2}\right) & =\sum_{i, j, k} h_{i j k}^{2}+\sum_{i, j} h_{i j} \Delta h_{i j} \\
& \geqq\left(c_{1}+2 n c_{2}\right)\left(\sum_{i, j} h_{i j}^{2}\right)+\left(\sum_{i, j} h_{i j}^{2}\right)^{2} \\
& \geqq\left(\sum_{i, j} h_{i j}^{2}\right)^{2} .
\end{aligned}
$$

Let $u=\sum_{i, j} h_{i j}^{2}$ be the squared of the length of the second fundamental form of M. The proof of Theorem B is complete if we show that u vanishes identically. Recall that from (17), u satisfies

$$
\begin{equation*}
\Delta u \geqq 2 u^{2} \tag{18}
\end{equation*}
$$

Then, by the maximum principle, the result is immediate provided M is compact.

We now assume that M is noncompact and complete. We will modify the maximum principle argument as in [4]. Take a point $p \in M$, and let r denote the geodesic distance on M from p with respect to the induced Riemannian metric. For $a>0$, let $B_{a}(p)=\{x \in M \mid r(x)<a\}$ be the geodesic ball of radius a and center p.

Lemma 2. For any $a>0$, there exists a constant c depending only on n such that

$$
\begin{equation*}
u(x) \leqq \frac{c a^{2}\left(1+\left|c_{2}\right|^{1 / 2} a\right)}{\left(a^{2}-r(x)^{2}\right)^{2}} \tag{19}
\end{equation*}
$$

for all $x \in B_{a}(p)$.
Proof. Assuming that u is not identically zero on $B_{a}(p)$, we consider the function

$$
f(x)=\left(a^{2}-r(x)^{2}\right)^{2} u(x), \quad x \in B_{a}(p)
$$

Then f attains a nonzero maximum at some point $q \in B_{a}(p)$, for the closure of $B_{a}(p)$ is compact since M is complete. As in [§2,3], we may assume that f is C^{2} around q. Then we have

$$
\nabla f(q)=0, \quad \Delta f(q) \leqq 0
$$

Hence at $q^{*)}$

$$
\begin{aligned}
\frac{\nabla u}{u} & =\frac{4 r \nabla r}{a^{2}-r^{2}}, \\
\frac{\Delta u}{u} & \leqq \frac{|\nabla u|^{2}}{u^{2}}+\frac{8 r^{2}}{\left(a^{2}-r^{2}\right)^{2}}+\frac{4(1+r \Delta r)}{a^{2}-r^{2}},
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\frac{\Delta u}{u}(q) \leqq \frac{24 r^{2}}{\left(a^{2}-r^{2}\right)^{2}}(q)+\frac{4(1+r \Delta r)}{a^{2}-r^{2}}(q) . \tag{20}
\end{equation*}
$$

On the other hand, according to [Lemma 1, 9], $\Delta r(q)$ is bounded from above by

[^3]\[

$$
\begin{equation*}
\Delta r(q) \leqq \min _{0 \leqq k \leqq r(q)}\left[\frac{n-1}{r(q)-k}-\frac{1}{(r(q)-k)^{2}} \int_{k}^{r(q)}(t-k)^{2} \operatorname{Ric}(\dot{\sigma}(t), \dot{\sigma}(t)) d t\right] \tag{21}
\end{equation*}
$$

\]

where $\dot{\sigma}(t)$ is the tangent vector of the minimizing geodesic $\sigma:[0, r(q)] \rightarrow M$ from p to q and Ric denote the Ricci curvature of M. Also, from (7) and assumption (ii) of Theorem B, $\operatorname{Ric}(\dot{\sigma}(t), \dot{\sigma}(t))$ is bounded from below by

$$
\begin{equation*}
\operatorname{Ric}(\dot{\sigma}(t), \dot{\sigma}(t)) \geqq(n-1) c_{2}, \tag{22}
\end{equation*}
$$

since M is maximal spacelike. From (21) and (22) we then obtain

$$
\begin{equation*}
r \Delta r(q) \leqq(n-1)+2(n-1)\left|c_{2}\right|^{1 / 2} r(q) . \tag{23}
\end{equation*}
$$

It follows from (20) and (23) that

$$
\left(a^{2}-r(q)^{2}\right)^{2} u^{-1} \Delta u(q) \leqq 24 a^{2}+8 n a^{2}\left(1+\left|c_{2}\right|^{1 / 2} a\right) .
$$

From (18) we then obtain

$$
f(q)=\left(a^{2}-r(q)^{2}\right)^{2} u(q) \leqq c a^{2}\left(1+\left|c_{2}\right|^{1 / 2} a\right),
$$

c being a constant depending only on n. Since q is the maximum point of f in $B_{a}(p)$, this implies that

$$
\left(a^{2}-r(x)^{2}\right)^{2} u(x) \leqq c a^{2}\left(1+\left|c_{2}\right|^{1 / 2} a\right)
$$

for all $x \in B_{a}(p)$.
Since M is complete, we may fix x in Inequality (19) and let a tend to infinity. Then we obtain $u(x)=0$ for all $x \in M$. This completes the proof of Theorem B.

Remark. Let $N=L^{k+1} \times S^{n-k}$ be the product Lorentzian manifold of the flat Minkowski $(k+1)$-space $L^{k+1}, 1 \leqq k \leqq n$, and S^{n-k}, a Riemannian ($n-k$)-manifold of positive constant curvature. Then N satisfies the assumptions of Theorem A. The Einstein static space $N=\left(R,-d t^{2}\right) \times S^{n}$ also satisfies these assumptions.

The Lorentzian ($n+1$)-manifold S_{1}^{n+1} of constant curvature $c>0$, called the de Sitter space, satisfies the assumptions of Theorem B (with $c_{1}=-c n, c_{2}=c$). Theorem B then gives a refinement of a theorem of Choquet-Bruhat [Theorem 4.6, 6].

References

[1] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Marcel Dekker, 1981.
[2] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Appl. Math., 15 (1970), 223-230.
[3] S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354.
[4] S.-Y. Cheng and S.-T. Yau, Maximal space-like hypersurfaces in the LorentzMinkowski spaces, Ann. of Math., 104 (1976), 407-419.
[5] Y. Choquet-Bruhat, Maximal submanifolds and submanifolds of constant extrinsic curvature of a Lorentzian manifold, Ann. Scuola Norm. Sup. Pisa, 3 (1976), 361376.
[6] Y. Choquet-Bruhat, A. E. Fischer and J. E. Marsden, Maximal hypersurfaces and positivity of mass, Proceedings of the Enrico Fermi Summer School of the Italian Physical Society, J. Ehlers (ed.), North-Holland, 1979.
[7] S. W. Hawking and G. F. Ellis, The large scale structure of space-time, Cambridge University Press, 1973.
[8] R. Schoen, L. Simon and S.-T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math., 134 (1975), 275-288.
[9] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.

Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka 812
Japan

[^0]: *) Partially supported by the Grant-in-aid for Scientific Research No. 57740024. Received July 13, 1983.

[^1]: *) We shall use the summation convention with Roman indices in the range $1 \leqq$ $i, j, \cdots \leqq n$ and Greek in $0 \leqq \alpha, \beta, \cdots \leqq n$.

[^2]: *) This is the Lorentzian version of the well-known formula established, for example, in [8].

[^3]: *) We may concentrate on the case of $q \neq p$ for the proof become simpler when $q=p$.

