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CONFORMALLY FLAT HYPERSURFACES IN

EUCLIDEAN 4-SPACE

YOSHIHIKO SUYAMA

Abstract. We study generic and conformally flat hypersurfaces in Euclidean
four-space. What kind of conformally flat three manifolds are really immersed
generically and conformally in Euclidean space as hypersurfaces? According
to the theorem due to Cartan [1], there exists an orthogonal curvature-line
coordinate system at each point of such hypersurfaces. This fact is the first step
of our study. We classify such hypersurfaces in terms of the first fundamental
form. In this paper, we consider hypersurfaces with the first fundamental forms
of certain specific types. Then, we give a precise representation of the first and
the second fundamental forms of such hypersurfaces, and give exact shapes in
Euclidean space of them.

§1. Introduction

In this paper we study (topologically open, ) generic and conformally

flat hypersurfaces in Euclidean 4-space R4. A smooth hypersurface in R4

is said to be generic, if the second fundamental form has three distinct

eigenvalues everywhere on M . Our purposes are to clarify what kind of

conformally flat three-manifolds are really immersed generically and con-

formally in R4, and to determine the shapes of their images immersed in

R4.

The local theory of generic and conformally flat hypersurfaces in R4

was studied by Cartan (cf. §2). According to his theory there is a special

local coordinate system at each point of such a hypersurface: The first and

second fundamental forms are represented in diagonal forms simultaneously

in the coordinate system (cf. §2), which we call an admissible coordinate

system of conformally flat hypersurfaces in R4. The existence of admissible

coordinate systems gives the first step of our study. From Cartan’s another
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2 Y. SUYAMA

result, we can know whether a generic hypersurface in R4 is conformally

flat or not by examining the principal curvatures (cf. §2). In this paper, we

give a precise representation of the first and the second fundamental forms

of generic and conformally flat hypersurfaces. We also give exact shapes in

R4 of such hypersurfaces.

For this purpose, we represent the first fundamental form g and the

second fundamental form s of a generic and conformally flat hypersurface by

using an admissible coordinate system x = (x1, x2, x3). Among the general

form

g = e2P (x)
{

e2f(x)(dx1)2 + e2h(x)(dx2)2 + (dx3)2
}

of the first fundamental form, we consider the following types (T.1) and

(T.2) of g (and s):

(T.1)

{

g = e2P (x)
{

(dx1)2 + (dx2)2 + (dx3)2
}

,

s = e2P (x)
{

λ(x)(dx1)2 + µ(x)(dx2)2 + ν(x)(dx3)2
}

,

where P (x) = P (x1, x2, x3) and λ(x), µ(x) and ν(x) are principal curva-

tures corresponding to x1-curve, x2-curve and x3-curve in hypersurface,

respectively.

(T.2)

{

g = e2f(x)(dx1)2 + e2h(x)(dx2)2 + (dx3)2,

s = e2f(x)λ(x)(dx1)2 + e2h(x)µ(x)(dx2)2 + ν(x)(dx3)2,

where f(x) = f(x1, x2, x3) and h(x) = h(x1, x2, x3).

We denote fi = ∂f/∂xi and fij = ∂2f/∂xi∂xj for a smooth function

f . We study a maximal hypersurface with metric g of types (T.1) or (T.2).

Here, we mean a connected hypersurface M is maximal, if there is no con-

nected hypersurface M satisfying M ) M . Main results are as follows:

Theorem 1. We assume that a conformally flat hypersurface M in

R4 has the first fundamental form g of type (T.1), and λ > µ > ν for each

point of M . Then we have the following (1), (2) and (3).

(1)
e−P (x) = C1 sin

(

√
C

A
x1 + θ1

)

+ C2e
√

C−1

A
x2

+ C3e
−

√
C−1

A
x2

+ C4 sin
(

√

C(C − 1)

A
x3 + θ2

)

for (x1, x2, x3) ∈ R3.
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(2)























λ(x) =
A

C − 1
{(e−P )22 − (e−P )33},

µ(x) =
A

C
{(e−P )11 − (e−P )33},

ν(x) = A{(e−P )11 − (e−P )22},

where A, C, Ci (i = 1, 2, 3, 4) and θi (i = 1, 2) are constants satisfying

(3)

{

A > 0, C > 1, C2 > 0, Ci ≥ 0 (i = 1, 3, 4),

4(C − 1)C2C3 = CC2
1 + C(C − 1)C2

4 , (C − 1)C4 6= C1.

If (C − 1)C4 = C1 holds in Theorem 1, then the right hand side of

e−P (x) in (1) vanishes at
(

sin(
√

C
A x1 + θ1), e

√
C−1

A
x2

, sin(

√
C(C−1)

A x3 + θ2)
)

=

(−1, (C1+C4)/2C2,−1). We discuss this case within the proof of the follow-

ing corollary at §3. We have C2C3 ≥ 0 by the condition (3) of Theorem 1.

If C3 = 0, then we have C1 = C4 = 0. In this case, the metric g is a warped

product, and reduces to a special case of (T.2).

Corollary 1. We assume C2C3 > 0 in Theorem 1. Then we have

the following:

(1) Each xi-curve (i = 1, 3) is a whole circle in R4.

(2) Each x2-curve is a connected open part of circle in R4.

More precisely, we put

D(x1, x3) = C1 sin
(

√
C

A
x1 + θ1

)

+ C4 sin
(

√

C(C − 1)

A
x3 + θ2

)

for (x1, x3) ∈ R2, then the radius r(x1, x3) and length L(x1, x3) of x2-curve

are given by



















r(x1, x3) =
A√

C − 1
√

4C2C3 − D2(x1, x3)
,

L(x1, x3) = 2r(x1, x3)

[

π

2
− tan−1

(

D(x1, x3)
√

4C2C3 − D2(x1, x3)

)

]

,

respectively.

(3) The hypersurface M collapses respectively to a point, if x2 tends

to ±∞.
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Corollary 1 implies that the hypersurface with C2C3 > 0 is diffeomor-

phic to R × T 2.

Theorem 2. We assume that a generic and conformally flat hyper-

surface M in R4 has the first fundamented form g of type (T.2). Then we

have the following:

(1) ν(x1, x2, x3) = ν(x3), i.e., ν depends only on variable x3. Further-

more, each x3-curve is a plane curve in R4, and all x3-curves are congruent

in R4.

(2) If ν(x3) ≡ 0, then we have g = (ax3 + b)2g
S

+ (dx3)2, where a and

b are constants, and g
S

is a metric of surface S with constant Gaussian

curvature. Furthermore, each x3-curve is a connected part of line in R4.

(3) If the set {x3 ∈ I | ν(x3) = 0}, where I is the domain of ν, does

not include any open interval, then λ(x1, x2, x3) = λ(x3) and µ(x1, x2, x3) =

µ(x3). Furthermore, we can choose an admissible coordinate system

(x1, x2, x3) so that f(x1, x2, x3) = f(x3) and h(x1, x2, x3) = h(x3), by re-

placing the first coodinate system. Then, we have the following two cases

(3a) or (3b):

(3a) The function f(x3) is not constant, but h(x3) is constant. Then,

the hypersurface M is represented as the following immersion Φ:

Φ(x1, x2, x3) =

[

A(x1) 0

0 I

]









u(x3)

0

v(x3)

0









+









0

0

0

x2









,

where

A(x1) =

[

cos x1 − sinx1

sinx1 cosx1

]

, I =

[

1 0

0 1

]

and each surface {x2 = constant} is a surface of revolution with constant

Gaussian curvature.

(3b) Both f(x3) and h(x3) are non-constant functions. Then, the hy-

persurface M is represented as the following immersion Φ:

Φ(x1, x2, x3) =

[

A(x2) 0

0 A(x1)

]









u(x3)

0

v(x3)

0









.
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Furthermore, the plane curve (u(x3), v(x3)) is given by

{

(u′)2 + (v′)2 = 1, (u′′, v′′) = ν(−v′, u′),

a2(u′ + νv)2 ± b2(v′ − νu)2 = 1,
(1.1)

where u′ = du/dx3, v′ = dv/dx3, u′′ = d2u/(dx3)2, v′′ = d2v/(dx3)2, a and

b are positive constants.

A conformally flat hypersurface in the case (2) of Theorem 2 is either

a Riemannian product (S × R, g
S

+ (dt)2) with S ⊂ R3, or a cone which

has the base (S, g
S
) in a sphere (S3, g

S3
) and the center of S3 as the vertex

(cf. [3]).

Now, we consider curves (u(x3), v(x3)) defined by the equation (1.1)

in (3b). First, we consider the case a2(u′ + νv)2 + b2(v′ − νu)2 = 1. Assume

b ≥ a > 0, then we have two cases (1) b ≥ a > 1 and (2) b ≥ 1 > a > 0. Let

e(s) = (cos s, sin s) be a unit circle parametrized by s. Let H(s) (> 0) be a

function defined by the equation

dH

ds
= ±H

√

a−2 cos2 s + b−2 sin2 s
√

1 − (a−2 cos2 s + b−2 sin2 s)
.(1.2)

Then, we define a curve (u(s), v(s)) by

(u(s), v(s)) = H(s)e(s).(1.3)

Let us define a function x3 = x3(s) by

dx3

ds
= ∓ H(s)

√

1 − (a−2 cos2 s + b−2 sin2 s)
.(1.4)

Corollary 2. A curve (u(x3), v(x3)) is a solution of a2(u′ + νv)2 +

b2(v′ − νu)2 = 1 in (1.1) of (3b) if and only if a curve (u(x3), v(x3)) is

defined by (1.2), (1.3) and (1.4), where (1) s ∈ R if b ≥ a > 1, and (2)

s ∈ {s ∈ R | a−2 cos2 s + b−2 sin2 s < 1} if b ≥ 1 > a > 0.

If a = b > 1 in (1.2) and (1.3), then the curve (u(s), v(s)) is a logarith-

mic spiral. For other curves given by Corollary 2, see Figures 1 and 2 in

§4.
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Next, we consider the case a2(u′ + νv)2 − b2(v′ − νu)2 = 1 in (1.1). We

define functions H = H(s) (> 0) and x3 = x3(s) by equations


















dH

ds
= ± H

√

a−2 cos2 s − b−2 sin2 s
√

1 − (a−2 cos2 s − b−2 sin2 s)
,

dx3

ds
= ± H

√

1 − (a−2 cos2 s − b−2 sin2 s)
.

(1.5)

Let us define a curve (u(s), v(s)) by

(u(s), v(s)) = H(s)e(s).(1.6)

Corollary 3. A curve (u(x3), v(x3)) is a solution of a2(u′ + νv)2 −
b2(v′ − νu)2 = 1 in (1.1) of (3b) if and only if a curve (u(x3), v(x3)) is

defined by (1.5) and (1.6), where (1) s ∈ {s ∈ (−π/2, π/2) | b/a > | tan s|}
if a > 1, and (2) s ∈ {s ∈ (−π/2, π/2) | b/a > | tan s| and a−2 cos2 s −
b−2 sin2 s < 1} if 0 < a < 1.

For curves given by Corollary 3, see Figures 3 and 4 in §4. We note that

hypersurfaces defined by curves (u(x3), v(x3)) given by Corollaries 2 or 3

collapse to two dimension at u(x3) = 0 and v(x3) = 0.

About Theorem 1, Lancaster [4] gave a similar result. However, he

showed it under the assumption for hypersurfaces to be analytic, and he

did not study shapes in Euclidean space of hypersurfaces. Note that, for

our case, it is sufficient that hypersurfaces are of class C4. On other work

for generic and conformally flat hyperfurfaces, there is a study for the exis-

tence of Guichard’s nets due to Jeromin [2]. We refer to Lafontaine [3] and

Suyama [5] for non-generic type of conformally flat hypersurfaces.

§2. Theorem due to Cartan

In this section, we summarize the local theory due to Cartan for generic

and conformally flat hypersurfaces (cf. [1], [3]).

For a generic hypersurface M , we can choose one-forms α, β and γ on

M such that the first fundamental form g and the second fundamental form

s are represented in the following forms:

g = α2 + β2 + γ2, s = λα2 + µβ2 + νγ2,(2.1)

where λ, µ and ν are principal curvatures on M . The Gauss equation says

that the Riemannian curvature R of M is given by

R = λµ α ∧ β ⊗ α ∧ β + µν β ∧ γ ⊗ β ∧ γ + νλα ∧ γ ⊗ α ∧ γ.(2.2)
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We denote by Xα, Xβ and Xγ the vector fields associated with α, β and γ,

respectively. We simply denote fα = Xαf , fβ = Xβf and fγ = Xγf for a

smooth function f .

Theorem 3. (cf. [1], [3]) A generic hypersurface M ⊂ R4 is confor-

mally flat if and only if the following conditions (1) and (2) hold:

(1) dα ∧ α = dβ ∧ β = dγ ∧ γ = 0.

(2)











(µ − ν)λα + (λ − ν)µα + (µ − λ)να = 0,

(ν − λ)µβ + (µ − λ)νβ + (ν − µ)λβ = 0,

(λ − µ)νγ + (ν − µ)λγ + (λ − ν)µγ = 0.

The condition (1) of Theorem 3 implies the existence of an admissible

coordinate system at each point of M . Let ∇ be the Levi-Civita connection

of g. The Schouten tensor S on M is defined by S = Ric − (r/4)g, where

r is the scalar curvature. In general, a hypersurface M is conformally flat

if and only if the following three conditions (a), (b) and (c) on g and s

hold: (a) the Gauss equation. (b) the Codazzi equation. (c) (∇XS)(Y,Z) =

(∇Y S)(X,Z) for any vector fields X, Y and Z. Theorem 3 implies that the

conditions (1) and (2) are equivalent to these conditions (a), (b) and (c)

under the assumption for M to be generic.

In the process of the proof of Theorem 3, we obtain the conditions of

covariant derivatives in terms of principal curvatures (cf. [3]). Let ∇′ be the

standard connection of R4, and N unit vector field normal to M . Then we

get the following:















































































∇′
Xα

Xα =
λβ

λ − µ
Xβ +

λγ

λ − ν
Xγ + λN,

∇′
Xβ

Xβ =
µα

µ − λ
Xα +

µγ

µ − ν
Xγ + µN,

∇′
Xγ

Xγ =
να

ν − λ
Xα +

νβ

ν − µ
Xβ + νN,

∇′
Xα

Xβ = − λβ

λ − µ
Xα, ∇′

Xα
Xγ = − λγ

λ − ν
Xα,

∇′
Xβ

Xα = − µα

µ − λ
Xβ, ∇′

Xβ
Xγ = − µγ

µ − ν
Xβ ,

∇′
Xγ

Xα = − να

ν − λ
Xγ , ∇′

Xγ
Xβ = − νβ

ν − µ
Xγ .

(2.3)

https://doi.org/10.1017/S0027763000007273 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007273


8 Y. SUYAMA

Note that the covariant derivatives with respect to ∇ are also determined

by (2.3).

§3. Proofs of Theorem 1 and Corollary 1

We assume that a metric g of 3-manifold M is represented as g =

e2P
{

(dx1)2 + (dx2)2 + (dx3)2
}

. Note that the metric g is conformally flat.

Then, Christoffel’s symbols of the Levi-Civita connection ∇ are given by























Γ1
11 = P1, Γ1

12 = P2, Γ1
22 = −P1, Γ1

13 = P3, Γ1
33 = −P1,

Γ2
11 = −P2, Γ2

12 = P1, Γ2
22 = P2, Γ2

23 = P3, Γ2
33 = −P2,

Γ3
11 = −P3, Γ3

13 = P1, Γ3
22 = −P3, Γ3

23 = P2, Γ3
33 = P3,

Γi
jk = 0 if (i, j, k) = permutation of (1, 2, 3).

(3.1)

The curvature tensor R is given by











































R1212 = −e2P {P11 + P22 + (P3)
2},

R1313 = −e2P {P11 + P33 + (P2)
2},

R2323 = −e2P {P22 + P33 + (P1)
2},

R1213 = e2P (P2P3 − P23),

R1223 = e2P (P13 − P1P3),

R1323 = e2P (P1P2 − P12).

(3.2)

We assume that the hypersurface (M,g) ⊂ (R4, g
E
) is generic, that is,

α = eP dx1, β = eP dx2 and γ = eP dx3 in (2.1).

Lemma 3.1. The following equations (1) and (2) hold:

(1)































e−P P1 = − µα

µ − λ
= − να

ν − λ
,

e−P P2 = − λβ

λ − µ
= − νβ

ν − µ
,

e−P P3 = − λγ

λ − ν
= − µγ

µ − ν
.

(2) The function e−P (x) is a sum of one variable functions of each x1, x2

and x3, that is, e−P (x) = U(x1) + V (x2) + W (x3).
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Proof. We have Xα = e−P ∂/∂x1, Xβ = e−P ∂/∂x2 and Xγ =

e−P ∂/∂x3.

(1) Since

λβ

λ − µ
Xβ +

λγ

λ − ν
Xγ = e−P∇ ∂

∂x1

(

e−P ∂

∂x1

)

= −e−P P2Xβ − e−P P3Xγ

by (2.3) and (3.1), we obtain the equations e−P P2 = −λβ/(λ − µ) and

e−P P3 = −λγ/(λ − ν). The proofs of other equations of (1) are similar to

the above.

(2) We have PiPj − Pij = 0 (i 6= j) by (2.2) and (3.2). Since (e−P )ij =

e−P (−Pij + PiPj), we obtain (e−P )12 = (e−P )13 = (e−P )23 = 0.

Lemma 3.2. We have the following statements (1) and (2):

(1) Each principal curvature is constant along the principal curvature

line, that is, λα = µβ = νγ = 0.

(2) Each principal curvature line is a part of circle or line in R4.

Proof. (1) Since (ν − λ)µα + (λ − µ)να = 0 by Lemma 3.1, we obtain

λα = 0 by Theorem 3-(2). In the same way, we have µβ = νγ = 0.

(2) We prove the statement only for x1-curve. We have

∂

∂x1

( λβ

λ − µ

)

=
∂

∂x1

(

e−P λ2

λ − µ

)

= λ2

{

−e−P P1

λ − µ
+ e−P µ1

(λ − µ)2

}

= λ2

{

− µα

(λ − µ)2
+ e−P µ1

(λ − µ)2

}

= 0

by Lemma 3.1-(1) and λ1 = 0. Furthermore, the equation ∂
∂x1

( λγ

λ−ν

)

= 0 is

obtained in the same way. Therefore, since

(∇′
Xα

)2Xα = −
[

( λβ

λ − µ

)2
+

( λγ

λ − ν

)2
+ λ2

]

Xα

and the function
[

( λβ

λ−µ

)2
+

( λγ

λ−ν

)2
+ λ2

]

is constant along x1-curve, each

x1-curve is a circle or a line in R4.

Remark. If C3 = 0 in Theorem 1, then C1 = C4 = 0. In this case we

have µ ≡ 0 by Theorem 1-(2), that is, each x2-curve is a part of line in R4.

If C2C3 > 0, then each xi-curve (i = 1, 2, 3) is a part of circle in R4.
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Lemma 3.3. We assume λ > µ > ν. Then, there exists a constant C

(> 1) such that

λ − ν

λ − µ
= C,

λ − µ

µ − ν
=

1

C − 1
and

µ − ν

λ − ν
=

C − 1

C
.

Proof. By Theorem 3-(2) and Lemma 3.2-(1), we have

(

λ − ν

λ − µ

)

1

=
−ν1(λ − µ) + µ1(λ − ν)

(λ − µ)2
= 0,

(

λ − ν

λ − µ

)

2

=
λ2(ν − µ) − ν2(λ − µ)

(λ − µ)2
= 0,

(

λ − ν

λ − µ

)

3

=
λ3(ν − µ) + µ3(λ − ν)

(λ − µ)2
= 0.

Futhermore, since
(λ−µ

λ−ν

)

+
(µ−ν

λ−ν

)

= 1 and
(

λ−ν
µ−ν

)

−
(λ−µ

µ−ν

)

= 1, we have

Lemma.

Let us put µ − ν = Q(x1, x2, x3) (> 0). We have to find the function

Q; µ = Q + ν, λ = [C/(C − 1)]Q + ν. Since the Gauss equation implies











λµe2P = −(P11 + P22 + (P3)
2),

µνe2P = −(P22 + P33 + (P1)
2),

νλe2P = −(P11 + P33 + (P2)
2),

(3.3)

we have










µ(λ − ν) = e−P {(e−P )11 − (e−P )33},
λ(µ − ν) = e−P {(e−P )22 − (e−P )33},
ν(µ − λ) = e−P {(e−P )22 − (e−P )11}.

(3.4)

For a while we assume µν 6= 0 (see the statement before Lemma 3.6). Then,

we have

C =
λ − ν

λ − µ
=

(e−P )11 − (e−P )33

(e−P )11 − (e−P )22

ν

µ
=

(e−P )11 − (e−P )33
(e−P )11 − (e−P )22

ν

Q + ν
.

Therefore, since

Q =
ν

C

{

(e−P )11 − (e−P )33

}

− C
{

(e−P )11 − (e−P )22
}

(e−P )11 − (e−P )22
,
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we have














λ

(e−P )22 − (e−P )33
=

1

C − 1

ν

(e−P )11 − (e−P )22
,

µ

(e−P )11 − (e−P )33
=

1

C

ν

(e−P )11 − (e−P )22
.

(3.5)

Lemma 3.4. There exists a constant A such that ν = A
{

(e−P )11 −
(e−P )22

}

.

Proof. Since λ = λ(x2, x3), µ = µ(x1, x3), ν = ν(x1, x2) and e−P =

U(x1)+V (x2)+W (x3) from Lemmas 3.1 and 3.2, the function ν/[(e−P )11−
(e−P )22] depends only on variables x1 and x2, i.e., ν/[(e−P )11 − (e−P )22] =

A(x1, x2). Similarly, we have

λ

(e−P )22 − (e−P )33
= A(x2, x3),

µ

(e−P )11 − (e−P )33
=

=
A(x1, x3).

Therefore, we have that all A(x1, x2), A(x2, x3),
=
A (x1, x3) are constant

by (3.5).

We get the following Lemma from (3.5) and Lemma 3.4.

Lemma 3.5. We have

λ =
A

C − 1

{

(e−P )22 − (e−P )33

}

, µ =
A

C

{

(e−P )11 − (e−P )33
}

,

ν = A
{

(e−P )11 − (e−P )22

}

.

Since M is generic, the constant A is not zero. We may assume A > 0.

If µ = 0 or ν = 0, then we have λν 6= 0 or λµ 6= 0. Therefore, even in the

case µ = 0 or ν = 0, we also have Lemma 3.5 in the same way.

Lemma 3.6. We have

e−P =
A2

C(C − 1)

{

−(C − 1)(e−P )11 + C(e−P )22 − (e−P )33
}

.

Proof. We have µ(λ − ν) = e−P
{

(e−P )11 − (e−P )33
}

by (3.4). On the

other hand, we have

µ(λ − ν) =
A2

C(C − 1)

{

(e−P )11 − (e−P )33
}

×
{

−(C − 1)(e−P )11 + C(e−P )22 − (e−P )33
}

by Lemma 3.5. Therefore, we have Lemma.
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Lemma 3.7. We have

e−P = C1 sin
(

√
C

A
x1 + θ1

)

+ C2e
√

C−1

A
x2

+ C3e
−

√
C−1

A
x2

+C4 sin
(

√

C(C − 1)

A
x3 + θ2

)

,

where Ci (i = 1, 2, 3, 4) and θi (i = 1, 2) are constant.

Proof. Since e−P = U(x1) + V (x2) + W (x3), we have

U = −A2

C
U11, V =

A2

C − 1
V22, W = − A2

C(C − 1)
W33

by Lemma 3.6.

In Lemma 3.7, we have at least C2 ≥ 0 and C3 ≥ 0, because e−P > 0.

Furthermore, we may assume Ci ≥ 0 (i = 1, 4) from the representation of

e−P .

Lemma 3.8. The constants Ci (i = 1, 2, 3, 4) satisfy the equation

4(C − 1)C2C3 = CC2
1 + C(C − 1)C2

4 .

Proof. We have

λµ = e−P
[

(e−P )11 + (e−P )22

]

−
[

(e−P )21 + (e−P )22 + (e−P )23
]

=
A2

C(C − 1)

[

−(C − 1)(e−P )11 + C(e−P )22 − (e−P )33
]

×
[

(e−P )11 + (e−P )22

]

−
[

(e−P )21 + (e−P )22 + (e−P )23
]

by (3.3) and Lemma 3.6. On the other hand, we have

λµ =
A2

C(C − 1)

{

(e−P )11 − (e−P )33
}{

(e−P )22 − (e−P )33
}

by Lemma 3.5. Thus, we have

A2

C(C − 1)

[

(C − 1)(e−P )211 − C(e−P )222 + (e−P )233
]

= −
[

(e−P )21 + (e−P )22 + (e−P )23
]

.

Finally, we have Lemma from Lemma 3.7.
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From Lemma 3.8, we have C2 > 0 or C3 > 0. Indeed, if C2 = C3 = 0,

then C1 = C4 = 0 and e−P ≡ 0. Therefore, we may assume C2 > 0.

Finally, we study the condition that the right hand side of e−P in

Lemma 3.7 becomes positive. Putting e
√

C−1

A
x2

= u, then we have e−P =

C2u + C3u
−1 + D(x1, x3). Since

(C − 1)[4C2C3 − D2(x1, x3)] ≥ 4(C − 1)C2C3 − (C − 1)(C1 + C4)
2

= {C1 − (C − 1)C4}2 ≥ 0

by Lemma 3.8, we have C2u + C3u
−1 + D(x1, x3) > 0 if C1 6= (C − 1)C4. If

C1 = (C − 1)C4, then it vanishes at u = (C1 + C4)/2C2 and
(

sin(
√

C
A x1 +

θ1), sin(

√
C(C−1)

A x3 + θ2)
)

= (−1,−1). Therefore, we assumed C1 6= (C −
1)C4 in Theorem 1.

Conversely, the metric g and the second fundamental form s given by

Theorem 1 satisfy the Gauss and the Codazzi equations. Therefore, the 3-

manifold is realized as a hypersurface in R4. Furthermore, since the prin-

cipal curvatures λ, µ and ν satisfy the condition (2) of Theorem 3, the

hypersurface is conformally flat. This completes the proof of Theorem 1.

Now, we prove Corollary 1-(1). We have

(∇′
Xα

)2Xα = −
[

( λβ

λ − µ

)2
+

( λγ

λ − ν

)2
+ λ2

]

Xα

= − 1

A2

[

(C − 1)(C2u − C3u
−1)2 + (C − 1)CC2

4 cos2
(

√

C(C − 1)

A
x3 + θ2

)

+

{

C2u + C3u
−1 + CC4 sin

(

√

C(C − 1)

A
x3 + θ2

)}2
]

Xα,

where u = e
√

C−1

A
x2

. If u =
√

C3/C2, cos
(

√
C(C−1)

A x3 + θ2

)

= 0 and C2u +

C3u
−1 − CC4 = 0, then 4C2C3 = C2C2

4 and (∇′
Xα

)2Xα = 0. The condition

4C2C3 = C2C2
4 is equivalent to C1 = (C−1)C4 by Lemma 3.8. We omit this

case from Theorem 1. Therefore, since the coefficient of Xα in (∇′
Xα

)2Xα is

negative, each x1-curve is a circle in R4. Similarly, each x3-curve is a circle

in R4 if C1 6= (C − 1)C4. In particular, we have

(∇′
Xγ

)2Xγ = − 1

A2

[

CC2
1 cos2

(

√
C

A
x1 + θ1

)

+ (C − 1)(C2u − C3u
−1)2
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+

{

CC1 sin

(

√
C

A
x1 + θ1

)

+ (C − 1)(C2u + C3u
−1)

}2
]

Xγ .

In the case C1 = (C − 1)C4, an x1-curve for fixed (x2, x3) satisfying
(

e
√

C−1

A
x2

, sin(

√
C(C−1)

A x3 + θ2)
)

= (
√

C3/C2,−1) is a line in R4. We note
√

C3/C2 = (C1 + C4)/2C2 in this case.

Finally, we prove Corollary 1-(2). Since

(∇′
Xβ

)2Xβ = −
[

( µα

µ − λ

)2

+
( µγ

µ − ν

)2
+ µ2

]

Xβ = −
( 1

r(x1, x3)

)2
Xβ ,

the radius r(x1, x3) of an x2-curve is

r(x1, x3) =
A√

C − 1
√

4C2C3 − D2(x1, x3)

by Lemmas 3.6 and 3.8. The length L(x1, x3) of an x2-curve is

L(x1, x3) =

∫ ∞

−∞
eP (x1,x2,x3) dx2 =

∫ ∞

0

1

C2t2 + D(x1, x3)t + C3

A√
C − 1

dt

= 2r(x1, x2)

[

π

2
− tan−1

(

D(x1, x3)
√

4C2C3 − D2(x1, x3)

)]

.

In the case C1 = (C − 1)C4, we have (∇′
Xβ

)2Xβ = 0 along an x2-curve

for fixed (x1, x3) determined by
(

sin(
√

C
A x1 + θ1), sin(

√
C(C−1)

A x3 + θ2)
)

=

(−1, −1). Therefore, the x2-curve is a line in R4.

§4. Proofs of Theorem 2 and Corollaries 2 and 3

We assume that a metric g of 3-manifold M is represented as g =

e2f (dx1)2 + e2h(dx2)2 + (dx3)2. Chistoffel’s symbols of the Levi-Civita con-

nection ∇ defined from g are given by























Γ1
11 = f1, Γ1

12 = f2, Γ1
22 = −e2h−2fh1, Γ1

13 = f3,

Γ2
11 = −e2f−2hf2, Γ2

12 = h1, Γ2
22 = h2, Γ2

23 = h3,

Γ3
11 = −e2ff3, Γ3

22 = −e2hh3,

Γ1
23 = Γ1

33 = Γ2
13 = Γ2

33 = Γ3
12 = Γ3

13 = Γ3
23 = Γ3

33 = 0.

(4.1)
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The curvature tensor R is given by



































R1
212 = −f22 − (f2)

2 + f2h2

− e2h−2f (h11 + (h1)
2 − f1h1) − e2hf3h3,

R1
223 = e2h−2f (h13 + h1h3 − f3h1),

R1
213 = −f23 − f2f3 + f2h3,

R1
313 = −f33 − (f3)

2, R2
323 = −h33 − (h3)

2, R1
323 = R2

313 = 0.

(4.2)

Since the metric g is conformally flat, we have

Ci
kl = Ri

k,l − Ri
l,k − 1

4
(δi

kr,l − δi
lr,k) = 0 :

C1
23 = 0 ⇐⇒ {h13 + h1h3 − f3h1}2(4.3)

= {h13 + h1h3 − f3h1}f2 + {f23 + f2f3 − f2h3}h1.

C2
31 = 0 ⇐⇒ {f23 + f2f3 − f2h3}1(4.4)

= {h13 + h1h3 − f3h1}f2 + {f23 + f2f3 − f2h3}h1.

C3
12 = 0 ⇐⇒ {f23 + f2f3 − f2h3}1 = {h13 + h1h3 − f3h1}2.(4.5)

C3
23 = 0 ⇐⇒(4.6)

{e−2h(f22 + (f2)
2 − f2h2)}2 + {e−2f (h11 + (h1)

2 − f1h1)}2

− {f33 + (f3)
2 + h33 + (h3)

2 − f3h3}2

= −2{f23 + f2f3 − f2h3}3 − 2{f23 + f2f3 − f2h3}h3.

C3
31 = 0 ⇐⇒(4.7)

{e−2h(f22 + (f2)
2 − f2h2)}1 + {e−2f (h11 + (h1)

2 − f1h1)}1

− {f33 + (f3)
2 + h33 + (h3)

2 − f3h3}1

= −2{h13 + h1h3 − f3h1}3 − 2{h13 + h1h3 − f3h1}f3.

C2
23 = 0 ⇐⇒(4.8)

e−2h{f22 + (f2)
2 − f2h2}3 + {e−2f (h11 + (h1)

2 − f1h1)}3

+ {f3h3 + h33 + (h3)
2 − f33 − (f3)

2}3

= 2e−2h{f23 + f2f3 − f2h3}2 − 2e−2h{f23 + f2f3 − f2h3}h2

+ 2e−2f{h13 + h1h3 − f3h1}h1

− 2e−2f{h11 + (h1)
2 − f1h1}h3

+ 2{f33 + (f3)
2 − f3h3}h3.
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Now, we assume that (M,g) is a generic and conformally flat hypersur-

face in R4, that is, α = ef dx1, β = eh dx2 and γ = dx3 in (2.1).

Lemma 4.1. The principal curvature ν depends only on the variable

x3.

Proof. Since Xα = e−f ∂/∂x1, Xβ = e−h ∂/∂x2, and Xγ = ∂/∂x3, we

have

0 = Γ1
33 =

να

ν − λ
e−f =

ν1

ν − λ
e−2f , 0 = Γ2

33 =
νβ

ν − µ
e−h =

ν2

ν − µ
e−2h

by (2.3) and (4.1). Thus, we have ν1 = ν2 = 0.

We proved a part of the statement in Theorem 2-(1) by Lemma 4.1.

Proposition 4.1. We assume ν(x3) ≡ 0. Then, we have g = (ax3 +

b)2g
S

+ (dx3)2, where a and b are constant, and g
S

is a metric of surface S

with constant Gaussian curvature. Furthermore, each x3-curve is a part of

line in R4.

Proof. That each x3-curve is a part of line follows from (2.3) and ν ≡ 0.

Since (λµ)1 = (λµ)2 = (λ/µ)3 = 0 by Theorem 3-(2), there exist functions

k(x3), `(x1, x2) and a constant C such that

λ = Ck(x3)`(x1, x2), µ =
k(x3)

`(x1, x2)
.(4.9)

Furthermore, we have

f3 = Γ1
13 = −λ3/λ, h3 = Γ2

23 = −µ3/µ(4.10)

by (2.3) and (4.1). Thus, we have

f3 = h3 = −k3/k,(4.11)

that is,

ef(x1,x2,x3) = C1(x
1, x2)/k(x3) and eh(x1,x2,x3) = C2(x

1, x2)/k(x3).

On the other hand, since (ef )33 = (eh)33 = 0 by (2.2) and (4.2), ef and

eh are at most degree one with variable x3. Therefore, we have 1/k(x3) =

ax3 + b, i.e.,

ef(x1,x2,x3) = C1(x
1, x2)(ax3 + b), eh(x1,x2,x3) = C2(x

1, x2)(ax3 + b).
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Let S be a surface with local coordinate system (x1, x2) for fixed x3.

The Gaussian curvature K of S with the metric g = e2f (dx1)2 + e2h(dx2)2

is given by

K = −e−f−h

[

∂

∂x1

(

e−f ∂

∂x1
eh

)

+
∂

∂x2

(

e−h ∂

∂x2
ef

)

]

= −e−2f [h11 + (h1)
2 − f1h1] − e−2h[f22 + (f2)

2 − f2h2].

By R1
223 = R1

213 = 0, (4.2), (4.6), (4.7) and (4.11), we have K1 = K2 = 0.

Thus, we have K(x1, x2, x3) = K(x3) = C/(ax3 + b)2.

Proposition 4.1 completes the proof of Theorem 2-(2).

From now on, we assume that the set {x3 ∈ I | ν(x3) = 0} does not

include any open interval, where I is the domain of ν. Since ∇′
Xγ

Xγ = νN

and ∇′
Xγ

N = −νXγ by (2.3), each x3-curve in M is a plane curve in R4, and

then all x3-curves are congruent in R4. This fact together with Lemma 4.1

implies Theorem 2-(1).

Now, we prove Theorem 2-(3) in sequence. First, we show that a generic

and conformally flat hypersurface does not exist in the case ν(x3) ≡ c

(non-zero constant). The proof is almost similar to one of Proposition 4.1

until a half way: We assume ν(x3) ≡ c (6= 0). Then, there exist functions

k(x3), `(x1, x2) and a constant C such that λ − ν = Ck(x3)`(x1, x2) and

µ − ν = k(x3)/`(x1, x2) by Theorem 3-(2). Since f3 = −λ3/(λ − ν) and

h3 = −µ3/(µ− ν) by (2.3) and (4.1), we have f3 = h3 = −k3/k. Therefore,

since λν = R1
313 = −f33 − (f3)

2 and µν = R2
323 = −h33 − (h3)

2 by (2.2)

and (4.2), we have λ = µ by ν 6= 0. This is a contradiction to the assumption

λ 6= µ.

Therefore, our assumption that the set {x3 ∈ I | ν(x3) = 0} does

not include any open interval is equivalent to that the set {x3 ∈ I |
(dν/dx3)(x3) = 0} does not include any open interval.

Lemma 4.2. Let an x3-curve be in a plane H. Then, both vector fields

Xα and Xβ along the curve are constant vectors perpendicular to H.

Proof. The vector fields Xα and Xβ are perpendicular to Xγ and N .

Therefore, they are perpendicular to H. Furthermore, we have, by (2.3),

∇′
∂

∂x3

Xα = − να

ν − λ
Xγ = 0, ∇′

∂

∂x3

Xβ = − νβ

ν − µ
Xγ = 0.
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By Lemma 4.1 and Lemma 4.2, the immersion Φ which represent the

hypersurface M is given as follows: There exist a plane H0 in R4, a curve

P (x3) in H0 with arc-length parameter x3, a map A : (x1, x2) 7→ A(x1, x2) ∈
SO(4) with A(0, 0) = E and a map a : (x1, x2) 7→ a(x1, x2) ∈ R4 with

a(0, 0) = 0 such that

M : Φ(x1, x2, x3) = A(x1, x2)P (x3) + a(x1, x2).(4.12)

Furthermore, both vector fields Xα and Xβ ,

Xα(x1, x2) = e−f{A(ẋ1, x2)P (x3) + a(ẋ1, x2)},
Xβ(x1, x2) = e−h{A(x1, ẋ2)P (x3) + a(x1, ẋ2)},

do not depend on variable x3, and they are perpendicular to the plane

A(x1, x2)H0 +a(x1, x2), where A(ẋ1, x2) = ∂A(x1, x2)/∂x1 and A(x1, ẋ2) =

∂A(x1, x2)/∂x2.

Proposition 4.2. If there exists a point (a1, a2) such that A(ȧ1, a2)|H0

= A(a1, ȧ2)|H0
= 0, then we have ν ≡ 0, where A(ȧ1, a2)|H0

denotes the

action of A(ȧ1, a2) on H0.

Proof. Since (efXα)(a1, a2, x3) = a(ȧ1, a2) and (ehXβ)(a1, a2, x3) =

a(a1, ȧ2),we have ef (a1, a2, x3)=‖a(ȧ1, a2)‖ and eh(a1, a2, x3)=‖a(a1, ȧ2)‖.
Therefore, f3(a

1, a2, x3) = h3(a
1, a2, x3) = 0. On the other hand, since

νλ = R1
313 = −f33 − (f3)

2 = 0 and µν = R2
323 = −h33 − (h3)

2 = 0 for

(a1, a2, x3) by (2.2) and (4.2), we have either λ = µ = 0 or ν = 0 for

(a1, a2, x3). This implies ν ≡ 0 by the assumption λ 6= µ.

We may assume that there exists a point (a1, a2) such that A(ȧ1, a2)|H0

6= 0 by Proposition 4.2 and the assumption for ν. Let us put U = {x =

(x1, x2, x3) ∈ M | A(ẋ1, x2)|H0
6= 0}. We assume that U is connected. For

a while, we restrict our discussion only on U (cf. Proposition 4.5 below).

We simply denote x3 by t. Let us put Ṗ (t) = e1(t) and P̈ (t) = ν(t)e2(t),

where Ṗ (t) = dP/dt and P̈ (t) = d2P/dt2. Then, we may assume that frames

{e1(t),e2(t)} determine an orientation of the plane H0 so that the Gauss

map e1(t) moves to positive direction if ν is positive.

Lemma 4.3. Let (x1, x2, t) ∈ U . We define orthonormal frames

{b(x1, x2, t), c(x1, x2, t)} of H0 along the curve P (t) for any (x1, x2) by

b(x1, x2, t) =
−λe1 − f3e2

[f2
3 + λ2]1/2

(x1, x2, t), c(x1, x2, t) =
f3e1 − λe2

[f2
3 + λ2]1/2

(x1, x2, t).
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Let us define a positive function s(x1, x2, t) by

s2(x1, x2, t) =
[

(eff3)
2 + (efλ)2

]

(x1, x2, t).

Then, we have
{

A(ẋ1, x2)b(x1, x2, t) = 0,

A(ẋ1, x2)c(x1, x2, t) = s(x1, x2, t)Xα(x1, x2).
(4.13)

In particular, the vector fields b, c and the function s are independent

of t, i.e., b(x1, x2, t) = b(x1, x2), c(x1, x2, t) = c(x1, x2) and s(x1, x2, t) =

s(x1, x2).

Proof. Since






e−fA(ẋ1, x2)e1 = ∇′
Xα

Xγ = − λγ

λ − ν
Xα = f3Xα,

e−fA(ẋ1, x2)e2 = ∇′
Xα

N = −λXα

by (2.3), (4.1) and (4.12), we have (4.13). Then, the function s is positive

by A(ẋ1, x2)|H0
6= 0. In particular, vector fields b, c and the function s are

independent of t, because A(ẋ1, x2) and Xα(x1, x2) do not depend on t.

For each (x1, x2), we represent the curve P (t) in terms of basis

{b(x1, x2), c(x1, x2)}: P (t) = u(x1, x2, t)b(x1, x2) + v(x1, x2, t)c(x1, x2).

Proposition 4.3. Let (x1, x2, t) ∈ U . There exists a function σ =

σ(x1, x2) such that

(1)



















(ef )3(x
1, x2, t) = s(x1, x2) cos

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

(λef )(x1, x2, t) = s(x1, x2) sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

(2)



















u(x1, x2, ṫ) = − sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

v(x1, x2, ṫ) = cos

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

(3) v(x1, x2, t) =
1

λ(x1, x2, t)
sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

.

Furthermore, the vector a(x1, x2) at (4.12) is independent of x1, i.e.,

a(x1, x2) = a(x2).
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The proof of Proposition 4.3 is divided into Lemmas 4.4, 4.5, 4.6 and 4.7

below.

Lemma 4.4. We define a function c(x1, x2) by c(x1, x2) = ef (x1, x2, t)−
s(x1, x2)v(x1, x2, t). Then, we have a(ẋ1, x2) = c(x1, x2)Xα(x1, x2).

Proof. We have

ef (x1, x2, t)Xα(x1, x2) = A(ẋ1, x2)P (t) + a(ẋ1, x2)

= s(x1, x2)v(x1, x2, t)Xα(x1, x2) + a(ẋ1, x2).

Furthermore, since both vectors Xα and a(ẋ1, x2) are independent of vari-

able t, so is the function c.

Lemma 4.5. There exists a function σ = σ(x1, x2) such that


























(ef )3(x
1, x2, t) = (eff3)(x

1, x2, t)

= s(x1, x2) cos

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

(λef )(x1, x2, t) = s(x1, x2) sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

.

Proof. We have
{

(eff3)3 = ef [f33 + f2
3 ] = −ν(λef ),

(λef )3 = ef (λ3 + λf3) = ef [−(λ − ν)f3 + λf3] = ν(f3e
f ).

Indeed, the first equation follows from (2.2) and (4.2), and the second follows

from (2.3) and (4.1). Furthermore, since s2(x1, x2) (= (eff3)
2(x1, x2, t) +

(λef )2(x1, x2, t)) is independent of t, we have Lemma.

Lemma 4.6. We have

u(x1, x2, ṫ) = − sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

v(x1, x2, ṫ) = cos

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

.

Proof. Differentiating the function c in Lemma 4.4 with respect to t,

we have (ef f3)(x
1, x2, t) = s(x1, x2)v(x1, x2, ṫ). Thus, we get the second

equation by Lemma 4.5. Since t is an arc-length parameter and the Gauss

map (u(x1, x2, ṫ), v(x1, x2, ṫ)) for fixed (x1, x2) moves to positive direction

if ν is positive, we have Lemma.
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Lemma 4.7. We have

v(x1, x2, t) =
1

λ(x1, x2, t)
sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

− c(x1, x2)

s(x1, x2)
.

Proof. We have

v =
ef

s
− c

s
=

1

λ
sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

− c

s

by Lemmas 4.4 and 4.5.

We continue the proof of Proposition 4.3. We may assume a(ẋ1, x2) = 0,

i.e., c(x1, x2) = 0. Indeed, since

Φ(ẋ1, x2, t) = A(ẋ1, x2)P (t) + a(ẋ1, x2) = (sv + c)Xα

=

(

s

λ
sin

[
∫ t

t0

ν(t) dt + σ

]

− c + c

)

Xα

=
s

λ
sin

[
∫ t

t0

ν(t) dt + σ

]

Xα,

Φ(ẋ1, x2, t) depends only on (s/λ) sin
[ ∫ t

t0
ν(t) dt + σ

]

. This completes the

proof of Proposition 4.3.

Proposition 4.4. Let (x1, x2, t) ∈ U . Then, we have the following

statements:

(1) The function σ = σ(x1, x2) in Proposition 4.3 is constant.

(2) The principal curvatures λ, µ and functions u, v depend only on

variable t, i.e., λ(x1, x2, t) = λ(t), µ(x1, x2, t) = µ(t), u(x1, x2, t) = u(t),

v(x1, x2, t) = v(t).

(3) The frames {b(x1, x2), c(x1, x2)} of H0 do not depend on (x1, x2),

i.e., b(x1, x2) = b and c(x1, x2) = c.

The proof of Proposition 4.4 is divided into Lemmas 4.8, 4.9 and 4.10

below.

Lemma 4.8. We have






















v(ẋ1, x2, t) = u(x1, x2, t)σ(ẋ1, x2),

v(x1, ẋ2, t) = u(x1, x2, t)σ(x1, ẋ2),

u(ẋ1, x2, t) = −v(x1, x2, t)σ(ẋ1, x2),

u(x1, ẋ2, t) = −v(x1, x2, t)σ(x1, ẋ2).
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Proof. We have

v(ẋ1, x2, t) =
∂

∂x1
〈c, P (t)〉 =

〈

∇′
∂

∂x1

c(x1, x2), P (t)
〉

=
〈

∇′
∂

∂x1

c, ub + vc
〉

= u
〈

∇′
∂

∂x1

c, b
〉

.

On the other hand, we have

∇′
∂

∂x1

c = ∇′
∂

∂x1

(

f3e1 − λe2

[f2
3 + λ2]1/2

)

=
λ1f3 − λf13

f2
3 + λ2

b

=
( λ

f3

)

1

(eff3)
2

(eff3)2 + (efλ)2
b

=

(

tan

[
∫ t

t0

ν(t) dt + σ

])

1

cos2
[

∫ t

t0

ν(t) dt + σ

]

b

= σ(ẋ1, x2)b.

Thus, we have v(ẋ1, x2, t) = u(x1, x2, t)σ(ẋ1, x2). Other equations are ob-

tained in the same way.

If σ(x1, x2) is a constant function, then we have u(x1, x2, t) = u(t),

v(x1, x2, t) = v(t), b(x1, x2) = b and c(x1, x2) = c from Lemma 4.8 and

its proof. Then, from v(t) = λ−1 sin
[ ∫ t

t0
ν(t) dt + σ

]

in Proposition 4.3,

we also have λ(x1, x2, t) = λ(t). Furthermore, since (λ(t) − ν(t))µi = 0

(i = 1, 2) by Theorem 3-(2), we have µ(x1, x2, t) = µ(t). Therefore, to get

Proposition 4.4, we have only to prove that σ(x1, x2) is constant. We set

R4 = {Xf1 + Y f2 + Zf3 + Wf4 = t(X,Y,Z,W ) | X,Y,Z,W ∈ R},
H0 = {Xf1 + Y f2 = t(X,Y, 0, 0) | X,Y ∈ R}.

Let P (t) = t(u(t), v(t), 0, 0) be a curve in H0 with arc-length parameter

satisfying (ü, v̈)(t) = ν(t)(−v̇, u̇)(t). Then, we have M : Φ(x1, x2, t) =

A(x1, x2)P (t) + a(x2) and










N(x1, x2, t) = A(x1, x2)(−v̇(t)f1 + u̇(t)f2),

Xα(x1, x2) = (e−f )(x1, x2, t)∂/∂x1

= (e−f )(x1, x2, t)A(ẋ1, x2)P (t)

(4.14)

by Lemma 4.2, (4.12) and Proposition 4.3. From ν = ν(t) and Theorem 3-

(2), there exists a function q(t) such that

(λ(x1, x2, t) − ν(t))(µ(x1, x2, t) − ν(t)) = q(t).(4.15)
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Lemma 4.9. We have the following:

(1) λ(x1, x2, t) =
v̇(t) sin σ(x1, x2) − u̇(t) cos σ(x1, x2)

u(t) sin σ(x1, x2) + v(t) cos σ(x1, x2)
.

(2) For each (x1, x2), there exists t such that λ(x1, x2, t) 6= 0.

Proof. (1) We consider the action of A−1(x1, x2)A(ẋ1, x2) on H0 for

each (x1, x2), and denote it by A−1(x1, x2)A(ẋ1, x2)|H0
. For this purpose,

we put

H0 ⊂ R3 = {Xf1 + Y f2 + Zf3 = t(X,Y,Z) | X,Y,Z ∈ R},

B(x) =





1 0 0

0 cos x − sin x

0 sin x cos x



 ,

C(x1, x2) =





cos σ(x1, x2) − sin σ(x1, x2) 0

sin σ(x1, x2) cos σ(x1, x2) 0

0 0 0



 .

If we identify b(x1, x2) = f1, c(x1, x2) = f2 and A−1(x1, x2)Xα(x1, x2) =

f3, then we have A−1(x1, x2)A(x1, x2)|H0
= s(x1, x2)Ḃ(0)|H0

by Lemma 4.3.

However, since

b(x1, x2) = cos σ(x1, x2)b(0, 0) − sin σ(x1, x2)c(0, 0),

c(x1, x2) = sin σ(x1, x2)b(0, 0) + cos σ(x1, x2)c(0, 0)

by the proof of Lemma 4.8, we have

A−1(x1, x2)A(ẋ1, x2)|H0
= s(x1, x2)Ḃ(0)C(x1, x2)|H0

(4.16)

by taking b(0, 0) = f1, c(0, 0) = f2 (i.e., σ(0, 0) = 0) and identifying

A−1(x1, x2)Xα(x1, x2) = f3 for each (x1, x2). Since Xα = e−f∂Φ/∂x1 and

−λXα = ∇′
Xα

N , we have

(ef )(x1, x2, t)A−1(x1, x2)Xα(x1, x2) = A−1(x1, x2)A(ẋ1, x2)P (t)

= s(x1, x2)Ḃ(0)C(x1, x2)P (t) = s(x1, x2)Ḃ(0)C(x1, x2)(u(t)f1 + v(t)f2)

= s(x1, x2)
{

u(t) sin σ(x1, x2) + v(t) cos σ(x1, x2)
}

f3,
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and

−(λef )(x1, x2, t)A−1(x1, x2)Xα(x1, x2)

= ef (x1, x2, t)A−1(x1, x2)(∇′
Xα

N)(x1, x2, t)

= A−1(x1, x2)A(ẋ1, x2)(−v̇(t)f1 + u̇(t)f2)

= s(x1, x2)Ḃ(0)C(x1, x2)(−v̇(t)f1 + u̇(t)f2)

= s(x1, x2)
{

−v̇(t) sin σ(x1, x2) + u̇(t) cos σ(x1, x2)
}

f3

by (4.14) and (4.16). Therefore, we have

λ(x1, x2, t) =
v̇(t) sin σ(x1, x2) − u̇(t) cos σ(x1, x2)

u(t) sin σ(x1, x2) + v(t) cos σ(x1, x2)
.

(2) If λ(a1, a2, t) ≡ 0 for some (a1, a2), then (u(t), v(t)) is a line in H0

by (1), which contradicts the assumption for ν.

Lemma 4.10. The function σ(x1, x2) is constant.

Proof. First we note that, if µ ≡ 0, then we have λ(x1, x2, t) = λ(t)

by (4.15). Therefore, differentiating λ in Lemma 4.9 with respect to xi

(i = 1, 2), we have either σ(ẋ1, x2) = σ(x1, ẋ2) = 0 or uu̇ + vv̇ = 0. This

implies σ(ẋ1, x2) = σ(x1, ẋ2) = 0, because ν(t) is not constant. Thus, if

µ ≡ 0, then σ(x1, x2) is constant.

Next, we assume A(x1, ẋ2)|H0
6= 0. Then, we shall show that there is no

curve (u(t), v(t)) satisfying the assumption for ν if σ(x1, x2) is not constant.

By the assumption A(x1, ẋ2)|H0
6= 0, we have Φ(x1, x2, t) = A(x1, x2)P (t)

in the same way to get Proposition 4.3. Furthermore, since we have Lem-

mas 4.3, 4.8 and 4.9 and Proposition 4.3 by A(ẋ1, x2)|H0
6= 0, we may

obtain similar results by A(x1, ẋ2)|H0
6= 0: We define functions s(x1, x2)

and σ(x1, x2) by



























s2(x1, x2) =
[

(ehh3)
2 + (ehµ)2

]

(x1, x2, t),

(eh)3(x
1, x2, t) = s(x1, x2) cos

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

,

(µeh)(x1, x2, t) = s(x1, x2) sin

[
∫ t

t0

ν(t) dt + σ(x1, x2)

]

.

Then, in the same way to get Lemma 4.9, µ is represented as

µ(x1, x2, t) =
v̇(t) sin σ(x1, x2) − u̇(t) cos σ(x1, x2)

u(t) sin σ(x1, x2) + v(t) cos σ(x1, x2)
.
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We note σ(x1, x2) 6= σ(x1, x2). Indeed, if σ(x1, x2) = σ(x1, x2), then λ(x1, x2, t) =

µ(x1, x2, t), which condradicts the assumption. For each (x1, x2), there ex-

ists t such that µ(x1, x2, t) 6= 0. Since λ = λ(σ(x1, x2), t) and µ = µ(σ(x1, x2), t),

there exists a function F such that σ(x1, x2) = F (σ(x1, x2)) by (4.15).

From (4.15), we obtain

(4.15)′ q(t) =
Y 2 sin σ sin F (σ) + X2 cos σ cos F (σ) − XY sin(σ + F (σ))

u2 sin σ sin F (σ) + v2 cos σ cos F (σ) + uv sin(σ + F (σ))
,

where X = u̇ + νv and Y = v̇ − νu. We assume that σ is not constant. We

differentiate q(t) with respect to σ. From uu̇ + vv̇ 6≡ 0, we have

Fσ(σ) = −uY sin2 F (σ) + {−uX + vY } sin F (σ) cos F (σ) − vX cos2 F (σ)

uY sin2 σ + {−uX + vY } sin σ cosσ − vX cos2 σ
.

Since F is independent of t, we have d(Fσ)/dt ≡ 0. Putting a(t) = (uY )(t),

b(t) = (−uX + vY )(t) and c(t) = −(vX)(t), then we have

sin(F−σ)
{

(ȧb−aḃ) sin F sin σ+(ȧc−aċ) sin(F+σ)+(ḃc−bċ) cos F cos σ
}

= 0.

Since F (σ) 6= σ, we have two cases:

(1) There exist constants C1 and C2 such that

(

b

a

)

(t) =

(−uX + vY

uY

)

(t) = C1 and

(

b

c

)

(t) =

(−uX + vY

vX

)

(t) = C2.

(2) There exist constants C1, C2, C3 and a funciton `(t) such that

(C1, C2, C3) 6= (0, 0, 0) and

C1 sin F sin σ + C2 sin(F + σ) + C3 cos F cos σ = 0,

(ȧb − aḃ)(t) = `(t)C1, (ȧc − aċ)(t) = `(t)C2, (ḃc − bċ)(t) = `(t)C3.

In the case (1), we have

u̇ + νv

v̇ − νu
= −C1 +

v

u
=

(

C2 +
u

v

)−1
.

Therefore, the curve (u(t), v(t)) should be a quadratic curve (except circles).

However, there is not any quadratic curve satifsying (u̇ + νv)/(v̇ − νu) =
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−C1 + v/u. Thus, the case (1) does not happen. Furthermore, under our

assumption for ν, there is no curve satisfying the case (2). However, since

this proof is too long, we shall prove this fact later, and continue the proof

of Lemma.

Since there is no curve (u(t), v(t)) under the assumption that σ is not

constant, σ(x1, x2) is constant function if A(x1, ẋ2)|H0
6= 0.

If σ(x1, x2) is constant, then λ(x1, x2, t) = λ(t) and µ(x1, x2, t) = µ(t)

as we see before. If there exists a point (a1, a2) such that A(a1, ȧ2)|H0
= 0,

then µ(a1, a2, t) = 0 for any t from the proof of Proposition 4.2 and the as-

sumption for ν. Therefore, if there exists (a1, a2) such that A(a1, ȧ2)|H0
6= 0,

then A(x1, ẋ2)|H0
6= 0 for any (x1, x2, t) ∈ U by the continuity of µ, and

σ(x1, x2) is constant on U . Conversely, if there exists a point (a1, a2) such

that A(a1, ȧ2)|H0
= 0, then A(x1, ẋ2)|H0

= 0 for any (x1, x2, t) ∈ U and

µ ≡ 0 on U . This completes the proof of Lemma.

Finally, we prove that there is no curve (u(t), v(t)) satisfying the

case (2). The conditions on curve (u(t), v(t)) are as follows:











(u̇v − uv̇)Y 2 + u2(ẊY − XẎ ) = `C1,

(u̇v − uv̇)XY − uv(ẊY − XẎ ) = −`C2,

(u̇v − uv̇)X2 + v2(ẊY − XẎ ) = `C3.

(4.17)

We note ẊY − XẎ = ν̇(uu̇ + vv̇). Since X2Y 2 = (XY )2 and (4.17), we

have

`[C1C3 − C2
2 ] = ν̇(C1v

2 + C3u
2 − 2C2uv)(uu̇ + vv̇).(4.18)

If C1C3 − C2
2 = 0, then the matrix

[

C3 −C2

−C2 C1

]

has zero-eigenvalue.

Furthermore, (u(t), v(t)) for each t is an eigenvector corresponding to the

eigenvalue by C1v
2 + C3u

2 − 2C2uv = 0, that is, the curve (u(t), v(t)) is a

line. Therefore, we may assume C1C3 − C2
2 6= 0.

From (4.17), we have

{

(u̇v − uv̇)(C2Y
2 + C1XY ) + (ẊY − XẎ )(C2u

2 − C1uv) = 0,

(u̇v − uv̇)(C3Y
2 − C1X

2) + (ẊY − XẎ )(C3u
2 − C1v

2) = 0.
(4.19)

Therefore, we have
∣

∣

∣

∣

∣

C2Y
2 + C1XY C2u

2 − C1uv

C3Y
2 − C1X

2 C3u
2 − C1v

2

∣

∣

∣

∣

∣

= 0.
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Thus, there exists a function Q(t) such that

{

C2Y
2 + C1XY = Q(C3Y

2 − C1X
2),

C2u
2 − C1uv = Q(C3u

2 − C1v
2)

(4.20)

When we consider coefficients of (C2 − C3Q) and C1, we have

∣

∣

∣

∣

∣

Y 2 XY + QX2

u2 −uv + Qv2

∣

∣

∣

∣

∣

= 0, i.e., Q =
uY

vY − uX
.(4.21)

From (4.20) and (4.21), we have

(C2v − C3u)Y = (C2u − C1v)X.(4.22)

Therefore, there exists a function R(t) such that

X = R(C2v − C3u), Y = R(C2u − C1v).(4.23)

Since
{

u̇ + νv = X = −C3(Ru) + C2(Rv),

v̇ − νu = Y = C2(Ru) − C1(Rv),

we have

uu̇ + vv̇ = −R(C1v
2 + C3u

2 − 2C2uv),(4.24)















d(Ru)

dt
= Ṙu + Ru̇ =

ν̇(C2u − C1v)

(C1C3 − C2
2 )

,

d(Rv)

dt
= Ṙv + Rv̇ =

ν̇(C3u − C2v)

(C1C3 − C2
2 )

.

(4.25)

From (4.22) and (4.25), we have

Ṙ(uX + vY ) + R(u̇X + v̇Y ) = 0.(4.26)

Next, we find the function R(t) explicitly. From (4.18) and (4.24), we

have R = ν̇(uu̇ + vv̇)2/`(C2
2 − C1C3). On the other hand, from (4.19)

and (4.23), we have R2 = ν̇(uu̇+vv̇)/{(u̇v−uv̇)(C1C3−C2
2 )}. Thus, we have

R2 = −`R/{(u̇v+uv̇)(u̇v−uv̇)}. Therefore, we have another expression for

R(t):

R(t) = −`{(uu̇ + vv̇)(u̇v − uv̇)}−1.(4.27)
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Since

d(uu̇ + vv̇)

dt
= 1 + ν(u̇v − uv̇),

d(u̇v − uv̇)

dt
= −ν(uu̇ + vv̇),

we have ˙̀/` = −ν(uu̇ + vv̇)/(u̇v − uv̇) by (4.26), (4.27) and u̇2 + v̇2 = 1.

If ˙̀(t) ≡ 0, then uu̇ + vv̇ ≡ 0, which contradicts the assumption for ν.

Therefore, we may take `(t) = (u̇v − uv̇)(t). Then, we have R(t) = −(uu̇ +

vv̇)−1(t) by (4.27), and ν̇ = (C1C3−C2
2)(u̇v−uv̇)/(uu̇+vv̇)3. Furthermore,

we have

(4.17)′



































Y 2 + (C1C3 − C2
2 )

(

u

uu̇ + vv̇

)2

= C1,

X2 + (C1C3 − C2
2 )

(

v

uu̇ + vv̇

)2

= C3,

XY − (C1C3 − C2
2 )

uv

(uu̇ + vv̇)2
= −C2

by (4.17). We have to consider two cases C1C3−C2
2 > 0 and C2

2 −C1C3 > 0

in (4.17)′.

Assume C1C3 − C2
2 > 0, C1 > 0 and C3 > 0. Then, there exists a

function ϕ(t) such that











(Y,
√

C1C3 − C2
2 u/(uu̇ + vv̇)) = (

√
C1 cosϕ,

√
C1 sinϕ),

(X,−
√

C1C3 − C2
2 v/(uu̇ + vv̇))

= (
√

C3 cos(ϕ + C),
√

C3 sin(ϕ + C))

(4.28)

by (4.17)′, where
√

C1C3 cos C = −C2. On the other hand, if (4.28) holds,

then we have C2
2 = C1C3 or C2 = 0. Indeed, since we have

C1C3 − C2
2 = C1C3

[

sin2(ϕ + C) + sin2 ϕ
]

+ 2C2

√

C1C3 sin ϕ sin(ϕ + C)

by (4.24) and (4.28), we have

C1C3

[

sin(ϕ + C) cos(ϕ + C) + sin ϕ cos ϕ
]

+ C2

√

C1C3 sin(2ϕ + C) = 0

by differentiating the equation and ϕ̇(t) 6≡ 0. Thus, we have cos C = 0 or

cos C = ±1. We have only to consider the case C2 = 0. By the condition

of the case (2) and C2 = 0, we have tan σ tan F = −C3/C1. Furthermore,

we have that (tan σ + tanF ) is constant. Indeed, if tanσ tan F is constant
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but (tan σ + tanF ) is not constant, then q(t) has to depend on σ by (4.15)′

and C2 = 0. Thus, both functions tanσ and tanF (σ) have to be constant.

However, since we consider the case (2) under the condition that σ(x1, x2)

is not constant, this case does not occur.

Next, we assume C2
2 − C1C3 > 0. First, we argue the case C1 > 0 and

C3 > 0. We may consider the case C1 < 0 and C3 < 0 in the same way as

the case C1 > 0 and C3 > 0. We may take a function ϕ(t) such that
{

(Y,
√

C2
2 − C1C3 u/(uu̇ + vv̇)) = (

√
C1 coshϕ,

√
C1 sinhϕ),

(X,
√

C2
2 − C1C3 v/(uu̇ + vv̇)) = (

√
C3 cosh(C − ϕ),

√
C3 sinh(C − ϕ)),

where coshC = −C2/
√

C1C3 (> 1). However, we have C = 0 and
√

C1C3 =

−C2 in the same way as the case C1C3 − C2
2 > 0, which contradicts C2

2 −
C1C3 > 0.

If C2
2 −C1C3 > 0, C1 > 0 and C3 < 0, then we have C2 = 0 in the same

way as above. However, this case does not occur as we see before.

Therefore, there is no curve satisfying both conditions of the case (2)

and assumption for ν.

This completes the proof of Proposition 4.4.

Proposition 4.5. If there exists a point (a1, a2) such that A(ȧ1, a2)|H0

6= 0, then A(ẋ1, x2)|H0
6= 0 for any (x1, x2).

Proof. Assume that there exists a point (x1, x2) such that A(ẋ1, x2)|H0

= 0. Let us take a point p = (b1, b2, t0) ∈ (U \ U) ∩ M . Then, we have

A(ḃ1, b2)|H0
= 0 by the definition of U . Then (λν)(b1, b2, t) = 0 for any t

from the proof of Proposition 4.2. From p = (b1, b2, t0) ∈ (U \ U) and

λ(x1, x2, t) = λ(t) on U , we have λ(b1, b2, t) = λ(t) for any t and (λν)(t) = 0,

and then λ(t) = 0 for any (x1, x2, t) ∈ U by the assumption for ν, which

contradicts the definition of U by Lemma 4.9-(2).

The conclusions of Lemma 4.3 and Propositions 4.3 and 4.4 hold true

on M by Proposition 4.5. From now on, we start our discussion on whole

M . We prove at first Theorem 2-(3a).

Proposition 4.6. We assume that there exists a point (a1, a2) such

that A(ȧ1, a2)|H0
6= 0 and A(a1, ȧ2)|H0

= 0. Then, we have λ(x1, x2, t) =

λ(t), µ ≡ 0. Furthermore, the metric g is given by g = g
S

+ (dx2)2, where

g
S

is the metric of a surface S of revolution in Euclidean 3-space R3 with

constant Gaussian curvature.
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Proof. We have A(ẋ1, x2)|H0
6= 0 and A(x1, ẋ2)|H0

= 0 for any (x1, x2)

by Proposition 4.5. Then, we have λ = λ(t) by Proposition 4.4, and µ ≡ 0,

λ(t) 6= 0 and ν(t) 6= 0 from the proof of Proposition 4.2 and assumptions of

genericalness and for ν. Furthermore, each x2-curve is a part of line in R4

by µ ≡ 0 and (2.3). In this case, the equation (4.12) becomes as follows:

(4.12)′ M : Φ(x1, x2, t) = A(x1)P (t) + ax2,

where A(x1) ∈ SO(4) and a ∈ R4, because of a(x1, x2) = a(x2) by Propo-

sition 4.3. Furthermore, we have

∇′2
Xα

Xα = −
[

( λ3

λ − ν

)2
+ λ2

]

Xα

by (2.3). Since the coefficient of Xα in ∇′2
Xα

Xα depends only on t, each

x1-curve is a circle in R4. Therefore, we may assume

A(x1)P (t) =









cos x1 − sinx1 0

sin x1 cos x1

0 I

















u(t)

0

v(t)

0









, a =









0

0

0

1









,

because Xβ is perpendicular to the plane H0 and Xα, and any (x1, t)-surface

is not included in a plane. Furthermore, the Gaussian curvature K of (x1, t)-

surface is given by K = λν, and then λν is constant by Theorem 3-(2).

We continue the proof of Theorem 2-(3a). The assumption A(a1, ȧ2)|H0

= 0 in Proposition 4.6 can be replaced by h3(a
1, a2, t) = 0. Indeed, if

A(a1, ȧ2)|H0
= 0, then h3(a

1, a2, t) = 0 from the proof of Proposition 4.2.

Conversely, if h3(a
1, a2, t) = 0, then 0 = (−h33−h2

3)(a
1, a2, t) = µν(a1, a2, t).

Thus, we have µ(a1, a2, t) = 0 by the assumption for ν. Furthermore, since

µ = µ(t) by Proposition 4.4 and A(ȧ1, a2)|H0
6= 0, we have µ ≡ 0. This

shows that each x2-curve is a line and A(x1, ẋ2)|H0
= 0 for any (x1, x2) in

the same way to get (4.12)′ in proof of Proposition 4.6. This fact together

with Proposition 4.6 completes the proof of Theorem 2-(3a).

We still leave the proof of Theorem 2-(3b). We start its proof. As-

sume that there exists a point (a1, a2) such that A(ȧ1, a2)|H0
6= 0 and

A(a1, ȧ2)|H0
6= 0. Then, we have

(1) A(ẋ1, x2)|H0
6= 0 and A(x1, ẋ2)|H0

6= 0 for any (x1, x2),

(2) λ(x1, x2, t) = λ(t) and µ(x1, x2, t) = µ(t),
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(3) P (t) = u(t)b + v(t)c, where A(ẋ1, x2)b = 0 and A(ẋ1, x2)c =

s(x1, x2)Xα(x1, x2), and b and c do not depend on (x1, x2).

In the same way to get (1), (2) and (3) from A(ȧ1, a2)|H0
6= 0, we also define

frames {b, c} of H0 and a positive function s(x1, x2) from A(a1, ȧ2)|H0
6= 0

by


























b(x1, x2, t) =
−µe1 − h3e2

[h2
3 + µ2]1/2

(x1, x2, t),

c(x1, x2, t) =
h3e1 − µe2

[h2
3 + µ2]1/2

(x1, x2, t),

s2(x1, x2, t) = [(ehh3)
2 + (ehµ)2](x1, x2, t).

We have the following:

(4) Both vectors b and c are constant, and s(x1, x2, t) = s(x1, x2).

(5) A(x1, ẋ2)b = 0 and A(x1, ẋ2)c = s(x1, x2)Xβ(x1, x2).

(6) Putting P (t) = u(t)b + v(t)c, then there exists a constant τ such

that


































u̇(t) = − sin

[
∫ t

t0

ν(t) dt + τ

]

, v̇(t) = cos

[
∫ t

t0

ν(t) dt + τ

]

,

v(t) =
1

µ
sin

[
∫ t

t0

ν(t) dt + τ

]

,

(eh)3(x
1, x2, t) = s(x1, x2) cos

[
∫ t

t0

ν(t) dt + τ

]

.

(7) Putting τ = σ + θ, then θ 6= 0.

(8) Φ(x1, x2, t) = A(x1, x2)P (t), i.e., a(x1, x2) = 0 in (4.12).

Proposition 4.7. We assume that there exists a point (a1, a2) such

that A(ȧ1, a2)|H0
6= 0 and A(a1, ȧ2)|H0

6= 0. Then we have the following:

(1) By choosing a suitable admissible coordinate system if necessary, we

may assume that both functions f(x1, x2, t) and h(x1, x2, t) depend only on

variable t, i.e., f(x1, x2, t) = f(t) and h(x1, x2, t) = h(t), and s(x1, x2) =

s(x1, x2) = 1.

(2) θ = ±π/2.

(3) Φ(x1, x2, t) =

[

A2(x
2) 0

0 A1(x
1)

]









u(t)

0

v(t)

0









, where the plane curve

(u(t), v(t)) satisfies (u̇(t))2+(v̇(t))2 = 1 and (ü(t), v̈(t)) = ν(t)(−v̇(t), u̇(t)).
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Proof. (1) Since f3 = −λ3/(λ − ν), h3 = −µ3/(µ − ν), λ = λ(t),

µ = µ(t) and ν = ν(t), functions f3 and h3 depend only on variable t. Since

R1
213 = 0 and f23 = 0, we have f2(f3−h3) = 0. Furthermore, since R1

223 = 0

and h13 = 0, we have h1(h3 − f3) = 0. Thus we have either f2 = h1 = 0 or

f3 = h3. If f3 = h3, then λ = µ by the Gauss equation and the assumption

for ν. Therefore we have f2 = h1 = 0. Moreover, since f13 = h23 = 0,

we have f(x1, t) = f(x1)+
=
f (t) and h(x2, t) = h(x2)+

=
h (t). Thus we may

assume f(x1, x2, t) = f(t) and h(x1, x2, t) = h(t) by changing the admissible

coordinate system. Then, since (ef )3 = s(x1, x2) cos
[ ∫ t

t0
ν(t) dt + σ

]

and

(eh)3 = s(x1, x2) cos
[ ∫ t

t0
ν(t) dt+ τ

]

, s and s are constant. In particular, we

may take s = s = 1.

(2) and (3). Since ∇′2
Xα

Xα = −
[(

λ3

λ−ν

)2
+λ2

]

Xα and ∇′2
Xβ

Xβ = −
[( µ3

µ−ν )2+

µ2
]

Xβ , each xi-curve (i = 1, 2) is a part of circle in R4. Since each x1-curve

A(x1, x2)c for fixed x2 is a unit circle and A(ẋ1, x2)c = Xα(x1, x2), we

have (A−1(x1, x2)A(ẋ1, x2))c = A−1(x1, x2)Xα(x1, x2) = Xα(0, x2). Fur-

thermore, since ∇′
Xβ

Xα = −µα

µ−λXβ = 0, we have (A−1(x1, x2)

A(ẋ1, x2))c = Xα(0, 0). We put B = (A−1(x1, x2)A(ẋ1, x2)). The matrix

B is constant and skew-symmetric, and it satisfies

Bb = 0, Bc = Xα(0, 0), BXα(0, 0) = −c, BXβ(0, 0) = 0.(4.29)

We put C = A−1(x1, x2)A(x1, ẋ2). Similarly, since ∇′
Xα

Xβ = − λβ

λ−µXα = 0,

we have

Cb = 0, Cc = Xβ(0, 0), CXα(0, 0) = 0, CXβ(0, 0) = −c.(4.30)

Since B2 = C1 = 0, we have

BC = CB = A−1(x1, x2)A(ẋ1, ẋ2).(4.31)

Since Cc = −CBXα(0, 0) = −BCXα(0, 0) = 0 by (4.29) and (4.30),

we have c = ±b. Therefore, we have {b, c} = {±c,∓b}, because {b, c}
and {b, c} are oriented orthonormal frames of H0. Thus we have θ =

±π/2. In particular, we note BC = CB = 0 by (4.29) and (4.30), i.e.,

A(ẋ1, ẋ2) = 0 by (4.31). We assume θ = π/2, i.e., {b, c} = {c,−b}. Since

both A(ẋ1, x2)c = Xα and A(x1, ẋ2)b = Xβ are unit vectors, and each
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xi-curve (i = 1, 2) is a circle in R4, A(ẋ1, ẋ2) = 0 and θ = π/2, we have

Φ(x1, x2, t) =

[

A(x2) 0

0 A(x1)

]









u(t)

0

v(t)

0









.(4.32)

Since (u(t), v(t)) has an arc-length parameter and curvature ν, we have

(u̇(t))2 + (v̇(t))2 = 1 and (ü(t), v̈(t)) = ν(t)(−v̇(t), u̇(t)).

For the convenient of the calculation, we denote u̇ (= u3) by u′ for a

function u = u(t) from now on. Next, we prove the last equation of (1.1) in

Theorem 2-(3b).

Proposition 4.8. The plane curve (u(t), v(t)) given in Proposition 4.7-

(3) satisfies the following condition: There exist positive constants a and b

such that a2(u′ + νv)2 ± b2(v′ − νu)2 = 1.

The proof of Proposition 4.8 is divided into Lemmas 4.11, 4.12, 4.13

and 4.14 below.

Lemma 4.11. The following equation holds:

uv(uu′ + vv′)ν ′ + (uv′ − u′v)(u′ + νv)(v′ − νu) = 0.(4.33)

Proof. Since the unit vector field N normal to the hypersurface M :

(x1, x2, t) 7→ Φ(x1, x2, t) ∈ R4 is given by

N =

[

A(x2) 0

0 A(x1)

][

−v′(t)

u′(t)

]

,

we have λ = −u′/v and µ = v′/u by Xα = v−1∂/∂x1 and Xβ = u−1∂/∂x2,

where we denote t(−v′(t), 0, u′(t), 0) by t(−v′(t), u′(t)) for the simplicity.

The principal curvatures λ(t), µ(t) and ν(t) satisfy the equation

(λ − µ)ν ′ + (ν − µ)λ′ + (λ − ν)µ′ = 0

by Theorem 3-(2). Using the equations (u′)2 + (v′)2 = 1 and (u′′, v′′) =

ν(−v′, u′), we have

0 =

(

− u′

v
− v′

u

)

ν ′ +

(

ν − v′

u

)(−u′′v + u′v′

v2

)
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+

(

− u′

v
− ν

)(

v′′u − u′v′

u2

)

=
−ν ′

uv
(uu′ + vv′) +

v′

uv2
(νu − v′)(νv + u′) − u′

u2v
(u′ + νv)(νu − v′)

=
−ν ′

uv
(uu′ + vv′) − 1

u2v2
(uv′ − u′v)(u′ + νv)(v′ − νu).

Lemma 4.12. The equation (4.33) is equivalent to each of the following

equations (4.34) : There exist constants A and B such that

u = A(u′ + νv)(uu′ + vv′), v = B(v′ − νu)(uu′ + vv′).(4.34)

Proof. Since











(uu′ + vv′)′ = (u′)2 + (v′)2 + uu′′ + vv′′ = 1 + ν(−uv′ + u′v),

(u′ + νv)′ = u′′ + νv′ + ν ′v = ν ′v,

(v′ − νu)′ = v′′ − νu′ − ν ′u = −ν ′u,

(4.35)

we have the following equation by (4.33):

uv(uu′ + vv′)ν ′ + ν(uv′ − u′v)v(v′ − νu) + u′(uv′ − u′v)(v′ − νu)

= uv(uu′ + vv′)ν ′ − [1 + ν(−uv′ + u′v)]v(v′ − νu)

+[v + uu′v′ − (u′)2v](v′ − νu)

= uv(uu′ + vv′)ν ′ − [1 + ν(−uv′ + u′v)]v(v′ − νu)

+(uu′ + vv′)v′(v′ − νu)

= −v(uu′ + vv′)(v′ − νu)′ − (uu′ + vv′)′v(v′ − νu)

+(uu′ + vv′)v′(v′ − νu)

= 0.

If uu′ + vv′ ≡ 0, then (u(t), v(t)) is a circle in H0. Then M is a sphere in

R4, which is a contradiction to the assumption. Since (u(t), v(t)) is not a

circle, we have v′ − νu 6≡ 0 and

−(v′ − νu)′

v′ − νu
− (uu′ + vv′)′

uu′ + vv′
+

v′

v
= 0.
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This shows the second equation of (4.34). Similarly, we have, from (4.33),

uv(uu′ + vv′)ν ′ − ν(uv′ − u′v)u(u′ + νv) + v′(uv′ − u′v)(u′ + νv)

= uv(uu′ + vv′)ν ′ + [1 + ν(−uv′ + u′v)]u(u′ + νv)

+[−u + u(v′)2 − vu′v′](u′ + νv)

= u(uu′ + vv′)(u′ + νv)′ + u(u′ + νv)(uu′ + vv′)′

−u′(uu′ + vv′)(u′ + νv)

= 0,

that is,
(u′ + νv)′

u′ + νv
+

(uu′ + vv′)′

uu′ + vv′
− u′

u
= 0.

This shows the first equation of (4.34).

We have

u

v
=

A

B

u′ + νv

v′ − νu
, and then − (−ν ′u)

ν ′v
=

A

B

u′ + νv

v′ − νu

by (4.34). Thus, we have

A(u′ + νv)(u′ + νv)′ + B(v′ − νu)(v′ − νu)′ = 0

by (4.35). Therefore, there exists a constant C such that

A(u′ + νv)2 + B(v′ − νu)2 = C.(4.36)

Lemma 4.13. We have C 6= 0 in (4.36).

Proof. We assume C = 0. Then, we may assume A = a2 and B = −b2.

Thus we have

[a(u′ + νv) + b(v′ − νu)][a(u′ + νv) − b(v′ − νu)] = 0,

that is,

au′ + bv′ = −ν(av − bu) or au′ − bv′ = −ν(av + bu).

If au′+bv′ = −ν(av−bu), then au′′+bv′′ = −ν(av′−bu′)−ν ′(av−bu), that

is, ν ′(av− bu) = 0. If ν ′ ≡ 0, then (u(t), v(t)) is a circle. If av(t)− bu(t) ≡ 0,

then (u(t), v(t)) is a line, that is, ν ≡ 0. Neither case happens. Similarly,

the case au′ − bv′ = −ν(av + bu) also does not happen.
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We assume C = c2 > 0 in (4.36). Then, we have the following two cases:

For positive constants a, b and c,

(4.36)′

{

(1) a2(u′ + νv)2 + b2(v′ − νu)2 = c2,

(2) a2(u′ + νv)2 − b2(v′ − νu)2 = c2.

Lemma 4.14. We have c2 = 1 in (4.36)′.

Proof. (2) We take a function θ = θ(t) given by

a(u′ + νv) = c cosh θ, b(v′ − νu) = c sinh θ.

Then, we have

uu′ + vv′ = u
( c

a
cosh θ − νv

)

+ v
(c

b
sinh θ + νu

)

=
c

a
u cosh θ +

c

b
v sinh θ.

Furthermore, since u = ac cosh θ(uu′ + vv′), v = −bc sinh θ(uu′ + vv′)

by (4.34), we have

uu′ + vv′ = (c2 cosh2 θ − c2 sinh2 θ)(uu′ + vv′) = c2(uu′ + vv′).

Therefore, we have c2 = 1. We take a function θ = θ(t) given by a(u′+νv) =

c cos θ and b(v′ − νu) = c sin θ in Case (1). Then, we have also c2 = 1 in the

same way to prove Case (2).

The plane curve (u(t), v(t)) satisfies the following (1) or (2):
{

(1) a2(u′ + νv)2 + b2(v′ − νu)2 = 1,

(2) a2(u′ + νv)2 − b2(v′ − νu)2 = 1.
(4.37)

This completes the proof of Proposition 4.8. Moreover, Propositions 4.7

and 4.8 show Theorem 2-(3b). Thus, we complete the proof of Theorem 2.

We determine plane curves (u(t), v(t)) defined by (4.37), that is, we

prove Corollaries 2 and 3. First we consider the equation (4.37)-(1). Let

e(s) = (cos s, sin s) be a parametrized unit circle. We define functions H =

H(s) (> 0) and t = t(s) by equations






















dH

ds
= ±H(s)

√

a−2 cos2 s + b−2 sin2 s
√

1 − (a−2 cos2 s + b−2 sin2 s)
,

dt

ds
= ∓ H(s)

√

1 − (a−2 cos2 s + b−2 sin2 s)
.

(4.38)
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Proposition 4.9. We assume that the set {t ∈ I | ν ′(t) = 0} does

not include any open interval. A curve (u(t), v(t)) with (u′)2 + (v′)2 = 1

and (u′′(t), v′′(t)) = ν(t)(−v′(t), u′(t)) satisfies the equation a2(u′ + νv)2 +

b2(v′ − νu)2 = 1, if and only if (u(s), v(s)) := (u(t(s)), v(t(s))) is defined

by (u(s), v(s)) = H(s)e(s) and (4.38), where s ∈ R if b ≥ a > 1, and

s ∈
{

s ∈ R | a−2 cos2 s + b−2 sin2 s < 1} if b ≥ 1 > a > 0.

Proof. (1) We assume b ≥ a > 1. We put (X,Y )(t) = (u′ + νv, v′ −
νu)(t). For a while, we assume ν ′(t) 6= 0.

Figure 1.

Then, (X ′, Y ′)(t) = −ν ′(t)(−v, u)(t) and (u′, v′)(t) = (X,Y )(t) +

ν(t)(−v, u)(t). Thus, we have (u′, v′)(t) = P or Q in Figure 1 by (u′)2 +

(v′)2 = 1. Let e(t) := e(s(t)) = (cos s(t), sin s(t)) be a unit vector field nor-

mal to the curve (X,Y )(t). Then, there is a function H(t) (> 0) such that

(u, v)(t) = H(t)e(t) from (X ′, Y ′) = −ν ′(−v, u) and Figure 1. We replace

the parameter t by s, which is the parameter of the unit circle. When we

take (d(X,Y )/ds)/‖(d(X,Y )/ds)‖ = (sin s,− cos s) (=: e1(s)), we have

X(s) =
−a−2 cos s

√

a−2 cos2 s + b−2 sin2 s
, Y (s) =

−b−2 sin s
√

a−2 cos2 s + b−2 sin2 s
.

Indeed, we have

d

ds
X =

a−2b−2 sin s
(

√

a−2 cos2 s + b−2 sin2 s
)3

,
d

ds
Y =

−a−2b−2 cos s
(

√

a−2 cos2 s + b−2 sin2 s
)3

,
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and a2X2(s) + b2Y 2(s) = 1. Since (u(t), v(t)) = (u(s(t)), v(s(t))), (X(t),

Y (t)) = (X(s(t)), Y (s(t))) and

d

dt
(u(s), v(s)) =

dH

dt
e(s) − H

ds

dt
e1(s) = (X,Y )(s) + ν(−v, u)(s),

we have































dH

dt
=

〈(du

dt
,
dv

dt

)

,e(s)
〉

= 〈(X,Y )(s),e(s)〉 + ν〈(−v, u)(s),e(s)〉

= 〈(X,Y )(s),e(s)〉 = −
√

a−2 cos2 s + b−2 sin2 s,

(

dH

dt

)2

+

(

H
ds

dt

)2

= 1.

These equations are quivalent to (4.38).

Since the assumption for ν, there is the open set J ⊂ I such that

ν ′(t) 6= 0 for t ∈ J . The above argument holds true on J . However, since

ν ′(t) = ∓ 1

a2b2H2

√

1 − (a−2 cos2 s + b−2 sin2 s)
(

√

a−2 cos2 s + b−2 sin2 s
)3

(t)

and continuity of ν ′, we have ν ′(t) 6= 0 on I, where I is the interval that H

is defined. This fact is also true for other curves which we study below.

(2) We assume b ≥ 1 > a > 0. Then, the variable s moves on {s |
a−2 cos2 s + b−2 sin2 s < 1}, because (u′, v′) does not exist on the unit circle

for other s as we see in Figure 2.

Finally, we consider the equation (4.37)-(2). We define functions H =

H(s) (> 0) and t = t(s) by equations























dH

ds
= ± H

√

a−2 cos2 s − b−2 sin2 s
√

1 − (a−2 cos2 s − b−2 sin2 s)
,

dt

ds
= ± H

√

1 − (a−2 cos2 s − b−2 sin2 s)
,

(4.39)

where s ∈ {s ∈ (−π/2, π/2) | a−2 cos2 s > b−2 sin2 s} if a > 1, and s ∈
{s ∈ (−π/2, π/2) | a−2 cos2 s > b−2 sin2 s and a−2 cos2 s − b−2 sin2 s < 1} if

0 < a < 1.
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Figure 2.

Proposition 4.10. We assume that the set {t ∈ I | ν ′(t) = 0} does

not include any open interval. A curve (u(t), v(t)) with (u′)2 + (v′)2 = 1

and (u′′(t), v′′(t)) = ν(t)(−v′(t), u′(t)) satisfies the equation a2(u′ + νv)2 −
b2(v′− νu)2 = 1, if and only if (u(s), v(s)) := (u(t(s)), v(t(s))) is defined by

(u(s), v(s)) = H(s)e(s) and (4.39).

Proof. (1) We assume a > 1. We put (X,Y )(t) = (u′ + νv, v′ −
νu)(t). Then, (X ′, Y ′)(t) = −ν ′(t)(−v, u)(t) and (u′, v′)(t) = (X,Y )(t) +

ν(t)(−v, u)(t).

Thus we have (u′, v′)(t) = P ′ or Q′ in Figure 3. Let e(t) := e(s(t)) =

(cos s(t), sin s(t)) be a unit vector field normal to the curve (X,Y )(t). Then,

there exists a function H(t) (> 0) such that (u, v)(t) = H(t)e(t) from

(X ′, Y ′) = −ν ′(−v, u) and Figure 3. We replace the parameter t by s.

When we take d(X,Y )/ds/‖d(X,Y )/ds‖ = (sin s,− cos s) (=: e1(s)), we

have

X(s) =
cos s

a2
√

a−2 cos2 s − b−2 sin2 s
,

Y (s) = − sin s

b2
√

a−2 cos2 s − b−2 sin2 s
.
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Figure 3.

Indeed, we have

d

ds
X =

sin s

a2b2
(

√

a−2 cos2 s − b−2 sin2 s
)3

,

d

ds
Y = − cos s

a2b2
(

√

a−2 cos2 s − b−2 sin2 s
)3

,

and a2X2 − b2Y 2 = 1. Since (u(t), v(t)) = (u(s(t)), v(s(t))), (X(t), Y (t)) =

(X(s(t)), Y (s(t))) and

d

dt
(u(s), v(s)) =

dH

dt
e(s) − H

ds

dt
e1(s) (= (X,Y )(s) + ν(−v, u)(s)),

we have






























dH

dt
=

〈(du

dt
,
dv

dt

)

,e(s)
〉

= 〈(X,Y )(s),e(s)〉

=
√

a−2 cos2 s − b−2 sin2 s,
(

dH

dt

)2

+

(

H
ds

dt

)2

= 1.
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If | tan s| < b/a and s ∈ (−π/2, π/2), e(s) becomes the vector field normal

to (X,Y )(s).

(2) If 0 < a < 1, then (u′, v′)(t) exists on the unit circle only for

s ∈ {s ∈ (−π/2, π/2) | | tan s| < b/a and a−2 cos2 s − b−2 sin2 s < 1} as we

see in Figure 4.

Figure 4.
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[1] E. Cartan, La déformation des hypersurfaces dans L’espace conforme á n ≥ 5 di-
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