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QUADRATIC FORMS AND KORN’S INEQUALITY
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Introduction

Let 2 be a bounded open set of R* (n = 2) with a C* boundary I
and assume that aj(x) (a| = s,|p|l = s;;%,7 =1, ---,N) be functions in
C=(2) such that a¥(x) = aji(x), where s, ---,sy are integers =1 and
a="(ay, -,a,), 8=, -, B, are n-tuples of non-negative integers with
lal=a; + - + ap|Bl=p + -+ + B.r Then we consider an integro-
differential bilinear form

N —
Qlu, vl = 3 > 2o (@)D Dy dx

4,J=1J 2 lal=s; |Bl=s;

over a Sobolev space
H(s)(Q) = {’LL = (uly v 'yuN);uj eHsj('Q)yj = 1, . ',N}’

where D* = Dyt - .. D» with D; = —id/oz; (t = v —-1).

We shall say that the quadratic form Q[u, %] is coercive over a
subspace V of H,(2) if there exist two constants ¢, > 0 and ¢, such
that

Qlu, ul = e ||ullty — colluls , ueV,

where

N
”ums) = Z:l“u’z“ﬁt .
iz

It is well-known that Q[u, u] is coercive over Cy(2)¥ (i.e. the Garding
inequality holds) if and only if there exists a constant ¢ > 0 such that
the inequality
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3 (5 3 as@e ), z e 3 1er

(2% lal=s¢ |Bl=5;

holds for every x ¢ £, every &c R" and every ne CV (strong ellipticity).

In applying the variational approach to elliptic boundary value
problems, the space V is usually given by a system of differential op-
erators defined on I Let Bj ,(x,D) (p=0,---,8,—1;i,7=1,---,N)
be linear partial defferential operators with coefficients in C=(I") homo-
geneous of order s, — s; + p and assume that this system is normal, i.e.,
for any Pe " and any real, non-zero vector & tangent to P (the totality
of such &, we denote by T,), let us regard By ,(P,¢é + w(P)) as poly-
nomials in z (v(P) denotes the unit inner normal vector to I" at P), then

Z C(i,p)B{i,m(Pys + TU(P)) =0 ’ .7 = 1, . "N ’
P

only if the constants C, ,, are all zero, where summation > ; , means
oot Let S, S, be two subsets of the set

N
Mzg{(i,p);pzow-,si—l}

and I',,I’, be the disjoint open portions of I' such that 7/, U [,=1T
and y =", N [, is a C*-manifold of dimension n — 2. Then we intro-
duce the closed subspace of H ,,(2) as follows:

V(S, S, = (1\2 {ue H, (Q; i‘{‘ B, (@, Dyu, =0 on I', for (i,p) e S,,} .
=1, =

The mixed boundary value problems for strongly elliptic differential
systems lead naturally to the investigation of coerciveness for quadratic
forms @ over V(S,,S,). In [4], we have already studied this problem
in the case N =1 and s, = m. By a slight improvement of the argu-
ment used in [4], we can characterize the coerciveness for @ over
V(S,, S,). We shall state briefly the main result in the following.

For any point P fixed on I', denoting by QF the form obtained by
replacing a’j(x) with a¥(P) in the form @ and integrating by part, we
have Green’s formula

Q7,01 = [ > AP, Dyu,-,dw
2 i7=1

N ——
+ | > 2Ny @, DuDiv,ds ,

rj,qi=1
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where

AP, D)= Y 3 ai(P)D*?

lal=s¢ [Bl=sj

and Ni; (P, D) are the differential operators on I" homogeneous of order
8$;+ 8 —¢q—1. For any Pel, any £eTp and any (@,p)eM, we de-
note h;i'p’(é, t)G=1,.--,N) the exponentially decaying solution of the
Dirichlet problem

i AP, E + uP)Dyu, =0  int>0

unj = ) for (j,9)eM ont =0,

where §{>2) denotes Kronecker’s delta. For any (¢,p),(J,Q € M, we set

bGP, &) = 25 Nt (P& + u(PYDIIL(E, )],y

The normality of the system {B, ,} guarantees that for each (¢, p), (7, @
€ M there exists a number e{{:3(P, £) such that, for any wu(t),
Diuy(t) = 3 ed9(P, &) Z} B, (P, & + u(P)D)u,(¢)
Jsq
ont=0,p=0,-.-,8,—1.
For a subset S of M and a £ Tp, we introduce a subspace of C*(s = s,

+ .-+ + sy) as follows;

LE(S) = {(Z e (P, é)b(,,q)) :beC* such that
Y] 4

(t,peM

byo =0 for (7, q)eS} .

Then we have

THEOREM. In order that the Qlu,u] be coercive over V(S,,S,), it
18 necessary and sufficient that for every P on I',(a = 1,2) there exists
a constant ¢ > 0 such that for any &,|&| =1, in Tp the inequality

3 2 DEB(P, ), (8, (8) = ¢ (Z)\%,m(é) ?

6P §hq

holds for every (e, (€) e LE(S,).

In this paper, we shall confine ourself to the proof of the theorem
in which s, = ... = sy = 1, because this special case remains the essen-
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tial part of the proof and the general case has nothing but a further
complication. As its application, we shall give an another proof of
Korn’s inequality which is fundamental in the boundary value problem
of linear elastostatics.

In section 1, we shall reduce the problem to the coerciveness prob-
lem for quadratic forms with constant coefficients over some space con-
tained in H,(R")”. With this reduced problem we deal in Section 2
(see Theorem 1). The algebraic condition for coerciveness is given in
Section 3 (see Theorem 2). Section 4 is devoted to quadratic forms
with variable coefficients and the main theorem (Theorem 3) is proved
there. In Section 5, we shall apply this theorem to a formally positive
quadratic form (see Theorem 4) and, as an example, deduce Korn’s
inequality.

§1. Localization of the problem

We consider the integro-differential quadratic form

1.1 Qlu, u] = L 'il (@)D, D uddas

ij=
on the closed subspace V of H,(£)" which contains C7(2), where a,,(x)
@t,7=1,---,n) are N-square matrices with entries in C*(2),u = (u,, - - -,
uy) €V and

N -
{a,b> = > ab; for a,beCV.
j=1

Here we can assume that
1.2 a,(@* = a;() , Li=1,---,n,
hold for every ze 2 (a;;(x)* denotes the adjoint matrix of «;;(x)) and

that there exists a constant ¢ > 0 such that the inequality

1.3) <(i a“-(x)&éj)a,a = c|éfaf

i,7=1

holds for every xwef, every £cR” and every aeC¥, as far as the
coerciveness over V is concerned (see Lecture 14 of [1]). We further
assume that V satisfies the property:

1.4 tueV for any uweV and eC=(0Q).
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By freezing any point P on I', we introduce a quadratic form with
constant matrices a,;(P):

Q¥lu,ul = [ 3 <asy,(P)Dyu, Duddz .
21i,7=1

Then we have

ProrosITION 1.1. In order that the form (1.1) be coercive over V,
it is mecessary and sufficient that

for every Pel', there exists an n-dimensional open mneighbour-
hood G of P such that QF[u,u] is coercive over a closed sub-

(1.5) space Vg of V:

Ve={ueV;supplu] C G}.

Let y = (w, ---,¥,) be a Cartesian coordinate system such that 3’
= (Y, - -+, Yn_1) represents a coordinate systems of the tangent hyperplane
through P and y, a coordinate of the direction of inner normal to I" at
P, and assume that the generic point e R* can be written as x = P
+ Sy with an orthogonal matrix S. It then follows that there exists
an open neighbourhood G of P and a C~-function fr(y’) such that "' N G
is represented by vy, — fp(¥") = 0 and fp(y’) together with dfr/0y, (j =1,
..., n — 1) vanishes at ¥’ = 0. Therefore, by the coordinate transfor-

mation
zj=y,-, ’i=1,---,n—2
(1-6) Xp+ {%n-1 = Yn_1 — gP(yb c '7yn—2)
Zn = Un _fP(yb .t 'iyn—l) ’

G N 2 is mapped in a one-to-one way onto an open portion of a half
space R® = {ze R";z, > 0} and G N I" is transformed onto an open portion
of 2, =0, where g, is a C>-function and together with dg,/oy;, (j = 1,
<«-,n — 2) vanishes at (v, -+, ¥Yn_,) = 0.

For ue Vg, we define a function 4(z) on a half space z, = 0 by

1) — {u(P+Sx;‘(Z)), zeyp(G N Q)
=0, 2erGND), 2,20

and set Vo = {@;ue Vg). Then, by QF[4, %] we denote the form
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N

(1-7) Qf[ﬁ) 72] = o ZI <d¢j(P)Dz7/~l/, Dﬂl)dz ’

2n20 7,j=
where

dij(P) = k;I 8,:Qp(P)S,; Dj = “'ia/azj ,
with S = (s;;). Since the coerciveness is invariant under coordinate
transformations, we can establish
PROPOSITION 1.2. In Proposition 1.1, we can replace (1.5) with

1.8) for every Pel', there exists an open neighbourhood G of P such
that the form (1.7) is coercive over Vg.

For the proof of Propositions 1.1 and 1.2, we refer Propositions

3.1 and 3.2 of [4].

Now we introduce the spaces V associated to mixed boundary value
problems. Let S, S, be two subsets of the set {1,2,...,N}, I',, I, be the
disjoint open portions of I" such that " U/l, =T and y =71, NT,is a
C~-manifold of dimension # — 2, and b;(x)(j =1, .--,N) be the given
N-vectors with components in C~(I") which are linearly independent at
each x ¢ 2. We define as V the closed subspace of H,(2)":

1.9 V(8,8 = Qz{ueHl(Q)N; <by(x),uy =0 on I', for jeS,}.

Obviously it satisfies property (1.4).
In the below, we shall localize the boundary conditions. We set,

for Pel,(a=1,2)

Vi={uceH(@R)" N 6%;<b;(P),uy =0 on z,=0 for jeS,},
and for Pey

Vi= N {ue H(R)Y N 64;<b,(P),up =0 on H, for jeS},

where and in the following we write, for simplicity, 4 as « and &'(Zr)
as &, with

2rp=1{2eR";|2|<R,z, = 0}

and

H,(resp. H) = {zeR";2, = 0,2,_, > 0 (resp. z,_, < 0)} .
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PROPOSITION 1.3. In order that the form (1.1) satisfying (1.2) and
(1.3) be coercive over V(S,S,), it is necessary and sufficient that

for every Pel, there exists a number R > 0 such that the

(1.10) {

form Qf[w,u] defined by (1.7) is coercive over V% .

Proof. Let P be in I', and G be an open neighbourhood of I" such
that G N I' = G N I', and assume that G is contained in the definition
domain of the transformation (1.6) with gp = 0. Then we get

17@ = {ue H,(R*)" ; supp [u] C yp(G N Q), <I;j(z’),u> =0
on z, =0 for jeS,},

where l;j(z’) = b;(P + Sys'(z’,0)) and 2’ = (2, --+,2,_,). If P is in y, we
choose y» and gp so that y» (G N y) is represented by z, = z2,, = 0, and
xp (G NIy (resp. xp (G N TI7) by 2,., > 0,2, =0 (resp. 2,_, <0, z, = 0).
Thus we have

Vo= N {uweH(R)Y;supp [u] C zp(G N D), ,z),u) = 0

a=1,2

on H, for jeS,}.

Now we shall prove the equivalence of (1.8) and (1.10) for V
= V(S,,S,) which is defined by (1.9). Let P be any point on I.
(i) (1.8)= (1.10). Let R be a positive number such that 3, C
yp(G N Q). We set
$,(2) = <{b;(z") — b,(0), w) onz,=0@G=1,---,N)

for w in V. It then easily follows that there exists a v ¢ H,(R*)¥ N &’

such that
. $;(z") onz,=0,7¢S,US,
b,(z"), = .
<B,&, v {0 onz,=0jeS US,
and
(1.11) vl = C. Z ldsllsz »
JjES1US3

C being a positive constant not depending on u, ». Remembering that
$,000 =0 for j=1,---,N, we can establish that for any ¢ > 0 there
exists a number R > 0 such that for every jeS, U S,

(1.12) gslhe < elloell ueVyi.
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Obviously # — v is in VG. Accordingly it follows from (1.8) that
Tl —v,u—2] 2 clu—2|— 6lu— v’
with some constants ¢, > 0 and ¢,. So that
Qllu,ul Z e lu — v|l — elju — vll" — K(Jul vl + [[v[i®)
z clull — cllulld — Klullllvl + [v]d

(4
= —2i lull® — e llull® — Ksllvll*

where K,, K,, - - - denote appropriate constants. Using (1.11) and (1.12),
we can obtain

¢
Tlu, u) = Zl el — e ll2e]lo?

for every we V% if ¢ is sufficient small. That is, (1.10) holds for R = R,.

(i) (1.100= (1.8). Let G be a neighbourhood of P such that
p(GN2)cC Xz Forue Ve, we can choose a v in H,(R*)” N &, so that
(1.11) and

— (%) onz,=0,j7eS, US,

5.(0), v> =
<640, 2> {0 on z, =0, j&8, U S,

are valid. Thus by the same argument as in (i), we can conclude (1.8)
from (1.10).

§2. Coercive forms with constants coefficients in a half space

Let there be given the integro-differential bilinear form in the half
space R® = {x e R"; %, > 0}:

2.1) Qolu, v] = J i_‘ {ay D, Dyvpdz
t>014,5=1
where a;; (4,7 =1, .--,n) are N-square matrices with complex constant

entries and satisfy (1.2) and (1.3), and t = 2, D; = —i0/dx,. Integrating
by parts, we obtain

@2 Qe ol = | <A@, vz + [ NDw, vy

where 2’ = (%, - -+, %,_,) and
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ADyu = ilaijDiDju, NDw = —i z} a;.D .
pa

=

For 2 real, we set
Q;lu, v] = Qlu, v] + 2(u, v)
with
(u,v) = f lu, vyde .
t>0

Putting A, (D) = A(D) + #I (I denotes the identity N-matrix), we have
by (2.2)

2.3) Q. v] = (A, v) + j (NDy, vyda’ .

For 2x 0 and ¢(x") in &7 (¥ is the Schwartz space on R*™'), we denote
by wu,(x) the unique solution of the Dirichlet problem

A(D)u =20 int>0
2.4) {

U =g ont=20
in H,(R")?. Substituting u, for «,v in (2.3), we have

QL u,] = Lo (N(DYuy, ud>dz .

By the Fourier transformation in the variable 2’ and Parseval’s formula,
we can obtain

@5 Quwl =@ [ NG DI e G Oy
where

i, 1) = I e~y (2, t)dx’ neR™!
is a solution of the initial value problem

2.6 {Al(y, D)i=0 int>0.

i = d(n) on t =0

and exponentially decays as t — co.
For any (3,4 = 0, let u*(5, 2,t) be the exponentially decaying solu-
tion of (2.6) with the initial condition #‘*(y, 4, 0) = e, (e, is the N-vector
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whose h-th component is 1 and others zero). Then we have

ProrosiTIiON 2.1. (i) The u(p,2,t)(h =1, ...,N) are analytic in
(9, ) and have the homogeneity property:

2.7 um(@ 'y, 0712, 0t) = u(y, 4, 1) , 9>0.
7

(ii) The exponential decaying solution of (2.6) is given by
N -~
(2.8) Wy, 2, t) = ;,Z; u™ (9, 2, 1)gn(n)

and the inequality

di
dt

2.9) j: dtf{(l??lz + B)|ap + l 2}d77 < CI(I??IZ + B\ P dy

is satisfied with o suitable constant C > 0 independent of 2.
(iii) The inverse Fourier transformation of 4(y, 2,t):

w@' t) = (2r)- f ¢y, 1, By

is the solution of (2.4) in H,(R*)" if 2% 0.

Proof. By the theory of ordinary differential equations, (i) is im-
mediately obtained. Differentiating (2.7), we obtain

0/(diw) 6y, 672, 08) = diuly, 2,8), 6> 0,

where d, = d/dt. For brevity, we put § = (3, 2) = (| + )% It then
follows from (2.8) that, for 7 = 0,1,

[Cat[orriqaran < N [ at [#0-2 Sidir, 4, 06,01 g
=N [T ds [0 33 idmm 67,670, 91 4.1 dy
< N sup [1au, 2, 97 ds [ 01207 dy -
This completes (2.9). By the same way, we can obtain, for 7 = 0,1,2,
j:’ dtfam-ﬁ;dgalz dn < Cfeslsii(n)lz dy ,

which guarantees that u,(x’,t) is in H,(R")?. ) Q.E.D.
Now we return (2.5). Since %,(y,t) = 4(y, 2,t), we have
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(2.10) N(7, D)ii(5, )|, = By, () ,

provided that B(y, 2) is the N-square matrix whose (7, )-entry b;,(y, 2
is equal to the j-component of the N-vector N(y, D,)u'" (3, 2,t)|,.,- Con-
sequently, (2.5) becomes

@.11) Q. 1] = (20)'-" j By, D), dopydy .

Here note that each entry b,,(»,2 is analytic for (3, 2) =% 0 and homo-
geneous of degree 1. In fact, this follows immediately from (2.7).

Let V, be a closed subspace of H,(R")" and assume that for every
e>0

(2.12) wx)e Vi u@) = w(x/e)e V,.
Then we can prove

PropPoSITION 2.2. If the quadratic form QJlu,ul]l of the form (2.1)
is coercive over V, satisfying (2.12), then there exists a constant ¢ > 0
independent of 2 such that for every 2

@13 [<BG, AV, Uady 2 ¢ [12KUm, Upydy, Ue ol ,
where
oV = {U@) - J =Dy, YA |0y U € VO} .
Proof. Let 2 0 and let u, be the solution of the Dirichlet problem
(2.4) with ¢e H,,(R*™") such that gﬁeo(VO). Then we have u,¢V, and

note that, for the u,, (2.11) is also valid. Then, the coerciveness of Q,
and (2.11) guarantee that

(2.14) I<B(77, AU, Ulp)ydy = clf(l + U@ dy — colianlly’

where ¢, > 0 and ¢, are constants independent of 2, and we put = U
and used the well-known inequality

J(l + [9DIU@F dy < const. ||u,])* .

By (2.12), we have u® e V, (¢ > 0) and
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ADWP(z) = _(}_)zw)(x)

€
U (a', 0) = ¢(?—) .
I3
Noting
TN
x -
¢(—) =""'Uey) ,
15
and applying (2.14) for u{®, we can immediately obtain
n—-2 2 2n-2 2 )| 2
. j(B(,y, ?)U(Ew, UGen)dy = e, j A + (7D UGen)* dy — ol |? -
Devising the both side by ¢*~? and tending ¢ to zero, we can conclude

(2.13) for 2 2 0 and hence also for 1= 0. Q.E.D.

PRrROPOSITION 2.3. In Proposition 2.2, if (2.13) s valid for A2 =0,
then Q.lu,u] is coercive over V,.

Proof. Let ueV,. We can choose a sequence u, ¢ >0, in Cy(R*)Y
such that u, —» « in H(R*)" as ¢e— 0. Let w, be in H,(R")Y and be a
solution of (2.4) with ¢ = u,],., and with 2 % 0, and set v, = u, — w,.

By (2.9) in Proposition 2.1, we have

[ at [{ane + wrnr + ’di

“ }oz,7 < CI(MIZ + B (UMPdy,

where U,(p) = i,;., and C is a constant > 0 independent of i and e.
Writing here the left hand side as |w,[},, we have

(2.15) 000 2 Houlta — C [ QP + D UG Fdy
Substituting w, in place of u, in (2.11), we obtain
@16)  Qlu, — v,u, — ] = 2z f (B, DU, Upddy -

Since v, =0 on ¢t =0 and Au, = Aw, in t > 0, we can calculate as fol-
lows:

Qlu, —v,u, —v] = Qlu,ul] + Qlv,v.] —2Re (Au,,v,)
= Q[u,u] + Qlv,v] —2Re (4v,,v)

https://doi.org/10.1017/50027763000018298 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018298

INTEGRO-DIFFERENTIAL QUADRATIC FORMS 19

= Qz[uu us] - Qz[”;, v;] .

Therefore, it follows from (2.15), (2.16) and the ellipticity condition
(1.83) that for any 4,0 <4 <1,

Qlu,ul] = dQ,v,v] + Qlu. —v.,u, — ]

2 a0, [ at [{nr + oap + |

2} dn
— sC, j (9 + 22| UG dy

+ @y~ [ B, D), Updan
where C, and C, are constants > 0 independent of ¢ and 2. Tending

e — 0 and using (2.13) with 2 = 0, we obtain

di
dt

Qulu, 4] = 5C, j: dt f (IleIﬁF + ’ 2>d7) + (@0)"c — 3C) j I UG dy .

If we choose 6 so that (2z)'~"¢c — 6C, = 0, then we can conclude that
Q.[u, %] is coercive over V,. Q.E.D.
Thus, combining Propositions 2.2 and 2.3, we have

THEOREM 1. An integro-differential quadratic form Q,lu,u] of the
form (2.1) with properties (1.2) and (1.3) is coercive over a closed sub-
space V, of H(R")Y satisfying (2.12), if and only if

there exists a constant ¢ > 0 such that

2.17) I<B(0)U(0), U(77)>d0 = CI |77|<U(77), U(77)>d7] , Ue I’/‘vo ,

where B(p) = B(y,0) and B(y, 2) is the N-square matrix defined
by (2.10).

§3. Algebraic characterization

Let 4,,j=1,..-,N, be N-vectors with complex components (i.e.,
b; € CY) which are linearly independent, and let S,,S_ be two subsets
of the set {1,...,N}. In this section we shall consider the problem of
coerciveness for the quadratic form (2.1) over

VoS, S)) = {ueH(R);<b;yup =0 o0n I, for jeS.},

which clearly satisfies (2.12) and where
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F:l: = {(xn "‘,xn-hO)GRn;an%O}'

Here and in the following, the signs + and = are taken in the same

order. For a subset S of the set {1, ..., N}, we introduce the subspace
L(S) of CV as follows:

L(S) = {ae C¥;<{b;,a> = 0 for jeS}

THEOREM 2. An integro-differential quadratic form Q. u,u]l of the
form (2.1) with properties (1.2) and (1.3) is coercive over V,(S,,S_) if
and only if

there exists a constant ¢ > 0 such that for every e R* ™', n % 0,
3.1) {(B(pa,a> = c|ypKa,a) , aeL(S,) U L(S))
holds, where B(y) is the same matriz as in Theorem 1.

Proof. For the proof we have only to establish the equivalence of
3.1) and (2.17) with V, = V(S,,S.).

For ueV(S,,S), we set w;,z) = <{b;,u)|,.o for 7 =1,.---,N.
Clearly we have w,ec H,,(R""") and, in particular, w,e H7,(R"™") for
jeS,, where

H:(R™) = {pe HR ;¢ =0 I} .

Conversely, for any w; e H,(R*™") (j =1, --.,N) such that w; e Hj,(R"™)
for jeS., we can find a u in V(S,,S.) satisfying w,;(x") = <b;, v,

for 7=1,---,N. Then we denote by EF a non-singular N-square ma-
trix with constant entries such that wu(x’,0) = Fw(x’), where w(x’)
= (w,(x), « -, wy(x").

Set

H (R (resp. H:(R*™) = {¢; ¢ € H,(R™) (resp. ¢ € H:(R"Y)}
and
W = W = (b, ++ -, Wy) € H (R ; w, e Hi(R™™)  for jeS.}.
Then (2.17) may be rewritten by

3.2) j (E*BEWG), W)ddy =0, Wew,

where %(p) = B(p) — ¢|p|I and E* is the adjoint matrix of E. If we
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set
U= (=, -, ¥rw) € H(R™D¥ 54, € Hi (R"™) for jeS.}
and, for ¢ = 0,

(Wt i_ is)—llz ’ jeS: - (S+ n S—) )

(e) —
oD {(e + gD, jeS,US_orijeS,NS_.

it then follows from the theorem of the Hilbert transformation that
for any e ¥ and any ¢ > 0

@V, -« -, o8 DY w () €7 .

Substituting this in (3.2) and letting ¢ — 0, we obtain

3.3) f B Gddy 20, el

where Zy(y) is the matrix defined by
By(n) = P()*E*Z(EP(Q) ,
with
P = lo,;u]fe-rlos(n) = 07 ()

Note that every entry of %,(3) is homogeneous of degree zero in 7.
Thus we can assert that (8.2) implies (3.8). Conversely (3.3) implies
3.2), for if W e then we have

(oD W), -+, 05D W) e ¥ .

Now it remains to prove the equivalence of (3.1) and (3.3). But

this can be really done by the same argument as in [4, pp. 131-133].
Q.E.D.

Set, for F(t) ¢ H(R,)",

=3 n-1
QIF, F1 = (" {<0,.DF, DF> + . <anF', DF>
(34) ’ n-1 " n—-1
+ 5. <anDF 0y + 5 lagnaF, F>}dt .
= 7=
Then we have

COROLLARY 1. The form Q, is coercive over V(S,,S_) if and only
if the following is satisfied for every ne R* ', p 0: Any function F ()
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(resp. F_(s)) € H(R,) satisfying

{A(r;, D)F(t) =0 int>0

3.5) By, F)y = 0 ont=0,7¢8, (resp.S_)

vanishes in t > 0 if
(3.6) QIF.,,F.1<0.

Proof. Let F.(t)e H(R,) and assume (3.5) and (3.6). Integrating
by parts we find by (3.4)

Q,F.,F.] = <{N(9, DIF.(®), F.(£)>:- -

Now suppose (3.1) to be valid. By setting a* = F*(0), it then fol-
lows that

(2ﬂ)n—qu[F:t’ Fi] = <B(77)ai) ai> g cviai’ at> ’

since a* € L(S,). Here, the signs +, — are taken in the same order.
Accordingly we have a* = 0 by (8.6). Hence F.(t) = 0 for t > 0.

Conversely, we suppose that (3.1) is not valid. Then, we can as-
sume without loss of generality that there exist 7,¢ R*, |p| =1, and
a® e L(S,) such that |¢’]| =1 and

3.7 {Ba®,ay <0

Let F(t) be in H,(R,)Y and satisfy
{A(%, D)F =0 int>0,
F(0) = a© ont=20.

It then follows from (3.7) that Q,[F,F] < 0. But it is easily seen that

F(t) does not vanish identically. Q.E.D.
Before ending this section, we shall state another corollary which

will be used in the proof of the main theorem (Theorem 3 in §4).

COROLLARY 2. The form @, is coercive over V(S,,S_) if it is co-
ercive over V«(S,,S.) N &% for some positive number R.

Proof. Suppose that @, is coercive over V(S,,S_) N &, for a posi-
tive number R. Then we would like to prove that @, is coercive over
VoS,,S.). We assume for the moment that @, is not coercive over
VoS,,S.). Using Corollary 1, we can assume without loss of generality
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that there exists a p e R*, 5 % 0 and a function F,(¢) which fulfils
(3.5) and (3.6) for » = 5, but does not identically vanish in ¢ > 0.
For x> 0, we put

u, (@', t) = e R (ut) .

Let ¢(x) e C5(2z) and further assume that ¢(x) is written in the form
Z,()¢(x") where £,(t) =1 in a neighbourhood of ¢t =0 and {,(2) =0 in
Z,_, < 0. Then we have {(x)u,x’,t) e V(S,,S) N &% Accordingly

(3.8) QlCu,, tu,l = ¢, ||Cu, |l — collCu, |l

holds for all x> 0. But we can immediately show that Q,[¢u,,{u,] and
[&u,|l* are bounded when px— oo but ||{u,|,* tends to infinity as x— oo.
This contradicts (3.8). Thus we can assert that Q, is coercive over
V(S,,S.).

§4. Main theorem

Now we can state the main theorem. Let Q[u,u] be a quadratic
form of the form (1.1) satisfying (1.2) and (1.83). If e H,(Q2)" and
ve H(2)¥, integrating by parts we find

“.1) Qlu, v] = f (A(z, Dy, vyda +j (N, Dyu, v>da ,
Q2 r
where dg denotes the Lebesgue measure on I' and
A, Dyu = 3. DJay(@)Dw), w2,

,7=1

Nz, Du = —i >, vi(@)a;;(x)Du , xel,
i 1

tyJ=

v(x) = (v, (x), + - -, v,(x)) being the unit inner normal vector to I" at z eI

Let P be arbitrarily fixed on I'. We denote by T, the totality of
real vectors & 2 0 parallel to I' at P. Let éeTp. For any ¢ e L (R,
we denote by u¢($', t) an exponentially decaying solution of the Dirichlet
problem

AP, & + vD)u =0 int>0,
{u=§5(§) ont=0,

where v = y(P) and A° is the leading part of A. Following the same
process as in (2.10), we can define the N-square matrix B(P, £) such that
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4.2) N(P, & + vD)uyé, t)|..o = B(P, @) .

Let V(S,,S,) be the closed subspace of H,(2)" which is defined by
(1.9). For a subset S of the set {1, ---, N}, we introduce a subspace of
C% as follows:

L*(S) = {ae C¥; {b;P),ay =0 for jeS}.
Then we can obtain

THEOREM 3. Let Qlu,u] be an integro-differential quadratic form
of the form (1.1) which satisfies (1.2) and (1.3), and whose coefficients
a;;(%),4,7=1,.--,n, are N-square matrices with entries in C=(2). Let
b(x),7=1,..-,N, be the given N-vectors with components in C=(I")
which are linearly independent at each xel'. By V(S, S, we denote
the closed subspace of H,(2)¥ which is defined by (1.9). Then, in order

that the Q[u,u] be coercive over V(S,,S,), it is necessary and sufficient
that

for every P on [',(a = 1,2), there exists a constant ¢ > 0 such

that the inequality
“4.3) . .
{B(P,a,ay = cléLa,a) , aeL?(S,)

holds for every €e Tp, B(P,§) being defined by (4.2).

Proof. The proof easily follows from Proposition 1.3, Theorem 2
and its Corollary 2, where we should note that

rR =

. {VO(Sa,Sa) N &, with b, = b,(P), if Pel,

VS, S) N &% with b; = by(P) , if Pey=I.NT,.
Q.E.D.
Corresponding to Corollary 1 of Theorem 2, we can replace (4.3)
with
for every P on I', (¢ = 1,2) and every ée Tp, any function F(t)
e H/(R,) satisfying
@.4) AP, & + W P)D)F(t) =0 int>0,
by(P), F{t)> = 0 on {=0 for 7e8,
vanishes in ¢ > 0 if
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l QFIF, F] = J Zn: aij(P)(éi + v;D)F, (Ej + ijt)F>dt <0.

o
0 \i,j=1

§5. Formally positive quadratic forms and Korn’s inequality

Let 2, I",,S, (@« = 1,2) and V(S,,S;) be the same as in Section 1
and let 4;,(x),7=1,---,n, be M X N-matrices (M = N) with entries in
C=(Q). For u = (u,(x), - -+, uy(x)), we write as

(5.1) L(z, Dyu = le A,(x)Du

and introduce a formally positive quadratic form

(5.2) Qlu, u] = L (L(z, Dyu, L(x, Dyw>dz ,

which is nothing but the form (1.1) with a;,(x) = A,(x)*4,(x). The con-
dition (1.3) leads to

5.3) rank L(x,&) = N

for every r e 2 and every £e R", £ 5 0. On the other hand, it is obvious
that the condition (1.2) is automatically satisfied. Then we shall study
the coerciveness of the form (5.2) over V(S,S,). To this purpose, we
are going to characterize (4.4), where A and Qf are given by

{AO(P,S +vD,) = L(P,§ + vD)*L(P,§ + vD,) ,

5.4 o . .
QILF, F] = L KL(P,§ + vD)F, L(P,§ + vD)F)dt

with v = v(P) and
L(z, Dy*u = 3] D(A,@)*) .
i=1

That is, we would like to get the algebraic conditions under which any
function F(t) € H(R,) satisfying, for any Pe ", (« = 1,2) and any £ Tp,
{L(P,é +uD)F#) =0 int>0

(5-5) <bj(P), F(t)> =0 ont=0 , for jeSa

identically vanishes in ¢ > 0.
Let P be fixed in ', (« = 1,2) and let & be fixed in Tp. Since we
have

L(P,¢ + vD)) = L(P,»)D, + L(P, &)
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and rank L(P,v) = N by (5.3), it follows that the space 4 (P, &) of vector-
valued functions which satisfy the equation

L(P,é +vD)Ft)=0 int>0

and belong to H,(R,)" is isomorphic as a vector space to the space of
initial values:

NP, &) = {F(0) e CY; F(t) e (P, &)} .

Let #H(P,&) be the orthogonal complement of the space AP, &)
with respect to C¥ and put

r(P,§) = dim N (P, §) .
Then we can show

THEOREM 4. The formally positive quadratic form Q[u,u] of the
form (5.2) satisfying (5.3) is coercive over V(S,,S,) if and only if

for every P on I',(« = 1,2) and every £e Tp, there exist r (P,&)
(5.6) Jwvectors among {b,(P);jeS,} which are linearly independent
mod A +(P, &) .

Proof. We have only to show that any function F ¢ H,(R,)" satis-
fying (5.5) identically vanishes in ¢ > 0 if and only if (5.6) is valid,
that is, to show that every ae A (P, §) satisfying <b/(P),ay =0 for all
jeS, vanishes if and only if (5.6) is valid. But this fact is immedi-
ately established. Q.E.D.

Noting that V(S,,S,) = H(2)" if S, =S, = ¢, we can prove

COROLLARY. The quadratic form Qlu,u] in Theorem 4 is coercive
over H,(2)¥ if and only if

for every PeI and every e Tp,
(5.7 rank L(P, & + w(P)) = N
is valid for every r such that Imz > 0.

Proof. 1t easily follows from (4.4) that the quadratic form Q[u,u]
is coercive over H,(2)¥ if and only if 4/(P,£&) = {0} or r(P,&) =0 for
every Pe I’ and every e Tp.

Suppose that (5.7) does not hold for some Pel",éeTp and ¢ such
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that Imz > 0. Then we can find a vector @ % 0 in C¥ such that
L(P,& 4+ 7v) = 0. Clearly we have e"‘a € #'(P, £), and hence /'(P, §) # {0}.

Now we assume that (5.7) holds. It is well-known that any solu-
tion F'(t) in H,(R,) of the equation L(P, & + vD,)F(t) = 0 can be written
as a sum of

Bl = L@t ey G =1 rik=0,-19)

where z; are the distinct complex numbers such that Imz; > 0 and a,,
are some N-vectors. Since

mem—W“meuy))

and L(D,)F(t) = 0, we have, for j=1,.-.,7,

L,(Tj)a/jk} e’”

L(Tj)ajs - O
L(Tj)ajs—l + L,(Tj)ajs =0

L(Tj)a/jo + L,(Tj)ajl =0,

where we put, for brevity, L(D,) = L(P,& + vD,), L(z) = L(P, § + ),
and L'(c) = dL(z)/dz. It then follows from (5.7) that a;, = a;_, = ---
= a; = 0 for all j. Accordingly we have F(f) =0 in ¢t > 0. Q.E.D.

By applying this corollary, we can finally give the simple proof of
what is called the second Korn inequality :

(5.8) ST Dy + Dy de = ¢|ul? — f lup d
2

’L]—

for any = (u, ---,u,) € H(2)" with a constant ¢ > 0. The proof is
anything but trivial. In fact, various proofs have been published by
Friedrichs [3] and others (see [2] and Bibliography of Lecture 12 of
[1D.

For »n functions % = (u,, - --,u,) defined in 2, we define a system of
n? differential equations:

Lij(D)u = Djui + Diuj ’ 2,] =1-,n
and

L(Dyu = “(Ly(D)ut, - -+, Lyn(DYthy -+ +y Lyy(D)t, -+ -, Lipa(D)10)
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which is one of operators of the type (5.1) with (»* X n)-matrices A,(x).
Then it is obvious that the quadratic form (5.2) with L(x, D) = L(D)
becomes the left hand side of (5.8). Therefore, the inequality (5.8)
means that the quadratic form (56.2) with L(x,D) = L(D) is coercive
over H,(2)", Consequently it is sufficient to verify (5.3) and (5.7), in
order to show that the inequality (5.8) is valid for all we H,(2)".

To do so, let acC™ and {eC™ { x 0, and assume that L({)a = 0,
ie.,

Lu(C)a =0, + ;=0

for alli¢,7 =1, .-.,n. For ¢ such that {; % 0, we have a, = 0, for L,;Qa
=2f,a; = 0. Now let {; = 0, for some ¢. There then exists an integer
7 (1) such that ¢, % 0. For such i,j, we have L, ;(Qa = {,a; = 0, which
implies a@; = 0. Thus we get @ = 0. This means rank L({) = » for all
£eC™ ¢ x0. In particular, we have rank L(¢§) = n for £e R"*, £ x 0.

Let P be an arbitrary point on I. For every ée T, and every
such that Im¢ > 0, it is easily proved that & + wwe C" (v = v(P)) and
&+ twx0. Accordingly rank L(¢é + zv) =n. Hence it follows from
Corollary of Theorem 4 that Korn’s inequality (5.8) is valid for all
ue H Q)"
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