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THE COERCIVENESS FOR INTEGRO-DIFFERENTIAL

QUADRATIC FORMS AND KORN'S INEQUALITY

YOSHIO KATO

Introduction

Let Ω be a bounded open set of Rn in ^> 2) with a C°° boundary Γ

and assume that aij

β(x) (\a\ = si9 \β\ = Sj i, j — 1, , N) be functions in

C°°(Ω) such that a%jβ(x) — atf£x), where s19- -,sN are integers ^ 1 and

a = («!, . , αrj, ̂3 = (βlf . , β j are n-tuples of non-negative integers with

| α | = ê  + . . . + an, \β\ = βi + + j8n. Then we consider an integro-

differential bilinear form

Q[u,v]= Σ [ Σ Σ aiJβ(x)D*utDiίv~Jdx
i j = l J Ω | α | = β < I i 5 | = β y

over a Sobolev space

£Γ(β)(J2) = {u = ( !̂, , 2%) Uj e £Γ,/β), = 1, , N},

where Da = Dl1 Z)^ with Dj — —ίd/dxj (i = v ^ l ) .
We shall say that the quadratic form Q[u, u] is coercive over a

subspace V of H(S)(Ω) if there exist two constants Cj > 0 and cQ such
that

Q[u, it] ^ Cj H ÎIJ,, - c0 \\u\\l , w € V ,

where

INI?.) = Σ IWϊ,
i = l

It is well-known that Q[u,u] is coercive over CS°(β)iV (i.e. the Garding
inequality holds) if and only if there exists a constant c > 0 such that
the inequality
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n /

,δ(, Σ aίi(x)ξ°+βhiVj ^ cΣ \ξfSi\vA2

holds for every x e Ω, every ξ e Rn and every η e CN (strong ellipticity).
In applying the variational approach to elliptic boundary value

problems, the space V is usually given by a system of differential op-
erators defined on Γ. Let B{Up)(x, D) (p = 0, , s* — 1 i, j — 1, , N)
be linear partial defferential operators with coefficients in C^iΓ) homo-
geneous of order $j — st + p and assume that this system is normal, i.e.,
for any P e Γ and any real, non-zero vector ξ tangent to P (the totality
of such I, we denote by Tp), let us regard B{Up)(P, ξ + τv(P)) as poly-
nomials in τ (v(P) denotes the unit inner normal vector to Γ at P), then

Σ C{i.p)B{itP)(P, ξ + τv(P)) = 0 , ' j = 1, . , N ,
i >V

only if the constants C(i>p) are all zero, where summation Σi,p means

PM/ L e t &i> 2̂ be two subsets of the setΣf=i

and Γlf Γ2 be the disjoint open portions of Γ such t h a t ΓιΌ Γ2 = Γ

and γ — Γι Π Γ2 is a C°°-manifold of dimension n — 2. Then we intro-

duce the closed subspace of H(S)(Ω) as follows:

V(S19 S2) - Π In e H ( i )(fl) Σ ^ k , ) ( ^ ? D)Uj = 0 o n Γ f f for (i, p) e sλ .
o = l,2 I j = l J

The mixed boundary value problems for strongly elliptic differential
systems lead naturally to the investigation of coerciveness for quadratic
forms Q over V(S19S2) In [4], we have already studied this problem
in the case N — 1 and sλ — m. By a slight improvement of the argu-
ment used in [4], we can characterize the coerciveness for Q over
V(S19S2). We shall state briefly the main result in the following.

For any point P fixed on Γ9 denoting by Qp the form obtained by
replacing a^ix) with a%(P) in the form Q and integrating by part, we
have Green's formula

Qp[ιι, v] = ί Σ A^(P9 D)ut. ϋjdx
J Ω i,j = l

+ f Σ Σ W(y,β>(Λ D)Ui
J Γ j , q ί = l
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INTEGRO-DIFFERENTIAL QUADRATIC FORMS 9

where

A^(P,D) = Σ Σ a%(P)D'+>
\a\=H \β\=*j

and N\Jtq)(P, D) are the differential operators on Γ homogeneous oί order

^ + Sj — q — 1. For any P e Γ, any ξ eTP and any (i, p) e M, we de-

note h{f'p)(ξ, t) (j — 1, , ΛO the exponentially decaying solution of the

Dirichlet problem

, ξ + v(P)Dt)uj = 0 in t > 0

for 0", (?) e M on t = 0 ,

where 5^;^ denotes Kronecker's delta. For any (i, 2-)), 0", (?) 6 M, we set

The normality of the system {B{Uv)} guarantees that for each (i,p),ϋ,Q)

eM there exists a number e[{$(P,ξ) such that, for any u(t),

D*ik(t) - Σ e\ί$(P> f) Σ β(y.β)(Λ I + v(P)Dt)uk(t)

o n ί = 0,p = 0 , . . . , s < - l .

For a subset S of M and a ξ e TP, we introduce a subspace of C s (s = sx

+ - - - + sN) as follows

Lf (S) = f fe eίί SC *̂ ?)δ(jf β)) \beCs such that

6 ( i f β ) = 0 for O',g)e

Then we have

THEOREM. JW orcZer that the Q[u,u] be coercive over V(S19S2), it

is necessary and sufficient that for every P on Γa (a = 1,2) there exists

a constant c > 0 such that for any ξ, \ξ\ = 1, in TP the inequality

Σ Σ b%&(P, ξ)a{t,p){ξ)a(J.q}{ξ) ^ c Σ |α ( ί i P )(ξ)| a

holds for every (aiίtP0) e Lf(SJ.

In this paper, we shall confine ourself to the proof of the theorem

in which sι = = 5 ^ = 1, because this special case remains the essen-
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tial part of the proof and the general case has nothing but a further
complication. As its application, we shall give an another proof of
Korn's inequality which is fundamental in the boundary value problem
of linear elastostatics.

In section 1, we shall reduce the problem to the coerciveness prob-
lem for quadratic forms with constant coefficients over some space con-
tained in H^RD*. With this reduced problem we deal in Section 2
(see Theorem 1). The algebraic condition for coerciveness is given in
Section 3 (see Theorem 2). Section 4 is devoted to quadratic forms
with variable coefficients and the main theorem (Theorem 3) is proved
there. In Section 5, we shall apply this theorem to a formally positive
quadratic form (see Theorem 4) and, as an example, deduce Korn's
inequality.

§ 1 . Localization of the problem

We consider the integro-differential quadratic form

(1.1) Q[u,u] = f Σ (fli

on the closed subspace V of HX{Ω)N which contains C^(fi), where atj(x)

(if j = 1, . . . , n) are 2V-square matrices with entries in C°°(Ω), u = (uly ,

uN) e V and

Here

(1.2)

we can

(a, by =

assume that

aAx)* = tijiix) ,

for

hi

α, 6

= 1,

e CN .

hold for every x e Ω (αo (#)* denotes the adjoint matrix of a^ix)) and
that there exists a constant c > 0 such that the inequality

(1.3)

holds for every x e Ώ, every ξ e Rn and every a e CN, as far as the
coerciveness over V is concerned (see Lecture 14 of [1]). We further
assume that V satisfies the property:

(1.4) ζue V for any ueV and ζ e C°°(Ω) .
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INTEGRO-DIFFERENTIAL QUADRATIC FORMS 1 1

By freezing any point P on Γ, we introduce a quadratic form with
constant matrices α^ (P):

Qp[u,u] = [ Σ (μt

Then we have

PROPOSITION 1.1. In order that the form (1.1) be coercive over V,
it is necessary and sufficient that

for every P e Γ, there exists an n-dimensional open neighbour-
hood G of P such that Qp[u, u] is coercive over a closed sub-

( 1 5 ) space VG of V:

VG = {u e V supp [u] c G} .

Let y = (y19 -- ,yn) be a Cartesian coordinate system such that yr

= (Vi> '' > Vn-i) represents a coordinate systems of the tangent hyperplane

through P and yn a coordinate of the direction of inner normal to Γ at

P, and assume that the generic point xeRn can be written as x — P

+ Sy with an orthogonal matrix S. It then follows that there exists

an open neighbourhood G of P and a C°°-function fP(y') such that Γ Π G

is represented by yn — fP(y') = 0 and fP(y') together with dfP/dyj (j = 1,

•. , n — 1) vanishes at yf — 0. Therefore, by the coordinate transfor-

mation

zn_γ = yn_x - gP(y19 -,yn-2)

Zn = 2/« -fpiVi, •• ,2/n-i) ,

G Π β is mapped in a one-to-one way onto an open portion of a half
space Rn

+ — {z e Rn ;zn> 0} and G Π Γ is transformed onto an open portion
of zn = 0, where # P is a C°°-function and together with dgP/dyj (j = 1,
• , n — 2) vanishes at (yl9 , #n_2) = 0.

For u e VG, we define a function u(z) on a half space zn ^ 0 by

~ [0 , « 6 χp(G Π fl) , «n ^ 0

and set VG = {ϋ ue VG). Then, by Qf[u,u] we denote the form
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(1.7) Qm,u\ = f Σ ζάt

where

n

= Σ
with S = (%). Since the coerciveness is invariant under coordinate
transformations, we can establish

PROPOSITION 1.2. In Proposition 1.1, we can replace (1.5) with

for every P e Γ, ίfterβ exists an open neighbourhood G of P such
ί l 8)

[that the form (1.7) is coercive over VG.
For the proof of Propositions 1.1 and 1.2, we refer Propositions

3.1 and 3.2 of [4].
Now we introduce the spaces V associated to mixed boundary value

problems. Let Slf S2 be two subsets of the set {1,2, , N}f Γl9 Γ2 be the
disjoint open portions of Γ such that /\ U Γ2 = Γ and γ = Γλ ΓΊ Γ2 is a
C-manifold of dimension n — 2, and £,(#) (i = 1, . , N) be the given
iV-veetors with components in C°°(Γ) which are linearly independent at
each x e Ώ. We define as V the closed subspace of Hλ(Ω)N:

(1.9) V(SlyS2) = Π {ueH^ΩV ζbjix)^} - 0 on Γa for / eSa} .
α = l,2

Obviously it satisfies property (1.4).
In the below, we shall localize the boundary conditions. We set,

for P e Γ β ( α = 1,2)

Π g'R <*/P), ^> = 0 o n ^ n = 0 for / e Sa} ,

and for P eγ

γr= Π {̂  € £ W J " ΓΊ ί i <*/P), u} = 0 on H β for j € Sα} ,
α = l,2

w h e r e a n d i n t h e f o l l o w i n g w e w r i t e , f o r s i m p l i c i t y , % a s w a n d
a s # i w i t h

ΣR = {zeRn;\z\<R,zn^0}

and

ίίi (resp. H2) = {zeRn;zn = 09 zn_λ > 0 (resp. zn_, < 0)} .
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INTEGRO-DIFFERENTIAL QUADRATIC FORMS 13

PROPOSITION 1.3. In order that the form (1.1) satisfying (1.2) and

(1.3) be coercive over V(S19S2), it is necessary and sufficient that

(for every P e Γ, there exists a number R > 0 such that the

[form Qρ[u,u] defined by (1.7) is coercive over YP

R .

Proof, Let P be in Γa and G be an open neighbourhood of Γ such

that G Π Γ = G Π Γa and assume that G is contained in the definition

domain of the transformation (1.6) with gP = 0. Then we get

VG — {u e H^Rl)1* supp [u] c χP(G Π Ώ), ζbjiz'), u} = 0

on zn = 0 for y e Sα} ,

where 6/2') = έ / P + SχP\z\ 0)) and 2/ = (2Ί, ,^n_i). If P is in ?% we

choose χP and ^rP so that χP (G Π γ) is represented by ^w — zn_1 = 0, and

χP (G ΓΊ Λ) (resp. χP (G Π Γ2)) by z ^ > 0, «n - 0 (resp. zn_λ < 0,zn = 0).

Thus we have

ΫG — Π {w e Hλ(Rn

+)N supp M c χP(G Π 5), <bj(zf)9 u) — 0

on iϊα for y G Sβ} .

Now we shall prove the equivalence of (1.8) and (1.10) for V

= V(SUS2) which is defined by (1.9). Let P be any point on Γ.

( i ) (1.8) q> (1.10). Let J? be a positive number such that ΣR c

χp(G Π Ώ). We set

φj{zf) = <bj(z') — bj(0),u} on «n = 0 (/ = 1, ,N)

for u in Vξ. It then easily follows that there exists a v e H^Rl)1* Π Sf

R

such that

on zn = 0, .7 e #! U S2

and

(1.11)

C being a positive constant not depending on u, v. Remembering that

^(0) = 0 for j = 1, , N9 we can establish that for any e > 0 there

exists a number R > 0 such that for every j e S1 U S2

(1.12) \\φjh2^e\\u\\lf ueV*.
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14 YOSHIO KATO

Obviously u — v is in VG. Accordingly it follows from (1.8) that

Q[[u - v,n — v] ;> cx\\u — v\\ΐ — co\\u — v\\Q

2

with some constants cx > 0 and c0. So that

Qf[w,w] ^ c jw - ^||2
2 - c0 ||tt - ^||o2 - -

, + \\v\\*)

where KιyK2, denote appropriate constants. Using (1.11) and (1.12),

we can obtain

for every u e YF

R if ε is sufficient small. That is, (1.10) holds for R — Re.

(ii) (1.10) Φ Q . 8 ) . Let G be a neighbourhood of P such that

χP(G Π Ώ) c 2V For w e VG, we can choose a v in H^Rl)1* Π <^ so that

(1.11) and

o n *» = 0, / e SL U S2

θ on ^n = 0, eSx U S2

are valid. Thus by the same argument as in (i), we can conclude (1.8)

from (1.10).

§ 2 . Coercive forms with constants coefficients in a half space

Let there be given the integro-differential bilinear form in the half

space Rn

+ = {x e Rn xn > 0}:

(2.1) QQ[u,v] = ί Σ (μijDiUyDjvydx ,
Jί>0 i,y = l

where atj (i, i = 1, , ̂ ) are iV-square matrices with complex constant

entries and satisfy (1.2) and (1.3), and t = xn, Dj = —ίd/dxj. Integrating

by parts, we obtain

(2.2) QoK v] = f <A(I>)w, v}dx + ί <N{D)u, v}dx' ,
J ί>0 Jί = 0

where ^ = (xί9 , xn-d and
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n n

For λ real, we set

Qλ[ιι, v] = Qolii, v] + λ2(ιι, v)

with

r

J ί>0

Putting Aλ(D) = A(D) + λ2l (I denotes the identity iV-matrix), we have

by (2.2)

(2.3) Qλ[u,v] = (Aku,v) + f <N{D)u,vydxf .

For λ ^ 0 and φ{xf) in ^N {Sf is the Schwartz space on Rn~ι), we denote

by uλ(x) the unique solution of the Dirichlet problem

(Aλ(D)u = 0 in t > 0
(2'4) 1 , π

[w = ^ on £ = 0
in H2(Rn

+)N. Substituting uλ for w,v in (2.3), we have

J t = 0

By the Fourier transformation in the variable xf and ParsevaΓs formula,

we can obtain

(2.5) Qiίuλ9uλ] — (2π)ι~n (N{y],Dt)ύλ{η,t)\t=Q,ύλ{ηfϋ)ydη ,
J ί = 0

where

ύλ(η9 ί) = f e-i<x*^uλ(xf, t)dxf , ^ e i?71"1

is a solution of the initial value problem

(2.6) r < 7 . A ) * = 0 i n ί > 0 .

on t = 0

and exponentially decays as £ —> 00.

For any (37, λ) AF 0, let i^(7i)(^, Λ, t) be the exponentially decaying solu-

tion of (2.6) with the initial condition u{h)(j], λ, 0) = eh (eh is the iV-vector
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16 YOSHIO KATO

whose h-th component is 1 and others zero). Then we have

PROPOSITION 2.1. ( i ) The u(h){η, λ, t) (h = 1, , N) are analytic in

(j],X) and have the homogeneity property:

(2.7) u{h\θ~\ θ~ιλ, θt) = uih\η, λ, t) , θ > 0 .

(ii) The exponential decaying solution of (2.6) is given by

(2.8) ύ(η9 λ9t) = Σ u(h)(V> *, t)φh(η)
h = l

and the inequality

(2.9) J " dt J{(|?|2 + λ2)\ύf

is satisfied with a suitable constant C > 0 independent of λ.

(iii) The inverse Fourier transformation of ύ(η, λ, t):

\ t) - (2πy~n f e'<*'">ttG7, λ, t)dη

is the solution of (2.4) in H2(Rn

+)N if λ ^ 0.

Proof. By the theory of ordinary differential equations, (i) is im-

mediately obtained. Differentiating (2.7), we obtain

θ*(d{u)(β-% θ~% θt) = d{vίη9 λ, t) , θ > 0 ,

where dt = d/dί. For brevity, we put θ = θ{η,λ) = (|^|2 + ^01/2. It then

follows from (2.8) that, for j = 0,1,

Γ d ί [θ^~^\dtύfdη ^ N Γdt [θ«ι-Σ
JO J Jo J h=l

Σl dίllM(θ-ιη, θ-% S) f I φh{η) f dη

^ N sup JI dWh\η, λ, s) |2 ds J θ I ̂ Λ0?) I2 d 7 .

This completes (2.9). By the same way, we can obtain, for j = 0,1,2,

Γ dt{θm-j)\d{ύ\2dr] ^ C ί ό > 3 | ^ ) | 2 ^ ,

which guarantees that uλ(x', t) is in H2(Rn

+)N. . Q.E.D.

Now we return (2.5). Since ύλ(η9t) = ^(37,^,ί), we have
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(2.10) N(η, Dt)ύλ{η, t) Uo = B(η, λ)φ(η) ,

provided that B(η, X) is the iV-square matrix whose (j, h)-entτy bjh(η, X)

is equal to the /-component of the N-vector N(η, Dt)um(q, λ, t)\t=0. Con-

sequently, (2.5) becomes

(2.11) Qλ[uif uλ] - (2πy~n J <B{η9 X)φ(τj), φ(η)>dη .

Here note that each entry bjh{η, X) is analytic for (η, X) ^ 0 and homo-

geneous of degree 1. In fact, this follows immediately from (2.7).

Let VQ be a closed subspace of H^Rl^ and assume that for every

ε > 0

(2.12) u(x) eVoφ uω(x) = u(x/e) e Vo .

Then we can prove

PROPOSITION 2.2. If the quadratic form Q0[u,u] of the form (2.1)

is coercive over Vo satisfying (2.12), then there exists a constant c > 0

independent of λ such that for every λ

(2.13) J <β(?, λ)U(η)9 U(v)}dη ^ c j\vKU(η), U(v)}dv, U e σ(V0) ,

where

σ(V0) = \u(η) = J e- ί< t l"W,t)ώ'Uwe70j •

Proof. Let 2 ^ 0 and let uλ be the solution of the Dirichlet problem

(2.4) with φeHι/2(Rn~ι) such that φeσ(VQ). Then we have M 2e7 0 and

note that, for the uλ, (2.11) is also valid. Then, the coerciveness of Qo

and (2.11) guarantee that

(2.14) fa(η,λ)U(η), U(η)}dV ^ C^ (1 + \η\)\U(η)\2 dη - C0||2t,||0
2 ,

where cλ > 0 and cQ are constants independent of λ, and we put φ — U

and used the well-known inequality

f (1 + \η\)\U(η)fdη ^ const. \\Ui\\? .

By (2.12), we have u? eV0 (ε> 0) and
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18 YOSHIO KATO

u\'\x>, 0) = φ(^j .

Noting

φ(τ)= εn'lu^'
and applying (2.14) for u[ε\ we can immediately obtain

dη ^ **'% J (1 + \η\)\U(εη)\2 dη -

Devising the both side by εn~2 and tending ε to zero, we can conclude

(2.13) for λ ±? 0 and hence also for λ = 0. Q.E.D.

PROPOSITION 2.3. In Proposition 2.2, if (2.13) is i αKd /or λ — 0,

Qo[^>^] is coercive over VQ.

Proof. Let w e F o We can choose a sequence ^fi, ε > 0, in Q?(Rl)N

such that us->u in H^RD* as ε -> 0. Let w^ be in H2(Rn

+)N and be a

solution of (2.4) with φ = ^ 6 | ί = 0 and with 2 ^ 0 , and set v6 — us — wλ.

By (2.9) in Proposition 2.1, we have

where UJjj) — ^J£ = o and C is a constant > 0 independent of λ and ε.

Writing here the left hand side as \wλf^ίy we have

(2.15) \V\\X 2£ i|tt.|Λa -

Substituting ^ in place of ^ in (2.11), we obtain

(2.16) Q,[tt. - vf, uε - v6] = (2π) 1 - J <B0y, i)E7.(7), C7δ

Since ve = 0 on £ = 0 and A^ e = A^ e in ί > 0, we can calculate as fol-

lows:

Qλ[uε - vε, uε - t J = Qλ[ue, ue] + Qλ[vε, vε] - 2 Re (A,^£, vε)

= Qλuε, uε] + Qλ[vε, vε] ~ 2 Re ( A Λ , ve)
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= Qλ[uε, uε] - Qλ[vε, vs] .

19

Therefore, it follows from (2.15), (2.16) and the ellipticity condition

(1.3) that for any δ, 0 < δ S 1,

Qibi,, u,] ^ 3QS.V,, v.] + Qt[u. — v,, ut — v,]

δC, + λ2)\ύcf +

-n J

dt

, λ)UXη), Uε(V)}dV ,

where CΊ and C2 are constants > 0 independent of ε and λ. Tending

ε —> 0 and using (2.13) with λ = 0, we obtain

QQ[u,u] ^ δC, 2π)ι-nc - δC2) dv .

If we choose δ so that (2π)ι~nc — δC2 ^ 0, then we can conclude that

Q0[u,u] is coercive over Vo. Q.E.D.

Thus, combining Propositions 2.2 and 2.3, we have

THEOREM 1. An integro-dίfferential quadratic form Q0[u,u] of the

form (2.1) with properties (1.2) and (1.3) is coercive over a closed sub-

space VQ of H^RX)1* satisfying (2.12), if and only if

(2.17)

there exists a constant c > 0 such that

I <B{η)U{η), U(V)>dV ^ C J \ηKU(η), U(V)}dV , U β Vo ,

where B{ή) = f>(̂ , 0) α^d β(^, ̂ ) is the N-square matrix defined

by (2.10).

§ 3 . Algebraic characterization

Let bj, j = 1, ,N, be iV-vectors with complex components (i.e.,

bj e CN) which are linearly independent, and let S+, S_ be two subsets

of the set {1, -,N}. In this section we shall consider the problem of

coerciveness for the quadratic form (2.1) over

V0(S+, S_) = {ue H^Rir <bj9 u} = 0 on Γ± for e S±} ,

which clearly satisfies (2.12) and where
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Γ± = {(xl9 , xn.l9 0)eRn; xn.x ^ 0} .

Here and in the following, the signs ± and ^ are taken in the same

order. For a subset S of the set {1, ,iV}, we introduce the subspace

L(£) of CN as follows :

L(S) = {aeCN; (bj9 α> = 0 for j e S}

THEOREM 2. An integro-diff erential quadratic form Q0[tι, u] of the

form (2.1) with properties (1.2) and (1.3) is coercive over V0(S+,S_) if

and only if

(3.1)

there exists a constant c > 0 such that for every η e Rn~ι, η ^ 0,

<B(rj)ay ay ^ c\η\<a9 a} , a e L(S+) U L(SJ

holds, where B(η) is the same matrix as in Theorem 1.

Proof. For the proof we have only to establish the equivalence of

(3.1) and (2.17) with Vo - V0(S+,S_).

For ueV0(S+,S_), we set Wj(x') ~ (bjyu}\t=0 for j = 1, -,N.

Clearly we have Wj e Hί/2(Rn~ι) and, in particular, Wj e H?/2(Rn~ι) for

j eS±, where

Hΐ(Rn~ι) = {φe Hs(Rn->) φ = 0 Γτ} .

Conversely, for any ws e H^R71'1) (j = 1, , N) such that Wj e H^/2(Rn"1)

for jeS±, we can find a w in V0(S+,S_) satisfying wό(x') — <6^,^>|ί=0

for / = 1, ,2V. Then we denote by Z? a non-singular 2V-square ma-

trix with constant entries such that u(x\ 0) = Ew(xf), where w{x')

= (WJCSO, •• ,wΛr(ίc/)).

Set

Hs(Rn-1) (resp. Hi(Rn~1)) = {ψ;φe Hs(Rn'1) (resp. ^ e Hid?""1)}

and

TΓ - {W = (w19 . ., tfcΛ0 e Hι/2(Rn-ψ ^^ β HU^n~l) for e S±} .

Then (2.17) may be rewritten by

(3.2) f (E*8{η)EW(η), W(η)>dη ̂  0 , W e ir ,

where ^0?) = β(^) — c|^|7 and E* is the adjoint matrix of E. If we
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set

"ψ = {ψ = (ψj, , ψiv) £ ΐί §(Rnγ)N y ψj € HQ^R71'1) for ^ G o±}

and, for ε ^ 0,

± ±iε)" 1 / 2 , ; e S ± - ( S + Π SJ ,

.(e + |^|)-1/2 , y$S+ U S_ or i e S + Π S_ .

it then follows from the theorem of the Hubert transformation that
for any ψ e¥ and any ε > 0

Substituting this in (3.2) and letting ε -* 0, we obtain

(3.3) I <^oO?)Ψθ?), Ψ(i?)>*7 ^ 0 , ψ e Ψ ,

where ^a(η) is the matrix defined by

ajj) = P(η)*E*3${η)EP(η) ,

with

- [Pj{η)δίk\i*Λp3{η) = pf

Note that every entry of 3BJiη) is homogeneous of degree zero in η.
Thus we can assert that (3.2) implies (3.3). Conversely (3.3) implies
(3.2), for if Weir then we have

(p1(vriW1(v), •••,pΛηY'WM) e Ψ .

Now it remains to prove the equivalence of (3.1) and (3.3). But
this can be really done by the same argument as in [4, pp. 131-133].

Q.E.D.

Set, for F{t) e H,(Λ+)W,

QV[F,F] - Γ UannDtF,DtF} + Σ<*inηtF,DtF>

(3.4) „ , i = 1

Then we have

COROLLARY 1. The form Qo is coercive over VQ(S+,S_) if and only
if the following is satisfied for every η e Rn~\ η ̂  0: Any function F+(t)
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(resp. F_(s)) e H^RJ satisfying

(3.5) r , . - „ - - = < > int>0
{(bj, F(t)y = 0 on t = 0, 2 e S + (resp. S_)

vanishes in t > 0 if

(3.6) Q,[F±,F±] ^ 0 .

Proo/. Let F±(t)eH1(R+) and assume (3.5) and (3.6). Integrating

by parts we find by (3.4)

Q,[F±,F±] = <N(η,Dt)F±(f),F±(t)>M

Now suppose (3.1) to be valid. By setting a± — F*(0), it then fol-

lows that

{2π)n'ιQη[F±,F±\ - <£(?)(&*, α±> ^ c ^ K α S α * ) ,

since α ± eL(S ± ) . Here, the signs + , — are taken in the same order.

Accordingly we have a± = 0 by (3.6). Hence F±(ί) = 0 for t > 0.

Conversely, we suppose that (3.1) is not valid. Then, we can as-

sume without loss of generality that there exist ηoeRn~\ \ηo\ = 1, and

aweL(S+) such that |α°| = 1 and

(3.7)

Let F(fi) be in H,(R+)N and satisfy

(A(η0, Dt)F = 0 in t > 0 ,

|F(0) = am on ί = 0 .

It then follows from (3.7) that Qηo[F,F] ^ 0. But it is easily seen that

F(t) does not vanish identically. Q.E.D.

Before ending this section, we shall state another corollary which

will be used in the proof of the main theorem (Theorem 3 in §4).

COROLLARY 2. The form Qo is coercive over V0(S+,S_) if it is co-

ercive over VQ(S+,S_) Π δ'R for some positive number R.

Proof, Suppose that Qo is coercive over V0(S+,S_) Π δB for a posi-

tive number R. Then we would like to prove that Qo is coercive over

V0(S+,S_). We assume for the moment that Qo is not coercive over

V0(S+,S_). Using Corollary 1, we can assume without loss of generality
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that there exists a η0 e Rn~\ η0 ^ 0 and a function F+(t) which fulfils

(3.5) and (3.6) for η = η0 but does not identically vanish in t > 0.

For μ > 0, we put

Let ζ(α ) e CQ(ΣE) and further assume that ζ(#) is written in the form

Ci(£)C2(#0 where d(£) = 1 in a neighbourhood of £ = 0 and ζ2(#0 = 0 in

an-i < 0. Then we have ζ(x)uμ(z',t) e V»(S+,S_) Π £'R. Accordingly

(3.8) Q0[ζuμ, ζuμ] ^ cx \\ζuχ - c0 \\ζuμ\\0

2

holds for all μ > 0. But we can immediately show that Q0[ζuμ, ζuμ] and

IIC ÎIo2 are bounded when μ —> oo but HĈ Hx2 tends to infinity as /i —> oo.

This contradicts (3.8). Thus we can assert that Qo is coercive over

§4. Main theorem

Now we can state the main theorem. Let Q[u,ιι] be a quadratic

form of the form (1.1) satisfying (1.2) and (1.3). If ueH2(Ω)N and

v e HX{Ω)N

9 integrating by parts we find

(4.1) Q[u,v] = ί <A(x, D)u, v}dx + [ <N(x,D)u,v}dσ ,
JΩ J Γ

where da denotes the Lebesgue measure on Γ and

A(x, D)u = 2 DjfaijWDiU) , x e Ω ,

n

N(x, D)u — — i 2] Vj{x)ai5{x)ΌiU , xe Γ ,

being the unit inner normal vector to Γ at # e Γ.

Let P be arbitrarily fixed on Γ. We denote by Γ P the totality of

real vectors ξ ^ 0 parallel to Γ at P. Let f e TP. For any ^ e ^{Rn~ι)9

we denote by uφ(ξ, t) an exponentially decaying solution of the Dirichlet

problem

A°(P, ξ + vDt)u = 0 in t > 0 ,

u = ^(ί) on ί = 0 ,

where y — v(P) and A0 is the leading part of A. Following the same

process as in (2.10), we can define the 2V-square matrix B(P,ξ) such that
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(4.2)
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N(P,ξ \t^ = B(P,ξ)φ(g) .

Let V(S19S2) be the closed subspace of Hλ{Ω)N which is defined by

(1.9). For a subset S of the set {1, ,2V}, we introduce a subspace of

CN as follows:

LP(S) = {aeCN;

Then we can obtain

- 0 for

THEOREM 3. Let Q[u9u] be an integro-differential quadratic form

of the form (1.1) which satisfies (1.2) and (1.3), and whose coefficients

a,ij(x),i,j — 1, ,n, are N-square matrices with entries in C°°(Ω). Let

bj(x), j — 1, ,2V, &e £fee given N-vectors with components in C°°(Γ)

which are linearly independent at each x e Γ. By V(SU S2) we denote

the closed subspace of HX(Ω)N which is defined by (1.9). Then, in order

that the Q[u, u] be coercive over V(S19S2)9 it is necessary and sufficient

that

'for every P on Γa(a = 1,2), there exists a constant c > 0 such

that the inequality
(4.3)

<B{P, ξ)a, a}^c\ξ|<a, a> , a e Lp(Sa)

holds for every ξ eTP, B(P,ξ) being defined by (4.2).

Proof. The proof easily follows from Proposition 1.3, Theorem 2

and its Corollary 2, where we should note that

yp _
V0(Sa,Sa) n S'E with bj = bj(P) ,

VoiSt, S2) n S'κ with bj = bj(P) ,

if P e Γa

if P e r = A n rt.

Q.E.D.

Corresponding to Corollary 1 of Theorem 2, we can replace (4.3)

with

(4.4)

for every P on I\ (a = 1,2) and every ξ e TP, any function F(t)

e flΊ(i?+) satisfying

A\P, ξ + v(P)Dt)F(t) = 0 in ί > 0 ,

/ P ) , F(ί)> = 0 on ί = 0 for j e Sa

vanishes in t > 0 if
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QflF, F] = Γ ( Σ θtj(P)& + vPtW, (ξj + vjDt)F)dt ^ 0 .
Jo \iji /

§ 5 . Formally positive quadratic forms and Korn's inequality

Let Ω, Γ, Γa9 Sa (a = 1,2) and V(Slf S2) be the same as in Section 1
and let Aj(x), j = l, ,n, b e l x N-matrices (M ̂ > N) with entries in
C°°(Ω). For u = (u^x), ,ιtN(x)), we write as

(5.1) L(x, D)u = Σ J

and introduce a formally positive quadratic form

(5.2) Q[tt, u] = f <L(x, JD)%, L(Z, D)t̂ >dα; ,
J X2

which is nothing but the form (1.1) with α^(x) = Aj(x)*Ai(x). The con-
dition (1.3) leads to

(5.3) rankL(x,f) = N

for every xeΩ and every ξ e Rn, ξ ±? 0. On the other hand, it is obvious
that the condition (1.2) is automatically satisfied. Then we shall study
the coerciveness of the form (5.2) over V(SlyS2). To this purpose, we
are going to characterize (4.4), where A0 and Qf are given by

(A\P, ξ + vDt) = L{P, ξ + vDt)*UP, ξ + vDt) ,

( 5 ' 4 ) [QflF, F] = ^ (L(P, ξ + vDt)F, UP, ζ + vDt)F)dt

with v = v(P) and

Ux, D)*u = | ] ZJ/A/aO*^ .

That is, we would like to get the algebraic conditions under which any
function Fit) e Hλ(R+) satisfying, for any P e Γa (a = 1,2) and any ξ e TP,

[UP, ξ + vDt)F(t) - 0 in t > 0

= 0 on ί = 0 , f or j e Sα

identically vanishes in t > 0.
Let P be fixed in Γα (a = 1,2) and let f be fixed in TP. Since we

have

L(P, ξ + vDt) - L(P, v)Dt + UP, ξ)
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and rank L(P, v) = N by (5.3), it follows that the space JV(P, ξ) of vector-
valued functions which satisfy the equation

L(P, ξ + vDt)F(t) = 0 in t > 0

and belong to H1(Λ+)ΛΓ is isomorphic as a vector space to the space of
initial values:

JΓJLP, b = {F(0) e CN F(t) e Jfφ, £)} .

Let Jf^iPyξ) be the orthogonal complement of the space
with respect to CN and put

) = dim Λ*0(P,ξ).

Then we can show

THEOREM 4. The formally positive quadratic form Q[u,u] of the
form (5.2) satisfying (5.3) is coercive over V(SlfS2) if and only if

for every P on Γa (a = 1,2) and every ξ e TPy there exist r (P, ξ)

vectors among {bjiP) j e Sa} which are linearly independent(5.6)

Proof. We have only to show that any function FeH1(R+)N satis-
fying (5.5) identically vanishes in t > 0 if and only if (5.6) is valid,
that is, to show that every a e JVQ(P, ξ) satisfying (bj(P), α> = 0 for all
jeSβ vanishes if and only if (5.6) is valid. But this fact is immedi-
ately established. Q.E.D.

Noting that V(Slf S2) = HX(Ω)N if S, = S2 = φ, we can prove

COROLLARY. The quadratic form Q[u, ιι] in Theorem 4 is coercive

over HX(Ω)N if and only if

(5.7)

for every P e Γ and every ξ e TP,

rank L(P, ξ + τv(P)) = N

is valid for every τ such that Im τ > 0.

Proof. It easily follows from (4.4) that the quadratic form Q[u,u]
is coercive over HX{Ω)N if and only if Jf{P, ξ) = {0} or r(P, ξ) = 0 for
every P e Γ and every ξ eTP.

Suppose that (5.7) does not hold for some P e Γ, ξ eTP and τ such
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that Im τ > 0. Then we can find a vector a # 0 in CN such that
L(P, ξ + τv) = 0. Clearly we have eίTta e Jf(P, ξ), and hence Jί{P, ζ) Φ {0}.

Now we assume that (5.7) holds. It is well-known that any solu-
tion Fit) in Hi(i?+) of the equation L{P, ξ + vDt)F(t) = 0 can be written
as a sum of

φjk(t) = -~(it)keίtτmjk (j = 1, . , r k = 0, . , s)

where τό are the distinct complex numbers such that Im τj > 0 and aj1c

are some Λf-vectors. Since

L(Dt)φjk(t) =

and L{Dt)F(t) - 0, we have, for j = 1, ,r,

= 0

+ L\τj)ajι = 0 ,

where we put, for brevity, L(Z>,) = L(P, f + vDt), L(r) - L(P, f + w ) ,
and L'Cr) — dL(τ)/dτ. It then follows from (5.7) that ajs = ajs_λ = .
= o/o = 0 for all j . Accordingly we have F(t) = 0 in t > 0. Q.E.D.

By applying this corollary, we can finally give the simple proof of
what is called the second Korn inequality:

(5.8) ί Σ \DjUt + D^jfdx ^ cH^ 2 - ί \u\
JΩί,j=l JΩ

dx

for any u = (u19 , un) e H^Ω)71 with a constant c > 0. The proof is
anything but trivial. In fact, various proofs have been published by
Friedrichs [3] and others (see [2] and Bibliography of Lecture 12 of
[1]).

For n functions u = (ulf , un) defined in Ω, we define a system of
n2 differential equations:

Lij(D)u = DjUi + Dittj , ΐ, j = 1, . , , n

and

L(D)u = '(LnίDyu, - -, Lln(Z))wf , Lnl(D)ιι, , Lnn{D)u) ,
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which is one of operators of the type (5.1) with (n2 x w)-matriees Aj(x).
Then it is obvious that the quadratic form (5.2) with L(x, D) = L(D)
becomes the left hand side of (5.8). Therefore, the inequality (5.8)
means that the quadratic form (5.2) with L(x,D) = L(D) is coercive
over Hx(Ω)n, Consequently it is sufficient to verify (5.3) and (5.7), in
order to show that the inequality (5.8) is valid for all ueH^Ω)71.

To do so, let aeCn and ζ e Cn, ζ ^ 0, and assume that L(ζ)α == 0,
i.e.,

+ ζidj = 0

for all i9 j = 1, , n. For i such that ζt ^ 0, we have at = 0, for Lu(ζ)a
= 2ζίαi = 0. Now let ζt = 0, for some i. There then exists an integer
j (# ΐ) such that ζj ^F 0. For such i,j, we have LtJ(ζ)a = ζ ^ = 0, which
implies at = 0. Thus we get a = 0. This means rank L(ζ) — n for all
ζ e C n , ζ ^ 0 . In particular, we have rank L(ξ) = n for ξ eRn, ξ ±? 0.

Let P be an arbitrary point on Γ. For every ξ e TP and every r
such that Im τ > 0, it is easily proved that ξ + τv e Cn (y = v(P)) and
I + τv ^ 0. Accordingly rank L(ξ + τv) = n. Hence it follows from
Corollary of Theorem 4 that Korn's inequality (5.8) is valid for all
u e Hλ(Ω)n.
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