Akihiro Tsuchiya Nagoya Math. J. Vol. 43 (1971), 1-39

CHARACTERISTIC CLASSES FOR SPHERICAL FIBER SPACES

AKIHIRO TSUCHIYA*

§0. Introduction and statement of results.

Let SF = SG denote the space $\varinjlim SG(n)$, $SG(n) = \{f: S^{n-1} \to S^{n-1}; \text{ degree 1}\}$, and BSF be the classifying space of SF. Our purpose is to determine $H_*(BSF; Z_p)$ as a Hopf algebra over Z_p , where p is an odd prime number. We have announced the main result in [14].

Let $Q_0S^0 = \varinjlim Q_0^n S^n$, where $Q_0^n S$ is the zero component of the *n*-th loop space of S^n . Then Q_0S^0 has the same homotopy type of *SF*. Dyer-Lashof [4] determined $H_*(Q_0S^0; Z_p)$ as an algebra over Z_p , where *p* is an odd prime. $H_*(Q_0S^0; Z_p)$ is a free commutative algebra generated by x_J , $J \in H$, where $H = \{J = (\varepsilon_1, j_1, \varepsilon_2, j_2, \dots, \varepsilon_r, j_r)\}$, *J* satisfies the following properties.

$$(0-1)$$
 i) $r \ge 1$.

- ii) $j_i \equiv 0 \mod (p-1), i = 1, 2, \dots, r.$
- iii) $j_r \equiv 0 \mod 2(p-1)$.
- iv) $(p-1) \leq j_1 \leq j_2 \leq \cdots \leq j_r$.
- v) $\varepsilon_i = 0$ or 1.
- vi) if $\varepsilon_{i+1} = 0$ then $j_i/(p-1)$ and $j_{i+1}/(p-1)$ are even parity. if $\varepsilon_{i+1} = 1$ then $j_i/(p-1)$ and $j_{i+1}/(p-1)$ are odd parity.

The elements x_J are determined as follows. There is a continuous map $h_0: L_p \to Q_0 S^0$, where L_p is the mod p lens space of infinite dimension. Then x_j is by definition $h_{0*}(e_{2j(p-1)})$. And x_J is by definition $\beta_p^{*_1}Q_{j_1}\beta_p^{*_2}Q_{j_2}\cdots$ $\beta_p^{*_{r-1}}Q_{j_{r-1}}\beta_p^{*_r}x_{j_r/2(p-1)}$, where $J = (\varepsilon_1, j_1, \cdots, \varepsilon_r, j_r) \in H$, and Q_j are the extended power operations defined by Dyer-Lashof, and β_p is Bockstein operation.

Received August 6, 1969.

Revised September 20, 1970.

^{*} The author was partially supported by the Sakkokai Foundation.

We identify $H_*(Q_0S^0; Z_p)$ with $H_*(SF; Z_p)$ as Z_p module by i_* , where $i: Q_0S^0 \to SF$ is the homotopy equivalence, and we denote $\tilde{x} = i_*(x)$ for $x \in H_*(Q_0S^0; Z_p)$.

The space SF becomes an H-space by composition of maps. The homotopy equivalence $i: Q_0S^0 \to SF$ is not an H-space map, so i_* is not an algebra homomorphism.

Our first object is to determine the algebra structure of $H_*(SF:Z_p)$. The result is the following theorem.

THEOREM 1. $H_*(SF : \mathbb{Z}_p)$ is a free commutative algebra generated by \tilde{x}_J , $J \in H$, even though i_* is not a ring homomorphism.

To show this theorem, we proceed as follows. In §1, we study the relationship between the *H*-structures on Q_0S^0 and *SF*. And in §2, introducing a filtration on $H_*(Q_0S^0:Z_p)$, mod this filtration we compute the multiplications on $H_*(Q_0S^0:Z_p)$ and $H_*(SF:Z_p)$. We obtain the first theorem in §3.

The next object is to determine the Hopf algebra structure of $H_*(BSF: Z_p)$. Let H_1 be the subset of H consisting of $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$ such that $j_1 \neq p-1$, and $r \geq 2$. Let $H_2 = \{(\varepsilon, p-1, 1, j) \in H\}$. And let $H_i^* = \{J \in H_i, \deg x_J = \operatorname{even}\}, H_i^- = \{J \in H_i, \deg x_J = \operatorname{odd}\}, i = 1, 2$. Let $j : BSO \to BSF$ be the natural inclusion, then By Peterson-Toda [12], Im $j_* = Z_p[\tilde{z}_1, \tilde{z}_2, \dots], \deg \tilde{z}_j = 2j(p-1), \quad \Delta \tilde{z}_j = \sum_{i=0}^j \tilde{z}_i \otimes \tilde{z}_{j-i}.$

THEOREM 2. i) $H_*(BSF : Z_p) = Z_p[\tilde{z}_1, \tilde{z}_2, \cdots] \otimes \Lambda(\sigma \tilde{x}_1, \sigma \tilde{x}_2, \cdots) \otimes C_*$. C_* is a free commutative algebra generated by $\sigma \tilde{x}_J$, $J \in H_1 \cup H_2$. $\sigma \tilde{x}_j$, $\sigma \tilde{x}_J$ are primitive elements, and $\Delta(\tilde{z}_j) = \sum_{i=1}^{j} \tilde{z}_i \otimes \tilde{z}_{j-i}$.

ii) $H^*(BSF: \mathbb{Z}_p) = \mathbb{Z}_p[q_1, q_2, \cdots] \otimes (\mathbb{Z}_{q_1}, \mathbb{Z}_{q_2}, \cdots) \otimes \mathbb{C}$

 $C = \bigotimes_{I \in H_1^+ \cup H_2^+} \Lambda((\sigma(\tilde{x}_I))^*) \bigotimes_{J \in H_1^- \cup H_2^-} \Gamma_p[(\sigma(\tilde{x}_J))^*]. \quad where \ ()^* \ denotes \ the \ dual \ element, and \ q_i \ is \ the \ j-th \ Wu \ class.$

This theorem is proved using the Serre spectral sequence associated to the principal fibering, $SF \to ESF \to BSF$. In §4, we introduce the H_p^{∞} structures $\bar{\theta}: W \times \pi_p (SF)^p \to SF$, and $W \times \pi_p (BSF)^p \to BSF$. Using this $\bar{\theta}$, we introduce, in §6, the extended *p*-th power \bar{Q}_j on $H_*(SF:Z_p)$ and $H_*(BSF:Z_p)$. Related with this \bar{Q}_j , we formulate the Kudo's transgression theorem in proposition 6-1.

To compute the operations \bar{Q}_j on $H_*(SF:\mathbb{Z}_p)$, we study the map $\bar{\theta}: W \times \pi_p(SF)^p \to SF$, in §5, and using this we compute $\bar{Q}_{p-1}(x)$, $\bar{Q}_{p-2}(x)$ for $x \in H_*(SF:\mathbb{Z}_p)$. Using these we obtain Theorem 2.

Peter May [7] independently succeeded to determine $H_*(BSF: Z_v)$.

In a forthcoming paper [15], we shall use the results of this paper to determine the characteristic classes for PL micro-bundles.

§1. *H*-space structures on $\Omega_0^n S^n$.

1-1. Let SF(n) be the space of base point preserving continuous maps from S^n to S^n with degree 1, and SG(n) be the space of continuous maps from S^{n-1} to S^{n-1} with degree 1. These spaces are given the compact open topology. Then SF(n) and SG(n) become topological monids by composition of maps. We shall define the suspension homomorphism, $SF(n) \rightarrow SF(n+1)$, and $SG(n) \rightarrow SG(n+1)$, as follows.

$$(1-1)$$

$$g \in SG(n) \rightarrow g * id_0 \in SG(n+1).$$

 $f \in SF(n) \rightarrow f \land id_1 \in SF(n+1).$

where \wedge and * denote reduced join and join respectively and $id_1 \in SF(1)$, $id_0 \in SG(1)$ denote identity elements.

We shall introduce another *H*-space structures on SG(n) and SF(n) by join and reduced join respectively.

(1-2)

$$SG(n) \times SG(n) \xrightarrow{*} SG(2n)$$
.

 $SF(n) \times SF(n) \xrightarrow{\wedge} SF(2n)$

We shall discuss various relations between these maps.

LEMMA 1-1. The following diagrams are homotopy commutative.

i)

$$SF(n) \times SF(n) \longrightarrow SF(n+1) \times SF(n+1)$$

$$\downarrow \land \qquad \land (id_2) \qquad \downarrow \land \qquad \land \\ SF(2n) \qquad \longrightarrow SF(2n+2)$$
ii)

$$SG(n) \times SG(n) \longrightarrow SG(n+1) \times SG(n+1)$$

$$\downarrow^* \qquad *(id_1) \qquad \downarrow^* \\ SG(2n) \qquad \longrightarrow SG(2n+2)$$

LEMMA 1-2. The following diagrams are homotopy commutative.

ii)
$$SG(n) \times SG(n) \xrightarrow{\circ} SG(n); (f,g) \to g \circ f.$$

 $\downarrow *(id_{n-1})$
 $SG(2n)$

Let $i: SF(n) \to SG(n+1)$ be the natural inclusion, and $i: SG(n) \to SF(n)$ be the inclusion defined by $i(f) = f * id_0$ with base point $(0x \oplus 1z_1) \in S^{n-1} * S^0 = S^n$, $S^0 = \{z_1, z_2\}.$

LEMMA 1-3. The following diagrams are homotopy commutative.

i)

$$SF(n) \times SF(n) \longrightarrow SG(n+1) \times SG(n+1)$$

$$\downarrow \land \qquad \qquad \downarrow *$$

$$SF(2n) \longrightarrow SG(2n+1) \longrightarrow SG(2n+2)$$
ii)

$$SG(n) \times SG(n) \longrightarrow SF(n) \times SF(n)$$

$$\downarrow * \qquad \qquad \downarrow \land$$

$$SG(2n) \longrightarrow SF(2n)$$

LEMMA 1-4. The following diagrams are homotopy commutative, that is the reduced join and join products on SF(n) and SG(n) are homotopy commutative.

i)

$$SF(n) \times SF(n) \xrightarrow{\wedge} SF(2n)$$

$$\downarrow T \xrightarrow{\wedge} SF(n) \times SF(n)$$
ii)

$$SG(n) \times SG(n) \xrightarrow{*} SG(2n)$$

$$\downarrow T \xrightarrow{*} SG(n) \times SG(n)$$

It is well known that SG(n) and SF(n) have the same homotopy (n-1) type. Therefore $SF = \varinjlim SF(n)$ and $SG = \varinjlim SG(n)$ have the same homotopy type, and SF = SG has three *H*-space structures defined by composition of maps, reduced join and join, and these three *H*-structures are homotopic each other.

1-2. Next we shall consider iterated loop spaces. We denote the *n*-th loop space over X by $\Omega^n X$, where $\Omega^n X = \{l : (I^n, \partial I^n) \to (X, *): \text{ continuous maps}\}$. And we identify $\Omega^{n+1}X$ and $\Omega(\Omega^n X)$ by the following rule.

(1-3)
$$\begin{aligned} \mathcal{Q}^{n+1}X & \supseteq l, \quad \dot{l} \in \mathcal{Q}(\mathcal{Q}^n X) \\ \bar{l}(t)(t_1, \cdots, t_n) = l(t, t_1, \cdots, t_n), \quad (t, t_1, \cdots, t_n) \in I^{n+1}. \end{aligned}$$

We shall define loop product \forall_j on $\Omega^n X$, $1 \le j \le n$ by the following rule.

$$(1-4) \quad \forall_j (l_1, l_2)(t_1, \cdots, t_n) = \begin{cases} l_1(t_1, \cdots, t_{j-1}, 2t_j, t_{j+1}, \cdots, t_n), & 0 \le t_j \le 1/2. \\ l_2(t_1, \cdots, t_{j-1}, 2t_j - 1, t_{j+1}, \cdots, t_n), & 1/2 \le t_j \le 1. \end{cases}$$

We write \lor for \lor_1 . Denote $SX = X \land S^1$, and we define the natural inclusion $\Omega^n X \to \Omega^{n+1} SX$ by $l \to l \land id_1$

Let $\Omega_q^n S^n$ be the subspace of $\Omega^n S^n$ consisting of elements of degree q, for q any integer. And we shall identify $\Omega_1^n S^n$ and SF(n) canonically. We shall define the map $i_n: \Omega_0^n S^n \to SF(n)$ by $l \to l \lor id_n$. It is well known that i_n is a homotopy equivalence, and it is easy to show that the following diagram is commutative.

(1-5)
$$\begin{array}{c} \mathcal{Q}_{0}^{n}S^{n} \xrightarrow{i_{n}} SF(n) \\ \downarrow \\ \mathcal{Q}_{0}^{n+1}S^{n+1} \xrightarrow{i_{n+1}} SF(n+1). \end{array}$$

Hence, we have a homotopy equivalence

We shall define the map $\overline{\wedge}_n : \Omega_0^n S^n \times \Omega_0^n S^n \to \Omega_0^{2n} S^{2n}$ by the following diagram.

(1-7)
$$\Omega_0^n S^n \times \Omega_0^n S^n \xrightarrow{i_n \times i_n} SF(n) \times SF(n) \\ \downarrow \overleftarrow{\wedge_n} (\lor (-id_{2n})) \\ \Omega_0^{2^n} S^{2^n} \xleftarrow{(\lor (-id_{2n}))} SF(2n),$$

where $(-id_n) \in \Omega_{-1}^n S^n$ is the map defined by $(-id_n) : (I^n, \partial I^n) \xrightarrow{\sigma} (I^n, \partial I^n) \xrightarrow{\phi_n} (S^n, *)$, where $\sigma(t_1, \cdots, t_n) = (1 - t_1, t_2, \cdots, t_n)$, and ϕ_n is the natural identification map. Then the following diagram is homotopy commutative.

(1-8)
$$\begin{array}{c}
\Omega_0^n S^n \times \Omega_0^n S^n \longrightarrow \Omega_0^{n+1} S^{n+1} \times \Omega_0^{n+1} S^{n+1} \\
\downarrow \overline{\Lambda}_n \qquad \qquad \qquad \downarrow \overline{\Lambda}_{n+1} \\
\Omega_0^{2^n} S^{2n} \longrightarrow \Omega_0^{2^{n+2}} S^{2n+2}
\end{array}$$

So that passing to the limit we obtain the map.

(1-9)
$$\overline{\wedge}: Q_0 S^0 \times Q_0 S^0 \longrightarrow Q_0 S^0.$$

Our first proposition is the following structure theorem of $\overline{\wedge}_n$. PROPOSITION 1.5. The following diagram is homotopy commutative.

$$(1-10) \qquad \begin{array}{c} \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} & \xrightarrow{\overline{\bigwedge}_{n}} \mathcal{Q}_{0}^{2n}S^{2n} \\ \downarrow \bigtriangleup & \swarrow & \uparrow \lor \\ \downarrow \bigtriangleup & \bigtriangleup & \uparrow \lor \\ \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} & \mathcal{Q}_{0}^{2n}S^{2n} \times \mathcal{Q}_{0}^{2n}S^{2n} \\ \downarrow id \times T \times id & \uparrow id \times (\wedge id_{n}) \\ \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} \times \mathcal{Q}_{0}^{n}S^{n} & \xrightarrow{\wedge \times \lor} \mathcal{Q}_{0}^{2n}S^{2n} \times \mathcal{Q}_{0}^{n}S^{n} . \end{array}$$

Passing to the limit we obtain the following corollary.

COROLLARY 1-6. The following diagram is homotopy commutative.

$$(1-11) \qquad \begin{array}{c} Q_{0}S^{0} \times Q_{0}S^{0} & \longrightarrow & Q_{0}S^{0} \\ \downarrow^{\triangle \times \triangle} & \uparrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \\ \downarrow id \times T \times id \\ Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \uparrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ Q_{0}S^{0} \times Q_{0}S^{0} \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \\ \end{array} \qquad \end{array} \qquad \begin{array}{c} & \downarrow \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \end{array} \qquad \end{array} \qquad \begin{array}{c} & \downarrow \\ \end{array} \qquad \begin{array}{c} & \downarrow \\ \end{array} \qquad \begin{array}{c} & \downarrow$$

We shall consider the relation between the loop product and the reduced join product. Roughly speaking, it is distributive law.

PROPOSITION 1-7. The following diagrams are homotopy commutative.

i)
$$\Omega^{n}K \times (\Omega^{m}L \times \Omega^{m}L) \xrightarrow{id \times (\vee)} \Omega^{n}K \times \Omega^{m}L$$

$$\downarrow \bigtriangleup \times id \qquad \qquad \downarrow \land$$

$$(1-12) \qquad (\Omega^{n}K \times \Omega^{n}K) \times (\Omega^{m}L \times \Omega^{m}L) \qquad \qquad \Omega^{n+m}(K \land L)$$

$$\downarrow id \times T \times id \qquad \qquad \uparrow \lor$$

$$\Omega^{n}K \times \Omega^{m}L \times \Omega^{n}K \times \Omega^{m}L \xrightarrow{\land \times \land} \Omega^{n+m}(K \land L) \times \Omega^{n+m}(K \land L).$$

2-3. Let $\overline{\Omega}^n X$ denote the iterated *n*-th Moore loop space. We can interpret an element $l \in \overline{\Omega}^n X$ as follows. $l: (U_l, \partial U_l) \to (X, *)$, where U_l is a certain closed subset of \mathbb{R}^n depending on l. It is well known that the natural inclusion $\Omega^n X \to \overline{\Omega}^n X$ is a homotopy equivalence, and up to homotopy this map preserves the *H*-space structure defined by the loop product.

We shall define the reduce join product $\wedge : \overline{\Omega}^m X \times \overline{\Omega}^n Y \to \overline{\Omega}^{m+n}(X \wedge Y)$ by the following rule, for $l_1 \in \overline{\Omega}^m X$, $l_2 \in \overline{\Omega}^n Y$.

$$(1-13) \qquad (l_1 \wedge l_2) : (U_{l_1} \times U_{l_2}, \ \partial(U_{l_1} \times U_{l_2})) \to (X \wedge Y, *).$$

Then the natural inclusion $\Omega^n X \to \overline{\Omega}^n X$ is compatible with the reduced join product. We shall define the suspension map $\overline{\Omega}^n X \to \overline{\Omega}^{n+1}(SX)$ as follows, $l \to l \wedge id_1$. Then this is compatible with the natural inclusion $\Omega^n X \to \overline{\Omega}^n X$.

We consider the result of Dyer-Lashof [4] about the iterated loop spaces. Let \sum_q denote the permutation group of q-elements, and $J^n \sum_q$ denote the *n*-th join of \sum_q with itself. We consider $J^n \sum_q$ as a subset of $J^{n+1} \sum_q$ by the following rule, $J^n \sum_q \supseteq (t_1 \sigma_1 \oplus \cdots \oplus t_n \sigma_n) = (0 \oplus t_1 \sigma_1 \oplus \cdots \oplus t_n \sigma_n)$ $\in J^{n+1} \sum_q$. Dyer-Lashof proved that $\overline{Q}^n X$ is an H^{n-1} -space in their sense, so that there exists a continuous map.

(1-14)
$$\theta_q^{n-1}: J^n \sum_a \times (\bar{\Omega}^n X)^q \to \bar{\Omega}^n X$$

with the following properties.

i) \sum_{q} equivariant i.e. for each $\sigma \in \sum_{q}$,

(1-15)
$$\theta_q^{n-1}(t_1\sigma_1 \oplus \cdots \oplus t_n\sigma_n; l_1, \cdots, l_q)$$
$$= \theta_q^{n-1}(t_1\sigma_1\sigma^{-1} \oplus \cdots \oplus t_n\sigma_n\sigma^{-1}, l_{\sigma(1)}, \cdots, l_{\sigma(q)})$$

ii) normalized i.e. for each $\sigma \in \sum_{q}$

$$\theta_q^{n-1}(0 \oplus \cdots \oplus 0 \oplus 1 \cdot \sigma; l_1, \cdots, l_q) = l_{\sigma(1)} \vee \cdots \vee l_{\sigma(q)}.$$

We shall consider the relation between θ_q^{n-1} and reduced join, we obtain the following proposition.

PROPOSITION 1-8. The following diagram is homotopy commutative.

Proof. At first we shall remark that the following diagram is commutative by the definition of inclusion $J^n \sum_q \to J^{n+m} \sum_q$ and naturality of θ_q^n with respect to the iterated loop map.

Fix an element $l \in \overline{Q}^m L$, and define the map $l_{\sharp}: K \to \overline{Q}^m (K \wedge L)$ by the following way,

1.1.1

$$l_{\sharp}(x): (U_{l}, \partial U_{l}) \to K \wedge L, \qquad x \in K.$$
$$l_{\sharp}(x)(t_{1}, \cdots, t_{m}) = (x \wedge l(t_{1}, \cdots, t_{m})).$$

Consider $\bar{\Omega}^n(l_{\sharp}): \bar{\Omega}^n K \to \bar{\Omega}^n(\bar{\Omega}^m(K \wedge L))$, Then it is easy to see that $\bar{\Omega}^n(l_{\sharp})(l_1) = l_1 \wedge l$, $l \in \bar{\Omega}^n K$. Naturality of θ_q^{n-1} under *n*-th iterated loop map shows that the following diagram is commutative.

The commutative diagram and the above remarks show the following

$$\begin{split} \theta_q^{n-1}(\omega; l_1, \cdots, l_q) \wedge l \\ &= \bar{\Omega}^n(l_\sharp)(\theta_q^{n-1}(w, l_1; \cdots, l_q)) \\ &= \theta_q^{n-1}(\omega, \bar{\Omega}^n(l_\sharp)(l_1); \cdots, \bar{\Omega}^n(l_\sharp)(l_q)) \\ &= \theta_q^{n-1}(\omega, l_1 \wedge l; \cdots, l_q \wedge l) \\ &= \theta_q^{n+m-1}(\omega, l_1 \wedge l; \cdots, l_q \wedge l). \end{split}$$

This shows the proposition.

Let π_q denote the cyclic group of order q. $Q(X) = \lim_{q \to \infty} \mathcal{Q}^n(S^n X)$, $\overline{Q}(X) = \lim_{q \to \infty} \overline{\mathcal{Q}}^n(S^n X)$. $Q_j S^0 = \lim_{q \to \infty} \mathcal{Q}^n_j S^n$, $\overline{\mathcal{Q}}_j S^0 = \lim_{q \to \infty} \overline{\mathcal{Q}}^n_j S^n$. We shall define $h : J^n \pi_q / \pi_q \to \overline{\mathcal{Q}}^n_q S^n$ by the following rule.

$$h: J^n \pi_q / \pi_q \to J^n \pi_q \times_{\pi_q} (id_n)^q \to J^n \pi_q \times_{\pi_q} (\overline{\Omega}_1^n S^n)^q \to \overline{\Omega}_q S^n.$$

And passing limit, we obtain $h: J^{\infty}\pi_q/\pi_q \to \overline{Q}_q S^0$, and define $h_0: J^n\pi_q/\pi_q \to \overline{Q}_0^n S^n$ by the following, $h_0: J^n\pi_q/\pi_q \to \overline{Q}_q S^n \xrightarrow{\bigvee (-qid_n)} \overline{Q}_0 S^n$, and as a limit, we obtain $h_0: J^{\infty}\pi_q/\pi_q \to \overline{Q}_0 S^0$.

$$(1-17) \qquad \begin{array}{c} (J^{\mathbf{n}}\pi_{q}/\pi_{q}) \times \bar{\mathcal{Q}}^{m}K \xrightarrow{h \times id} \bar{\mathcal{Q}}_{q}^{n}S^{n} \times \bar{\mathcal{Q}}^{m}K \xrightarrow{\wedge} \bar{\mathcal{Q}}^{n+m}(S^{n} \wedge K). \\ \downarrow id \times \triangle_{q} \qquad \qquad i \times (id_{n} \wedge)^{q} \qquad \qquad \uparrow \theta \\ J^{n}\pi_{q} \times \pi_{q}(\bar{\mathcal{Q}}^{m}K)^{q} \xrightarrow{\qquad} J^{n+m}\pi_{q} \times \pi_{q}(\bar{\mathcal{Q}}^{n+m}(S^{n} \wedge K))^{q} \end{array}$$

Proof of this proposition is the same as the proof of Proposition 1-8. We shall consider the case $K = S^m$ and passing to the limit, we obtain the following corollary.

COROLLARY 1-10. The following diagram is homotopy commutative.

$$(1-18) \qquad (J^{*}\pi_{q}/\pi_{q}) \times \bar{Q}_{0}S^{0} \xrightarrow{h \times id} \bar{Q}_{q}S^{0} \times \bar{Q}_{0}S^{0} \xrightarrow{\wedge} \bar{Q}_{0}S^{0}$$

$$\downarrow id \times \triangle_{q} \xrightarrow{\theta} J^{*}\pi_{q} \times \pi_{q}(\bar{Q}_{0}S^{0})^{q}$$

It is easy to prove the following proposition.

PROPOSITION 1-11. We have the following commutative diagram.

$$(1-19) \begin{array}{c} (J^{n}\pi_{q}/\pi_{q}) \times \overline{\mathcal{Q}}^{m}K \xrightarrow{h_{0} \times id} \overline{\mathcal{Q}}_{0}^{n}S^{n} \times \overline{\mathcal{Q}}^{m}K \xrightarrow{\bigwedge} \overline{\mathcal{Q}}^{n+m}(S^{n} \wedge K) \\ \downarrow \bigtriangleup_{q+1} & \uparrow \lor \\ (1-19) \qquad (J^{n}\pi_{q}/\pi_{q} \times \overline{\mathcal{Q}}^{m}K)^{q+1} & \overline{\mathcal{Q}}^{n+m}(S^{n} \wedge K) \times (\overline{\mathcal{Q}}^{n+m}(S^{n} \wedge K))^{q} \\ \downarrow & \downarrow \\ (J^{n}\pi_{q}/\pi_{q} \times \overline{\mathcal{Q}}^{m}K) \times (J^{n}\pi_{q}/\pi_{q} \times \overline{\mathcal{Q}}^{m}K)^{q} \xrightarrow{(h \wedge id) \times (\pi_{2})^{q}} \int id \times ((-id_{n}) \wedge)^{q} \\ (J^{n}\pi_{q}/\pi_{q} \times \overline{\mathcal{Q}}^{m}K) \times (J^{n}\pi_{q}/\pi_{q} \times \overline{\mathcal{Q}}^{m}K)^{q} \xrightarrow{(h \wedge id) \times (\pi_{2})^{q}} \overline{\mathcal{Q}}^{n+m}(S^{n} \wedge K) \times (\overline{\mathcal{Q}}^{m}K)^{q} \end{array}$$

§2. Filtration on $H_*(Q_0S^0; Z_p)$.

2-1. In this chapter, p denotes an odd prime number unless otherwise stated. Let C denote $H_*(Q_0S^0; Z_p)$ as a Hopf algebra over Z_p . It is well

known that $H_i(J^{\infty}\pi_p/\pi:Z_p) = Z_p$, $i = 0, 1, 2, \cdots$. We shall serect generators $e_i \in H_i(J^{\infty}\pi_p/\pi_p:Z_p)$ with the following properties.

(2-1) i)
$$e_0 = 1$$
 ii) $\triangle(e_j) = \sum_{i=0}^j e_i \otimes e_{j-i}$ iii) $\beta_p e_{2j} = e_{2j-1}$.

where β_p is Bockstein operation.

Dyer-Lashof [4] defined on $H_*(X; \mathbb{Z}_p)$, the extended *p*-th power operations $Q_j^{(p)} = Q_j$, $j = 1, \dots, n$, with the following properties, where X is a H_p^n space in their sense.

- 1) $Q_j: H_k(X, Z_p) \longrightarrow H_{pk+j}(X, Z_p),$
- 2) Q_j is a homomorphism for $j \le n-1$,

(2-2)

- 3) Q_0 is the Pontrjagin *p*-th power,
- 4) $Q_{2j-1} = \beta_p Q_{2j}, 2j \le n-1, \beta_p$ is Bockstein operation,
- 5) $x \in H_r(X, Z_p)$, $Q_{2j}(x) = 0$ unless the change in dimension, 2j + pr r is an even multiple of p 1,
- 6) Cartan formula:

$$X, Y: H_p^n$$
-space, $x \in H_r(X, Z_p)$, $y \in H_s(Y, Z_p)$, $2j < n$ then

$$Q_{2j}(x \otimes y) = (-1)^{rs(p-1)/2} \sum_{i=0}^{j} Q_{2i}(x) \otimes Q_{2j-2i}(y).$$

For $J = (\varepsilon_1, j_1, \cdots, \varepsilon_r, j_r)$, $\varepsilon_i = 0$ or 1 and $j_k \ge 0$, we denote $Q_J = \beta_p^{\epsilon_1} Q_{j_1}$ $\cdots \beta_p^{\epsilon_r} Q_{j_r}$.

We shall now formulate the Adem relations for Q_{js} . At first we shall comment on the homology of symmetric group.

Let X be a connected finite CW-complex and $x_1, x_2, \dots \in H_*(X, Z_p)$ be a basis of Z_p -module consisting of homogenous elements. Then $e_i \bigotimes_{\pi} x_j^p$, $i \ge 0$, $j \ge 1$, and $e_0 \bigotimes_{\pi} x_{j_1} \otimes \dots \otimes x_{j_p}$, is a basis of $H_*(J^{\infty}\pi_p \times \pi_p X^p, Z_p)$, where not all the j_1, \dots, j_p are equal and (j_1, \dots, j_p) runs through all representative classes obtained by cyclic permutations of the indices. As the chapter VIII of Steenrod [13], we can obtain the following lemma.

LEMMA 2-1. X is as above. Let $d: J^{\infty}\pi_{p}/\pi_{p} \times X \to J^{\infty}\pi_{p} \times \pi_{p}X^{p}$ be the twisted diagonal map. Then the image of $d_{*}: H_{*}(J^{\infty}\pi_{p}/\pi_{p} \times X, Z_{p}) \to H_{*}(J^{\infty} \times \pi_{p}X^{p}, Z_{p})$ coincides with the sub-module generated by $e_{j} \otimes_{\pi} x_{j}^{p}$, $i \geq 0$, $j \geq 1$.

Lemma 2-2.

Let
$$\mu: J^{\infty}\pi_{p} \times \pi_{p} (J^{\infty}\pi_{p}/\pi_{p})^{p} \to J^{\infty} (\pi_{p} \int \pi_{p} \int \pi_{p} \int \pi_{p} \to J^{\infty} (\sum_{p^{2}}) / \sum_{p^{2}} be$$
 the natural

inclusion. Then the following relations holds on

$$u_*: H_*(J^{\infty}\pi_p \times \pi_p (J^{\infty}\pi_p/\pi_p)^p: \mathbb{Z}_p) \to H_*(J^{\infty}(\sum_{p^2})/\sum_{p^2}: \mathbb{Z}_p).$$

(2-3) a) $\mu_*(e_i \otimes_{\pi} (e_j)^p) = 0$ unless (i, j) is of the form $(2s(p-1)-\varepsilon, 2t(p-1));$ $s \ge 0, t \ge 0, \varepsilon = 0$ or 1, or $((2s+1)(p-1)-\varepsilon, 2t(p-1)-1); s \ge 0, t \ge 1, \varepsilon = 0$ or 1.

b)
$$t > s(p+1), s \ge 0$$

$$\mu_*(e_{(2t-2sp)(p-1)}\otimes_{\pi}(e_{2s(p-1)})^p)$$

$$=\sum_{k=[(t-s)/p]}^{[t/p]}(-1)^{k+s+t}\binom{(k-s)(p-1)-1}{kp+s-t}\mu_*(e_{(2t-2kp)(p-1)}\otimes_{\pi}(e_{2k(p-1)})^p).$$

c)
$$t \ge s(p+1), \ s \ge 0, \ m = (p-1)/2.$$

 $-m!\mu_*(e_{(2t+1-2sp)(p-1)}\otimes_{\pi}(e_{2s(p-1)-1})^p)$
 $= \sum_{k=[(t-s)/p]}^{[t/p]} (-1)^{k+s+t} {\binom{(k-s)(p-1)}{kp+s-t}} \mu_*(e_{(2t-2kp)(p-1)-1}\otimes_{\pi}(e_{2k(p-1)})^p)$
 $+ \sum_{k=[(t-s+1)/p]}^{[t/p]} (-1)^{k+s+t} {\binom{(k-s)(p-1)-1}{kp+s-t}} m!\mu_*(e_{(2t+1-2kp)(p-1)}\otimes_{\pi}(e_{2k(p-1)-1})^p)$

Now the Adem relations are formulated as follows.

PROPOSITION 2-3. Let X be an H^{∞} -space. Then we have the following relations.

1)
$$x \in H_*(X, Z_p), deg x = even \ge 0,$$

a) $t > s(p+1), s \ge 0,$

$$(2-4) \qquad Q_{(2t-2sp)(p-1)}Q_{2s(p-1)}(x) \\ = \frac{[t/p]}{t-[t+1]}(-1)^{k+s+t} \binom{(k-s)(p-1)-1}{t-1} Q_{(2t-2kp)(p-1)}Q_{2k(p-1)}(x)$$

b)
$$t \ge s(p+1), s > 0, m = (p-1)/2,$$

$$-m!Q_{(2t+1-2sp)(p-1)}\beta_{p}Q_{2s(p-1)}(x)$$

$$=\sum_{k=[(t-s)/p]}^{[t/p]}(-1)^{k+s+t}\binom{(k-s)(p-1)}{kp+s-t}\beta_{p}Q_{(2t-2kp)(p-1)}Q_{2k(p-1)}(x)$$

$$+\sum_{k=[(t-s+1)/p]}^{[t/p]}(-1)^{k+s+t}\binom{(k-s)(p-1)-1}{kp+s-t}m!Q_{(2t+1-2kp)(p-1)}\beta_{p}Q_{2k(p-1)}(x)$$

2) $x \in H_*(X, Z_p) \ deg \ x = odd > 0,$ c) $t > s(p+1) + m + 1, \ s \ge 0, \ m = (p-1)/2,$ $Q_{(2t-(2s+1)p)(p-1)}Q_{(2s+1)(p-1)}(x)$ $= \frac{[t/p-1/2]}{\sum_{k=[(t-s+1)/p]} (-1)^{m+k+s+t+1} {kp+s-t+m-1} Q_{(2t-(2k+1)p)(p-1)}Q_{(2k+1)(p-1)}(x),$ d) $t \ge s(p+1) + m + 1, \ s \ge 0, \ m = (p-1)/2,$ $-m!Q_{(2t+1-(2s+1)p)(p-1)}\beta_pQ_{(2s+1)(p-1)}(x)$ $= \sum_{k=[(t-s-m-1)/p]}^{[t/p-1/2]} (-1)^{m+k+s+t+1} {kp+s-t+m+1} \beta_pQ_{(2t-(2k+1)p)(p-1)}Q_{(2k+1)(p-1)}(x)$ $+ \sum_{k=[(t-s-m)/p]}^{[t/p-1/2]} (-1)^{m+k+s+t+1} {kp+s-t+m} m!Q_{(2t+1-(2k+1)p)(p-1)}\beta_pQ_{(2k+1)(p-1)}(x)$

On S^{2n+1} , cyclic group π_p acts freely in standard way, and S^{2n+1} has the *CW*-complex structure with *p*-cells in each dimension, and π_p acts cellularly. We denote this $\pi_p CW$ -complex by $W^{(2n+1)}$, and put $W = \lim W^{(2n+1)}$. We fix a π_p equivariant homotopy equivalence $W \to J^{\infty}\pi_p$, and we identify these spaces, and hence identify $L_p = W/\pi_p$ and $J^{\infty}\pi_p/\pi_p$. In §1 we define a continuous map $h_0: L_p = J^{\infty}\pi_p/\pi_p \to \bar{Q}_0S^0$. As in §0, we define $x_j \in H_{2j(p-1)}$ $(Q_0S^0: Z_p)$ by $x_j = h_0 * (e_{2j(p-1)}), j = 1, 2, \cdots$, and $x_J = \beta_p^{*_1}Q_{j_1} \cdots \beta_p^{*_{r-1}}Q_{j_{r-1}}\beta_p^{*_r}x_{j_{r/2}(p-1)}$ for $J \in H$, $J = (\varepsilon_1, j_1, \cdots, \varepsilon_r, j_r)$.

In $H_*(Q_0S^0: Z_p)$, the Adem relations between x_j and Q_j are following.

PROPOSITION 2-4. In $H_*(Q_0S^0: \mathbb{Z}_p)$, the following relations hold.

a)
$$t > s(p+1), s > 0$$
.

$$Q_{(2t-2sp)(p-1)}(x_s) = \sum_{\substack{k=[(t-s)/p]\\r>0}}^{[t/p]} (-1)^{k+s+t} {\binom{(k-s)(p-1)-1}{kp+s-t}} Q_{(2t-2kp)(p-1)}(x_k) + \sum_{r>0} (x_r)^p y_r, \ y_r \in H_*(Q_0 S^0 : Z_p).$$

b) $t \ge s(p+1), \ s > 0, \ m = (p-1)/2.$

$$-m! Q_{(2t+1-2sp)(p-1)}(\beta_p x_s)$$

$$=\sum_{k=\lfloor (t-s)/p \rfloor}^{\lfloor t/p \rfloor} (-1)^{k+s+t} {\binom{(k-s)(p-1)}{kp+s-t}} \beta_p Q_{(2t-2kp)(p-1)}(x_k) +\sum_{k=\lfloor (t-s+1)/p \rfloor}^{\lfloor t/p \rfloor} (-1)^{k+s+t} {\binom{(k-s)(p-1)-1}{kp+s-t}} m! Q_{(2t+1-2sp)(p-1)}(\beta_p x_k) +\sum_{r>0} x_r^p y_r, \qquad y_r \in H_*(Q_0 S^0 : Z_p).$$

2-2. We shall define a filtration in C as follows;

- $(2-6) \qquad 1) \quad C = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots$
 - 2) $G_1 = \ker \varepsilon$ where $\varepsilon : C \to Z_p$ is the augmentation.
 - 3) $\omega(x_J) = p^r$, where $J \in H$, $J = (\varepsilon_1, j_1, \cdots, \varepsilon_{r+1}, j_{r+1})$ and $\omega(x) = \inf \{q ; x \in G_q\}$ for $x \in C$.
 - 4) $\omega(x_{J_i}^{k_1} \cdots x_{J_r}^{k_r}) = \sum_{i=1}^r k_i \omega(x_{J_i}), \quad J_i \in H, \quad k_i \ge 1.$ if deg x_{J_s} = odd then $k_s = 1$.

Then C become a filtered algebra, i.e. $\omega(x \cdot y) \ge \omega(x) + \omega(y)$. And E_0C denotes the associated graded algebra. Then we have easily obtain the following proposition.

PROPOSITION 2-5. E_0C is a free commutative algebra generated by $\{x_J\}, J \in H$.

By the definition of the filtration on C and by Proposition 2-3 and 2-4 we obtain the following proposition

PROPOSITION 2-6. If $x \in C$ belongs to G_q , and $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$, $\varepsilon_i = 0$ or 1, $j_i \ge 0$, then $Q_J(x)$ belongs to $G_p r_q$.

COROLLARY 2-7. For $j \ge 1$, and J as above, the element $Q_J(\beta_p^* x_j)$ belongs to G_{p^T} .

We shall define the Z_p module homomorphism $\wedge : C \otimes C \rightarrow C$ as follows;

$$(2-7) \qquad \wedge : H_*(Q_0S^0:Z_p) \otimes H_*(Q_0S^0:Z_p) \to H_*(Q_0S^0 \times Q_0S^0:Z_p) \xrightarrow{\Lambda_*} H_*(Q_0S^0:Z_p),$$

Then we have the following proposition.

PROPOSITION 2-8. The following relations hold. Let $a, b, c \in C$.

(2-8) i)
$$\wedge ((a+b)) \otimes c) = \wedge (a \otimes c) + \wedge (b \otimes c)$$

- ii) $\wedge (a \otimes (b + c)) = \wedge (a \otimes b) + \wedge (a \otimes c),$
- iii) $\wedge (1 \otimes a) = \wedge (a \otimes 1) = 0$ if deg a > 0, $\wedge (1 \otimes 1) = 1$,
- iv) $\wedge ((a \ b) \otimes c) = \sum (-1)^{\deg b} \deg c'(a \wedge c) \cdot (b \wedge c''),$ where $\triangle (c) = \sum c' \otimes c'',$
- v) $\wedge (a \otimes (b \ c)) = \sum (-1)^{\deg a''} ^{\deg b}(a' \wedge b)(a'' \wedge c).$ where $\triangle (a) = \sum a' \otimes a''.$

Proof. i) and ii) are trivial. iii) follows from the result that if $0 \in Q_0(S^0)$ is the trivial element, then the image of $0 \times Q_0(S^0) \to Q_0(S^0)$ is 0. iv) and v) follows from Proposition 1-7.

Next we shall introduce a filtration on $C \otimes C$ as follows;

(2-9)
$$G_j(C \otimes C) = \sum_{j_1+j_2=j} G_{j_1}(C) \otimes G_{j_2}(C).$$

PROPOSITION 2-9. If $x \in C$ belongs to G_q , then $\Delta(x) \in C \otimes C$ belongs to G_q . This follows easily from Cartan formula, and Proposition 2-6. Our final object in this chapter is the following.

PROPOSITION 2-10. If $x = (Q_J \beta_p^* x_j) \otimes (Q_{J'} \beta_p^{*'} x_{j'})$, where $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$, $J' = (\varepsilon'_1, j'_1, \dots, \varepsilon'_s, j'_s)$, and j, j' > 0, then $\wedge(x) \in C$ belongs to $G_{p^{r+s-1}}$. We shall prove this proposition in the last of this chapter.

COROLLARY 2-11. If $x \in C \otimes C$ belongs to G_q , and q > 0, then $\wedge(x)$ belongs to G_{q+1} .

This corollary follows from Proposition 2-8 and Proposition 2-10, by tedious calculation.

We shall define $\xi_r : L^r \to Q_0(S^0)$, $r = 1, 2, \cdots$, in the following way, where $L^r_p = L_p \times \cdots \times L_p$, *r*-fold product.

$$\xi_{r}: L_{p}^{r} = L_{p}^{r-1} \times L_{p} \xrightarrow{h^{r-1} \times h_{0}} (Q_{p}(S^{0}))^{r-1} \times Q_{0}(S^{0}) \xrightarrow{\wedge} Q_{0}(S^{0}).$$

LEMMA 2-11. The image of $(\xi_r)_*$: $H_*(L_p^r) \to H_*(Q_0(S^0))$ coincides with the submodule generated by $Q_J \beta_p^* x_j$, $J = (\varepsilon_1, j_1, \cdots, \varepsilon_{r-1}, j_{r-1})$, $\varepsilon_i = 0$ or 1, $j_i \ge 0, j \ge 1$, $\varepsilon = 0$ or 1, in positive degree.

Proof. This follows easily, using induction on r, from lemma 2-1, and the commutativety of the following diagram:

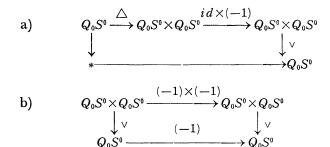
LEMMA 2-12. The following diagram is homotopy commutative.

$$\begin{array}{c} L_{p}^{r} \times L_{p}^{s} \xrightarrow{\xi_{r} \times \xi_{s}} Q_{0}S^{0} \times Q_{0}S^{0} \xrightarrow{\wedge} Q_{0}S^{0} \\ | \bigtriangleup_{p+1} & \uparrow^{\vee} \\ (L_{p}^{r} \times L_{p}^{s}) \times (L_{p}^{r} \times L_{p}^{s})^{p} & Q_{0}S^{0} \times (Q_{0}S^{0})^{p} \\ | id \times (\pi_{r-1} \times id)^{p} & \xi_{r+s} \times (\xi_{r+s-1})^{p} & \uparrow^{id} \times (-1)^{p} \\ (L_{p}^{r+s}) \times (L_{p}^{r-1} \times L_{p}^{s})^{p} \xrightarrow{\xi_{r+s} \times (\xi_{r+s-1})^{p}} Q_{0}S^{0} \times (Q_{0}S^{0})^{2} \end{array}$$

where $\pi_{r-1}: L_p^r = L_p^{r-1} \times L_p \to L_p^{r-1}$ is the projection to the first part. This lemma follows easily from the results that h_0 is equal to $h \lor (-pid)$ and the distributive law of Proposition 1-7.

LEMMA 2-13. $c = (-1)_* : H_*(Q_0S^0) \rightarrow H_*(Q_0S^0)$ is filtration preserving.

Proof. The following two diagrams are homotopy commutative.



b) shows that c is algebra homomorphism, and $y \in H_*(Q_0S^0)$, $\triangle(y) = y \otimes 1 + 1 \otimes y + \sum y' \otimes y''$. Then $\varepsilon(y) = c(y) + y + \sum y'c(y'')$, where $\varepsilon : C \to Z_p$ is argumentation. Since c is algebra homomorphism, it is sufficient to prove $c(Q_J\beta_p^*x_j) \in G_pr$ if |J| = r. This follows by induction argument from Corollary 2-7. and Cartan formula.

Proof of Proposition 2-10. From lemma 2-11, it is sufficient to prove that the image of $\wedge_* \cdot (\xi_r \wedge \xi_s)_*$ belongs to $G_{p^{r+s-1}}$, $r, s \ge 1$, for positive dimension. If $y \in H_*(L_p^r \times L_s^p)$, and deg y > 0, then $\triangle_{p+1}(y) = y \otimes 1 \otimes \cdots \otimes 1$ $+ \sum y_1 \otimes y_2 \otimes \cdots \otimes y_2 + \sum y_1 \otimes y_2 \otimes \cdots \otimes y_{p+1}$, where in the third term, (y_2, \cdots, y_{p+1}) is not of the form (y_2, \cdots, y_2) . Then lemma 2-12 shows

$$\begin{split} \wedge_*(\xi_r \times \xi_s)_*(y) &= (\xi_{r+s})_*(y) + \sum [(\xi_{r+s})_*(y_1)] \circ [(-1)_*(\xi_{r+s-1})_*((\pi_{r-1} \times id)_*(y_2))]^p \\ &+ \sum [(\xi_{r+s})_*(y_1)] \circ [(-1)_*(\xi_{r+s-1})_*((\pi_{r-1} \times id)_*(y_2))] \cdot \cdot \cdot \\ &[(-1)_*(\xi_{r+s-1})_*((\pi_{r-1} \times id)_*(y_{2r+1}))]. \end{split}$$

But in the third term, since (y_2, \dots, y_{p+1}) is not of the form (y_2, \dots, y_2) if (y_2, \dots, y_{p+1}) appears then its cyclic permutation $(y_{\sigma(2)}, \dots, y_{\sigma(p+1)})$ appears for $\sigma \in \pi_p$. So that the third term vanishes. By lemma 2-13, $(-1)_*(\xi_{r+s-1})_*$ $(\pi_{r-1} \times id)_*(y_2)$ belongs to $G_{p^{r+s-2}}$, so that the second term belongs to $G_{p^{r+s-1}}$. The first term belongs to $G_{p^{r+s-1}}$ by lemma 2-11 and Corollary 2-7. This proves proposition

§3. Pontrjagin ring $H_*(SF, \mathbb{Z}_p)$

3-1. In this chapter, p denotes an odd prime number. We shall consider $H_*(Q_0(S^0), Z_p)$ as a Hopf-algebra with product $\overline{\wedge}_* : H_*(Q_0(S^0), Z_p) \otimes$ $H_*(Q_0(S^0), Z_p) \to H_*(Q_0S^0 \times Q_0S^0, Z_p) \to H_*(Q_0S^0, Z_p)$, and with standard diagonal. We shall denote this Hopf-algebra by \overline{C} . Then C and \overline{C} are naturally isomorphic as coalgebras. Since SF is an H-space, $H_*(SF, Z_p)$ is a Hopfalgebra over Z_p . Let $i: Q_0S^0 \to SF$ be the inclusion defined in (1-6). Then $i_*: \overline{C} = H_*(Q_0S^0) \to H_*(SF)$ is a Hopf-algebra isomorphism because of definition of $\overline{\wedge}$, c.f. (1-7). So to determine the structure of Pontrjagin ring $H_*(SF, Z_p)$, it is sufficient determine the ring \overline{C} .

PROPOSITION 3-1. If $u, v \in C$, and $u \in G_i$, $v \in G_j$, then $\overline{\wedge}_*(u \otimes v)$ belongs to G_{i+j} , and $\overline{\wedge}_*(u \otimes v)$ and $u \cdot v$ are equal mod G_{i+j+1} .

Proof. If $\triangle(u) = u \otimes 1 + 1 \otimes u + \sum u' \otimes u''$, and $\triangle(v) = v \otimes 1 + 1 \otimes v + \sum v' \otimes v''$, then by Proposition 2-9, $u' \otimes u''$ belong to G_i , and $v' \otimes v''$ belong to G_j . By Corollary 1-6.

$$\overline{\bigwedge}_{*}(u \otimes v) = uv + \bigwedge_{*}(u \otimes v) + \sum (-1)^{\deg u'' \deg v'}(u'v') \bigwedge_{*}(u'' \otimes v'') + \sum (-1)^{\deg u} \deg v'v' \bigwedge_{*}(u \otimes v') + \sum u' \bigwedge_{*}(u'' \otimes v).$$

The term uv belongs to G_{i+j} , and by Corollary 2-11, other terms belong to G_{i+j+1} . This proves the proposition.

We shall introduce a filtration in \overline{C} by that of C. Then Proposition 3-1 shows the product in \overline{C} is filtration preserving.

THEOREM 1. As an algebra $H_*(SF, Z_p)$ is a free commutative algebra generated by $\tilde{x}_J = i_*(x_J), J \in H$. *Proof.* Let E_0C , and $E_0\overline{C}$ denote associated graded algebras with respect to the filtrations. Then Proposition 3-1 shows that E_0C and $E_0\overline{C}$ are isomorphic as algebras by E_0i_* . On the other hand C and E_0C are isomorphic, and these are free commutative algebras generated by x_J and $\{x_J\}$, $J \in H$, respectively. This proves the Theorem.

§4. H_p^{∞} structure on BSF

4-1. If $\pi_1: \xi \to X$ and $\pi_2: \eta \to Y$ are two spherical fiberings, then we shall define the exterior Whitney join product as follows.

(4-1)
$$\pi_1 \ast \pi_2 : \xi \ast \eta \to X \times Y.$$

where

$$\xi_*\eta = \{(t_1(e_1 \times y) \oplus t_2(x \times e_2) \in (\xi \times X) * (X \times \eta) \\ ; \pi_1(e_1) = x \text{ and } \pi_2(e_2) = y \text{ if } t_1, t_2 > 0\}.$$

and $(\pi_1 \ast \pi_2)(t_1(e_1 \times y) \oplus t_2(x \times e_2))$

$$=\begin{cases} (\pi_1(e_1), y) & \text{if } t_1 \neq 0 \\ (x, \pi_2(e_2)) & \text{if } t_2 \neq 0. \end{cases}$$

And if X = Y, then we shall define the interior Whitney join $\xi * \eta \to X$ as fiber product.

$$(4-2) \qquad \qquad \begin{array}{c} \xi * \eta & \longrightarrow & \xi * \eta \\ \downarrow & & \downarrow \\ X & \longrightarrow & X \times X \end{array}$$

By the same method as in Hall [5], it is easy to prove that Whitney join is a spherical fibering.

We can interpret the iterated exterior Whitney join of $\pi_i : \xi_i \to X_i$, $i = 1, \dots, q$, by the following.

$$\pi_1^* \cdots \hat{*} \pi_q : \xi_1^* \cdots \hat{*} \xi_q \to X_1 \times \cdots \times X_q.$$

$$\xi_1^* \cdots \hat{*} \xi_q$$

$$= \{(t_1(e_1 \times x_{1,2} \times \cdots \times x_{1,q}) \oplus \cdots \oplus (t_q(x_{q,1} \times \cdots \times x_{q,q-1} \times e_q)$$

$$\in (\xi_1 \times X_2 \times \cdots \times X_q)^* \cdots * (X_1 \times \cdots \times X_{q-1} \times \xi_q).$$

$$\pi_1(e_1) = x_{2,1} = \cdots = x_{q,1}$$

$$\cdots$$

$$x_{1,q} = \cdots = x_{q-1,q} = \pi_q(e_q).$$

with

if $t_j = 0$ then we omit the condition on $\pi_j(e_j)$ and $x_{k,j}$.

Let $\xi^q \to X^q$ denote the exterior q-th join of $\xi \to X$ with itself. Symmetric group \sum_q acts on X^q as permutation, and on ξ^q as follows. For $\sigma \in \sum_q$.

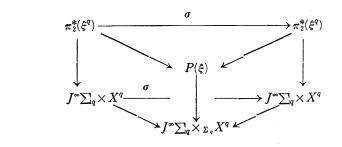
$$\sigma(t_1(e_1 \times x_{1,2} \times \cdots \times x_{1,q}) \oplus \cdots \oplus t_q(x_{q,1} \times \cdots \times x_{q,q-1} \times e_q))$$

= $(t_{\sigma(1)}(e_{\sigma(1)} \times x_{\sigma(1),\sigma(2)} \times \cdots \times x_{\sigma(1),\sigma(q)}) \oplus \cdots \oplus t_{\sigma(q)}(x_{\sigma(q),\sigma(1)} \times \cdots \times x_{\sigma(q),\sigma(q-1)} \times e_{\sigma(q)}).$

Then the operation σ commutes with projection $\xi^q \to X^q$, and define a fiber map.

Let $\pi_2: J^{\infty} \sum_q \times X^q \to X^q$ be projection on the second factor. If $\pi_2^*(\xi^q) = J^{\infty} \sum_q \times \xi^q$ is the induced fibering of ξ^q by π_2 , and \sum_q operates on $\pi_2^*(\xi^q)$ by $\sigma(\omega, e) = (\sigma(\omega), \sigma(e)), \ \omega \in J^{\infty} \sum_q, \ e \in \xi^q, \ \sigma \in \sum_q$, then σ is a fiber map covering the operation $\sigma: J^{\infty} \sum_q \times X^q \to J^{\infty} \sum_q \times X^q$.

PROPOSITION 4-1. There exists a spherical fiber space $P(\xi) \to J^{\infty} \sum_{q} \times \sum_{q} X^{q}$ and a bundle map $\pi_{2}^{*}(\xi^{q}) \to P(\xi)$ such that the following diagram is commutative for any $\sigma \in \sum_{q}$.



It is easy to prove this proposition so we omit it.

We shall call this fibering $P(\xi) \to J^{\infty} \sum_{q} \underset{\Sigma_{q}}{\times} X^{q}$ by the extended *p*-th join of ξ .

PROPOSITION 4-2. Let π_1 ; $\xi \to X$ and π_2 ; $\eta \to Y$ be two spherical fiber spaces, then.

a) There is a natural fiber map as follows.

18

(4-3)

b) If X = Y, then the following two spherical fibering are naturally isomorphic.

$$(4-5) \qquad \begin{array}{c} P(\xi*\eta) & \longrightarrow & P(\xi)*P(\eta) \\ \downarrow & \downarrow \\ J^{\infty} \sum_{q} \times \sum_{q} X^{q} & \longrightarrow & J^{\infty} \sum_{q} \times \sum_{q} X^{q} \end{array}$$

COROLLARY 4-3. The following isomorphism holds.

$$\begin{array}{ccc} P(\xi*1) & & \longrightarrow & P(\xi)*P(1) \\ & & & \downarrow \\ J^{\infty} \sum_{q} \times \sum_{q} X^{q} & & \longrightarrow & J^{\infty} \sum_{q} \times \sum_{q} X^{q} \end{array}$$

where $1 \rightarrow X$ denotes the trivial bundle with fiber S⁰.

Let BSG(n) be the classifying space of SG(n), and $\tau_n \to BSG(n)$ denote the universal oriented spherical fibering with fiber S^{n-1} . Consider $P(\tau_n) \to J^{\infty} \sum_{q} \times \sum_{q} (BSG(n))^{q}$, then if *n* is even, then $P(\tau_n)$ has the natural orientation, since $\sigma: S^{n-1}*\cdots*S^{n-1} \to S^{n-1}*\cdots*S^{n-1}$, $\sigma \in \sum_{q}$ is orientation preserving. Define

(4-7)
$$\bar{\theta} = \bar{\theta}_n^q : J^{\infty} \sum_q \times_{\Sigma_q} (BSG(n))^p \to BSG(qn)$$

as the classifying map of $P(T_n)$. We shall also consider

(4-8)
$$\bar{\theta} = \bar{\theta}_n^p; J^{\infty} \pi_q \times_{\pi_q} (BSG(n))^q \to BSG(qn)$$

as the restriction of $\bar{\theta}_n^q$ of (4-7).

4-2. Consider regular representation $N = N_q$

(4-9)
$$N = N_q : \sum_q \to 0(q) \to G(q).$$

Then it is easy to see that the bundle $P(1) \to J^{\infty} \sum_{q} \times \Sigma_{q} X^{q}$ is the associated spherical fiber space to the principal \sum_{q} bundle $J^{\infty} \sum_{q} \times X^{q} \to J^{\infty} \sum_{q} \times \Sigma_{q} X^{q}$ with $N: \sum_{q} \to G(q)$.

Consider the following map f_n

(4-10)
$$f_n: L_p^{(2m+1)} = W^{(2m+1)}/\pi_p \to W^{(2m+1)} \times \pi_p(x_0)^p$$
$$\to J^{\infty}\pi_p \times \pi_q(BSG(n))^p \to BSG(pn).$$

where p is odd prime number and $x_0 \in BSG(n)$. Then f_n is the classifying map of the associated spherical fibering with π_p principal fibering $W^{(2m+1)} \rightarrow L_p^{(2m+1)}$ by *n*-times regular representation: $\pi_p \rightarrow SO(pn) \rightarrow SG(pn)$. By Kambe

[6], the order of regular representation in $K\tilde{O}(L_p^{(2m+1)})$ is a factor of p^s , where s = [(2m+1)/(p-1)] + 1. So if *n* is divisible by p^s and greater than 2m+1, then we can assume that $\bar{\theta}(W^{(2m+1)} \times \pi_p(x_0)^p = y_0 \in BSG(pn)$.

REMARK 4-4. Since the order of the regular representation N in $KO(J^t \sum_q)$ is finite, if t is finite, the above consideration holds when we consider $J^t \sum_q$ instead of $W^{(2m+1)}$ for some t and n.

Let $\pi : ESG(n) \to BSG(n)$ be the associated principal fibering with $r_n \to BSG(n)$,

Fix an element $g_n \in ESG(n)$ with $\pi(g_n) = x_0$, and define $\bar{g}_n : SG(n) \rightarrow ESG(n)$ by $\bar{g}_n(f) = g_n \cdot f$. Then we can identify the image of g_n with the fiber $\pi^{-1}(x_0)$. Define $\bar{g}_{pn} : SG(pn) \rightarrow ESG(pn)$ by putting $g_{pn} : S^{pn-1} \rightarrow r_{pn}$, $\pi(g_{pn}) = y_0$

$$g_{pn}: S^{pn-1} \xrightarrow{g_n \ast \cdots \ast g_n} \gamma_n \ast \cdots \ast \gamma_n \longrightarrow \gamma_{pn}$$

and $\bar{g}_{pn}(f) = f \circ g_{pn}$. And identify $\pi^{-1}(y_0) \subseteq ESG(pn)$, with SG(pn) by this map \bar{g}_{pn} .

Define a map $\bar{\rho}_n: W^{(2m+1)} \to SG(pn)$ by

 $\omega \in W^{2m+1}$.

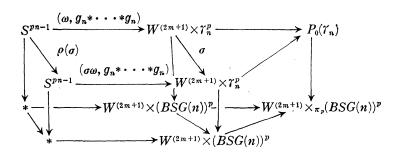
Define a homomorphism $\rho_n : \pi_p \to SG(pn)$ by

$$\rho(\sigma)(t_1x_1 \oplus \cdots \oplus t_px_p) = (t_{\sigma(1)}x_{\sigma(1)} \oplus \cdots \oplus t_{\sigma(p)}x_{\sigma(p)})$$
$$(t_1x_1 \oplus \cdots \oplus t_px_p) \in S^{n-1} \ast \cdots \ast S^{n-1} = S^{pn-1}.$$

Then we have,

PROPOSITION 4-5. The following formula holds.

(4-13) $\bar{\rho}_n(\sigma\omega)\rho_n(\sigma) = \bar{\rho}_n(\omega), \ \sigma \in \pi_p, \ \omega \in W^{(2m+1)}.$



Proof. This follows from the commutativety of the following diagram.

PROPOSITION 4-6. Let $\bar{\rho}_n$: $W^{(2m+1)} \to SG(n_i)$, i = 1, 2, be the map of (4-12). Then $\bar{\rho}_{n_1}^* \bar{\rho}_{n_2}$ and $\bar{\rho}_{n_1+n_2}$ are π_p equivariantly homotopic as maps, $W^{(2m+1)} \to SG(n_1+n_2)$. Proof is easily follows from proposition 4-2.

Define a map $\bar{\theta}'_n : W^{(2m+1)} \times (ESG(n))^p \to ESG(pn)$ as follows. $\omega \in W^{(2m+1)}$, $f_1, \dots, f_p \in ESG(n)$.

PROPOSITION 4-7. $\bar{\theta}'_n$ is a π_p equivariant map, where π_p operates on ESG(pn) trivially.

This follows easily from definition as that of proposition 4-5.

By proposition 4-7, we can define the following fiber wisemap.

 $(4-15) \qquad \qquad \begin{array}{c} W^{(2m+1)} \times \pi_p(SG(n))^p \longrightarrow SG(pn) \\ & \swarrow \\ & \swarrow \\ & W^{(2m+1)} \times \pi_p(ESG(n))^p \longrightarrow ESG(pn) \\ & \downarrow \\ & W^{(2m+1)} \times \pi_p(BSG(n))^p \longrightarrow BSG(pn) \end{array}$

PROPOSITION 4-8. $\bar{\theta}_n : W^{(2m+1)} \times_{\pi_p} (SG(n))^p \to SG(pn)$ is expressed as follows. $\omega \in W^{(2m+1)}$

(4-16)
$$\bar{\theta}(\omega; f_1, \cdots, f_p) = \bar{\rho}(\omega) \circ (f_1 \ast \cdots \ast f_p) \circ \bar{\rho}(\omega)^{-1}.$$

PROPOSITION 4-9. The following diagram is homotopy commutative.

REMARK 4-10. By remark 4-4, the above construction $\bar{\theta}_n$ can be extended as follows

At the last we shall consider the relationship between $\bar{\theta}_n$ and the suspension homomorphism.

PROPOSITION 4-11. The following diagram is homotopy commutative, where s = [(2m + 1)/(p - 1)] + 1.

$$(4-19) \qquad \qquad W^{(2m+1)} \times_{\pi_p} (BSG(n))^p \longrightarrow W^{(2m+1)} \times_{\pi_p} (BSG(n+p^s))^p \\ \downarrow_{\bar{\theta}} \qquad \qquad \downarrow_{\bar{\theta}} \\ BSG(pn) \longrightarrow BSG(p(n+p^s))$$

Proof. By proposition 4-2, the fiber space $P_0(\mathcal{I}_n*(p^s))$ is equivalent to $P_0(\mathcal{I}_n)*(p^sN)$. And the fibering $(p^sN) \to W^{(2m+1)} \times_{\pi_p} (BSG(n))^p$ is equivalent to the trivial fiber space. So proposition follows.

PROPOSITION 4-12. The following diagram is homotopy commutative, s = [(2m + 1)/(p - 1] + 1).

$$(4-20) \qquad \qquad W^{(2m+1)} \times \pi_p (SG(n))^p \longrightarrow W^{(2m+1)} \times \pi_p (SG(n+p^s))^p \\ \downarrow \bar{\theta} \qquad \qquad \qquad \downarrow \bar{\theta} \\ SG(pn) \longrightarrow SG(pn+p^{p+1}).$$

Proof is analog as that of proposition 4-11.

§ 5. Decomposition of $\bar{\theta}$.

5-1. In this chapter we shall study the map $\bar{\theta}: W \times_{\pi_p} SG^p \to SG$. p is always an odd prime number. For topological spaces X, Y, we denote by G(X,Y), the space of all continuous maps from X to Y with compact open topology. And if X and Y are endowed with base points, we denote by F(X,Y), the space of all base preserving continuous maps. We denote by G(n), the space $G(S^{n-1}, S^{n-1})$, and denote $G_q(n)$, the subspace of G(n) consisting of the maps of degree $q, q \in Z$.

We denote $\mathscr{L} = \{E = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_p); \varepsilon_i = 0 \text{ or } 1\}$. And for $E \in \mathscr{L}$, |E| is the number of elements of the set $\{\varepsilon_i, \varepsilon_i = 1; E = (\varepsilon_1, \dots, \varepsilon_p)\}$. The cyclic group π_p operates on \mathscr{L} by $\sigma(\varepsilon_1, \dots, \varepsilon_p) = (\varepsilon_{\sigma(1)}, \dots, \varepsilon_{\sigma(p)})$. Introduce a total ordering in \mathscr{L} by

$$E < E'$$
 $\varepsilon_1 = \varepsilon'_1, \cdots, \varepsilon_{j-1} = \varepsilon'_{j-1}, \ \varepsilon_j < \varepsilon'_j,$

where $E = (\varepsilon_1, \cdots, \varepsilon_p)$ and $E' = (\varepsilon'_1, \cdots, \varepsilon'_p)$.

 \mathscr{C} is by definition $\mathscr{C}/\pi_{\mathcal{D}}$, and $\pi: \mathscr{C} \to \overline{\mathscr{C}}$ denotes the projection. Define a cross section $s: \overline{\mathscr{C}} \to \mathscr{C}$ by $S(\{E\}) =$ the first element in $\{E\}$ by the total ordering, and \mathscr{C}_0 denotes the image $s(\overline{\mathscr{C}})$.

Define a map $\varphi_2 : S^{n-1} \to S_0^{n-1} \lor S_1^{n-1}$, by the following way, where $S_0^{n-1} \lor S_1^{n-1}$ denotes the one point union of two spheres S_0^{n-1} and S_1^{n-1} .

(5-1)
$$\varphi_2(\psi_{n-1}(t_1,\cdots,t_{n-1})) = \begin{cases} \psi_{n-1}(2t_1,t_2,\cdots,t_{n-1}) \in S_0^{n-1}, & 0 \le t_1 \le 1/2. \\ \psi_{n-1}(2t_1-1,t_2,\cdots,t_{n-1}) \in S_1^{n-1}, & 1/2 \le t_1 \le 1. \end{cases}$$

where $\psi_{n-1}: (I^{n-1}, \partial I^{n-1}) \to (S^{n-1}, *)$ is relative homeomorphism.

For $E_0 \in \mathscr{C}_0$, define a continuous map $\eta_{E_0} : (\mathcal{Q}_0^{n-1}S^{n-1})^p \to G(pn) = G(S^{pn-1}, S^{pn-1})$ by the following diagram. $l_1, \dots, l_p \in \mathcal{Q}_0^{n-1}S^{n-1}$

where $S_E^{pn-1} = S_{\varepsilon_1}^{n-1} * \cdots * S_{\varepsilon_p}^{n-1}$ for $E = (\varepsilon_1, \cdots, \varepsilon_p)$ and $l_{E_0}(l_1, \cdots, l_p)$ represents the following map.

$$l_{E_0}(l_1, \cdots, l_p)|_{S_E^{p_n-1}}: S_E^{p_n-1} \to S^{p_n-1}$$

(5-3) a) if $E \neq \sigma(E_0)$ for any $\sigma \in \pi_p$, then $l_{E_0}(l_1, \dots, l_p)$ is $0 \ast \dots \ast 0$, where $0: S^{n-1} \to \ast \to S^{n-1}$.

b) if $E = \sigma(E_0)$ for some $\sigma \in \pi_p$, then $l_{E_0}(l_1, \dots, l_p)$ is $l_1^{i_1*} \dots * l_p^{i_p}$, where $l_i^0 = id_{n-1}$, and $l_j^1 = l_j$, $E = (\varepsilon_1, \dots, \varepsilon_p)$.

LEMMA 5-1. The following formula holds for any $\sigma \in \pi$, and $l_1, \dots, l_n \in \Omega_1^{n-1}S^{n-1}$.

(5-4)
$$\eta_{E_0}(l_{\sigma(1)}, \cdots, l_{\sigma(p)}) = \rho(\sigma)\eta_{E_0}(l_1, \cdots, l_p)\rho(\sigma)^{-1}.$$

Proof. This follows from the commutativety of the following diagram.

$$S^{n-1} \ast \cdots \ast S^{n-1} \xrightarrow{\varphi_2 \ast \cdots \ast \varphi_2} \bigvee_{\Delta^{p-1}, E \in \mathscr{C}^E} S^{pn-1} \xrightarrow{l_{E_0}(l_1, \cdots, l_p)} S^{pn-1} \xrightarrow{\uparrow} \rho(\sigma)$$

$$S^{n-1} \ast \cdots \ast S^{n-1} \xrightarrow{\varphi_2 \ast \cdots \ast \varphi_2} \xrightarrow{\uparrow} \rho(\sigma) \xrightarrow{\downarrow} I_{E_0}(l_1, \cdots, l_p) \xrightarrow{\uparrow} \rho(\sigma)$$

$$S^{pn-1} \xrightarrow{\varphi_2 \ast \cdots \ast \varphi_2} \xrightarrow{\downarrow} S^{pn-1} \xrightarrow{\downarrow} S^{pn-1}$$

where $\rho(\sigma)|_{S^{pn-1}_{\mathbb{Z}}} : S^{pn-1}_{\mathcal{F}} \to S^{pn-1}_{\sigma(\mathcal{B})}$ is defined by $\rho(\sigma)(t_1x_1 \oplus \cdots \oplus t_px_p) = (t_{\sigma(1)}x_{\sigma(1)} \oplus \cdots \oplus t_p(x_p))$.

Next define a map $\bar{\theta}'_{E_0}: W^{(2m+1)} \times (\mathcal{Q}_0^{n-1}S^{n-1})^p \to G(pn)$, by the following for $E_0 \in \mathcal{C}_0$. $\omega \in W^{(2m+1)}, l_1, \cdots, l_p \in \mathcal{Q}_0^{n-1}S^{n-1}$.

(5-5)
$$\bar{\theta}'_{E_0}(\omega:l_1,\cdots,l_p)=\bar{\rho}(\omega)\eta_{E_0}(l_1,\cdots,l_p)\bar{\rho}(\omega)^{-1}.$$

PROPOSITION 5-2. $\bar{\theta}'_{E_0}: W^{(2m+1)} \times (\Omega_0^{n-1} S^{n-1})^p \to G(pn)$ is a π_p equivariant map. So we can obtain

(5-6)
$$\bar{\theta}_{E_0}: W^{(2m+1)} \times \pi_{\mathcal{D}}(\mathcal{Q}_0^{n-1}S^{n-1})^p \to G(pn).$$

This follows from the formula (4-13); $\bar{\rho}(\sigma\omega)\rho(\sigma) = \bar{\rho}(\omega)$, and lemma 5-1.

5-2. Denote $\bigvee_{\Delta^{p-1}, E \in \mathscr{C}} S_{\mathcal{E}}^{pn-1}$ by $X, \bigvee_{\Delta^{p-1}, E_0 \in \mathscr{C}_0} S_{\mathcal{E}_0}^{pn-1}$ by X_0 , and $\bigvee_{\Delta^{p-1}, \sigma \in \pi_p} S_{\sigma(\mathcal{E}_0)}^{pn-1}$ by $X_{\mathcal{E}_0}$ for $E_0 \in \mathscr{C}_0$. Let $i_{\mathcal{E}_0} : X_{\mathcal{E}_0} \to X$, $i_{\mathcal{E}_0} : S_0^{pn-1} \to X_0$ be natural inclusion, for $E_0 \in \mathscr{C}_0$. Define continuous maps, $\pi : X \to X_0$, $\pi_0 : X_0 \to S^{pn-1}$, $\pi_{\mathcal{E}_0} : X \to X_{\mathcal{E}_0}$, $\bar{\pi}_{\mathcal{E}_0} : X_0 \to S_{\mathcal{E}_0}^{pn-1} = S^{pn-1}$, for $E_0 \in \mathscr{C}_0$ as follows.

i)
$$\pi|_{S_{\mathcal{E}}^{pn-1}} : S_{\mathcal{E}}^{pn-1} = S^{pn-1} \xrightarrow{id} S^{pn-1} = S^{pn-1}_{s\pi(\mathcal{E})}.$$

(5-7) ii)
$$\pi_0|_{\frac{p_n-1}{p_0}}: S_{E_0}^{p_n-1} = S^{p_n-1} \xrightarrow{id} S^{p_n-1}.$$

$$\begin{array}{ll} \text{iii)} & \pi_{E_0} \mid_{S_E^{pn-1}} \begin{cases} S_E^{pn-1} = S^{pn-1} & \stackrel{id}{\longrightarrow} S^{pn-1} = S_E^{pn-1}, & \text{if } E = \sigma(E_0) \\ & \text{for some } \sigma \in \pi_p. \\ \\ S_E^{pn-1} = S^{pn-1} & \stackrel{0* \cdots *0}{\longrightarrow} (*)* \cdots *(*) = \triangle^{p-1} \subseteq X_{E_0}, \\ & \text{if } E \neq \sigma(E_0) \text{ for any } \sigma \in \pi_p. \end{cases}$$

$$\begin{array}{ll} \text{id} & \text{if } E = E_0 \\ \\ 0* \cdots *0 & \text{if } E \neq E_0. \end{cases}$$

Define the maps $\tilde{\eta}, \tilde{\eta}_{E_0} : (\mathcal{Q}_0^{n-1}S^{n-1})^p \to G(S^{pn-1}, X_0), E_0 \in \mathcal{C}_0$, by the following way. $E_0 = (\varepsilon_1, \cdots, \varepsilon_p), l_1, \cdots, l_p \in \mathcal{Q}_0^{n-1}S^{n-1}$.

(5-8)
$$\tilde{\eta}(l_1, \cdots, l_p) = \pi_0((id \lor l_1) \ast \cdots \ast (id \lor l_p)) \circ (\varphi_2 \ast \cdots \ast \varphi_2) : S^{pn-1} \to X \to X \to X_0.$$
$$\tilde{\eta}_{E_0}(l_1, \cdots, l_p) = i_{E_0} \cdot \bar{\pi}_{E_0} \cdot \tilde{\eta}(l_1, \cdots, l_p) : S^{pn-1} \to X_0 \to S^{pn-1}_{E_0} \to X_0.$$

For $\omega \in W^{(2m+1)}$, define $\bar{\rho}'(\omega) : X_0 \to X_0$ as follows.

(5-9)
$$\bar{\rho}'(\omega)|_{S^{pn-1}_{E_0}} : S^{pn-1}_{E_0} = S^{pn-1} \xrightarrow{\bar{\rho}(\omega)} S^{pn-1} = S^{pn-1}_{E_0}.$$

For $\sigma \in \pi_p$, define $\rho'(\sigma) : X_0 \to X_0$ as follows.

(5-10)
$$\rho'(\sigma)|_{S^{p_{n-1}}_{E_0}}: S^{p_{n-1}}_{E_0} = S^{p_{n-1}} \xrightarrow{\rho(\sigma)} S^{p_{n-1}} = S^{p_{n-1}}_{E_0}.$$

Then it is easy to show the following formula.

(5-11)
$$\bar{\rho}'(\sigma\omega)\rho'(\sigma) = \bar{\rho}'(\omega), \quad \omega \in W^{(2m+1)}, \quad \sigma \in \pi_p.$$

Define continuous maps $\tilde{\theta}'$, $\tilde{\theta}'_{E_0}$: $W^{(2m+1)} \times (\mathcal{Q}_0^{n-1}S^{n-1})^p \to G(S^{n-1}, X_0)$, $E_0 \in \mathcal{C}_0$, by the following.

(5-12)
i)
$$\tilde{\theta}'(\omega; l_1, \cdots, l_p) = \bar{\rho}'(\omega) \cdot \tilde{\eta}(l_1, \cdots, l_p) \bar{\rho}(\omega)^{-1}$$

ii) $\tilde{\theta}'_{E_0}(\omega; l_1, \cdots, l_p) = \bar{\rho}'(\omega) \cdot \tilde{\eta}_{E_0}(l_1, \cdots, l_p) \bar{\rho}'(\omega)^{-1}$
 $= i_{E_0} \cdot \bar{\pi}_{E_0} \cdot \tilde{\theta}'(l_1, \cdots, l_p).$

Then it is easy to show that $\tilde{\theta}'$, and $\tilde{\theta}'_{E_0}$ are π_p equivariant, and we obtain the following maps.

(5-13)
i)
$$\tilde{\theta}: W^{(2m+1)} \times \pi_p(\Omega_0^{n-1}S^{n-1})^p \to G(S^{pn-1}, X_0)$$

ii) $\tilde{\theta}_{E_0}: W^{(2m+1)} \times \pi_p(\Omega_0^{n-1}S^{pn-1})^p \to G(S^{pn-1}, X_0)$

5-3. We shall consider the relations between $\tilde{\theta}$ and $\tilde{\theta}_{E_0}$, and between $\tilde{\theta}$ and $\tilde{\theta}_{E_0}$. Let A be a finite CW complex, (not pointed), and EA denotes the (not reduced) suspension of A, i.e. $EA = A \times I/\sim$. We endow the base point on EA by $\{(A,0)\}$. And $\sum A$ denote $S(EA) = (EA) \wedge S^1$. Define a map $\varphi : \sum A \to \sum A$ by,

$$\varphi((a, t_1, t_2)) = \begin{cases} (a, t_1, 2t_2) & 0 \le t_2 \le 1/2 \\ (a, t_1, 2t_2 - 1), & 1/2 \le t_2 \le 1. \end{cases}$$

Then $\sum_{i=1}^{2} \tilde{\theta}$ and $\sum_{i=1}^{2} \tilde{\theta}_{E_0}$ are defined as follows.

(5-14)
$$\Sigma^{2}\tilde{\theta} : W^{(2m+1)} \times_{\pi_{p}} (\mathcal{Q}_{0}^{n-1}S^{n-1})^{p} \to G(S^{pn-1}, X_{0}) \to F(\Sigma^{2}S^{pn-1}, \Sigma^{2}X_{0})$$
$$\Sigma^{2}\tilde{\theta}_{E_{0}} : W^{(2m+1)} \times_{\pi_{p}} (\mathcal{Q}_{0}^{n-1}S^{n-1})^{p} \to G(S^{pn-1}, X_{0}) \to F(\Sigma^{2}S^{pn-1}, \Sigma^{2}X_{0}).$$

Introduce a product in $F(\sum_{i=1}^{2} S^{pn-1}, \sum_{i=1}^{2} X_{0})$ by the following.

$$(f \lor g) : \sum^2 S^{pn-1} \xrightarrow{\varphi} \sum^2 S^{pn-1} \lor \sum^2 S^{pn-1} \xrightarrow{(f \lor g)} (\sum^2 X_0) \lor (\sum^2 X_0) \longrightarrow \sum^2 X_0.$$

Then define the map $\bigvee_{E_0 \in \mathcal{C}_0} \sum_{i=0}^{2} \tilde{\theta}_{E_0}$ by the following

PROPOSITION 5-3. $\sum^2 \tilde{\theta}$ and $\bigvee_{E_0 \in \mathscr{C}_0} \sum^2 \tilde{\theta}_{E^0}$ are homotopic on (pn-5) skeleton of $W^{(2m+1)} \times \pi_p(\Omega_0^{n-1}S^{n-1})^p$.

Proof. By definition $\sum_{\tilde{e}_0} = (\sum_{\tilde{e}_0}) \circ (\sum_{\tilde{e}_0}) \cdot (\sum_{\tilde{e}_0}) \circ (\sum_{\tilde{e}_0}) \cdot (\sum_{\tilde{e}_0})$ so that proposition follows easily from the following lemma.

LEMMA 5-4. Let X_1, \dots, X_r be connected finite CW complex with base points, and X_i is $(n + m_i)$ connected, n > 0, $m_i > 1$. Then $\Omega^n(X_1 \lor \cdots \lor X_r) \rightarrow \bigvee_{i=1}^{n} Q^n(X_1 \lor \cdots \lor X_1) = \Omega^n(X_1) \lor \cdots \lor \Omega^n(X_r) \rightarrow \Omega^n(X_1 \lor \cdots \lor X_r)$ is homotopy equivalence on (m-2) skeleton, where $m = \min(m_1, \cdots, m_r)$.

Continuous maps $\pi_0: X_0 \to S^{pn-1}$, and $\bar{\pi}_{E_0}: X_0 \to S^{pn-1}$, c.f. (5-7), define maps $\pi_0, \bar{\pi}_{E_0}: G(S^{pn-1}, X_0) \to G(S^{pn-1}, S^{pn-1}) = G(pn)$. In §4 we introduce a continuous map $\bar{\theta}: W^{(2m+1)} \times \pi_p(SG(n))^p \to SG(pn)$. We also denote by $\bar{\theta}$ the following map: $W^{(2m+1)} \times \pi_p(\Omega_0^{n-1}S^{n-1}) \xrightarrow{id \times (id_{n-1} \vee)^p} W^{(2m+1)} \times \pi_p(SG(n))^p \xrightarrow{\overline{\sigma}} SG$ (pn). Then we have

PROPOSITION 5-5. $\bar{\theta} = \pi_0 \cdot \tilde{\theta}$ and $\bar{\theta}_{E_0} = \bar{\pi}_{E_0} \cdot \tilde{\theta}_{E_0}$, $E_0 \in \mathcal{C}_0$, as maps $W^{(2m+1)} \times \pi_p$ $(\mathcal{Q}_0^{n-1} S^{n-1})^p \to G(pn).$

From this proposition and proposition 5-3 we have.

PROPOSITION 5-6. $\sum_{e_0} \bar{z}_{\bar{\theta}}$ and $\bigvee_{E_0 \in \mathscr{C}_0} \sum_{e_0} \bar{z}_{\bar{\theta}_{E_0}}$ are homotopic on (pn-5) skeleton as the maps: $W^{(2m+1)} \times_{\pi_p} (\Omega_0^{n-1} S^{n-1})^p \to F(\sum_{e_0} \bar{z}_{e_0} S^{pn-1}, \sum_{e_0} \bar{z}_{e_0} S^{pn-1}) = \Omega^{pn+1} S^{pn+1}$.

It is easy to show that $\bar{\theta}_{(0,\ldots,0)}: W^{(2m+1)} \times_{\pi_p} (\mathcal{Q}_0^{n-1} S^{n-1})^p \to G_1(pn)$ is constant map, so we obtain.

PROPOSITION 5-7. The following diagram is homotopy commutative on (pn-5) skeletons.

5-4. For $E_0 \in \mathscr{C}_0$, define continuous maps $p_{E_0} : X \to S^{pn-1}$, and $\bar{p}_{E_0} : X_{E_0} \to S^{pn-1}$ by

i)
$$p_{E_0}|_{S_E^{pn-1}}$$

$$\begin{cases} S_E^{pn-1} = S^{pn-1} \xrightarrow{id} S^{pn-1} & \text{if } E = \sigma(E) \text{ for some } \sigma \in \pi_p \\ S_E^{pn-1} = S^{pn-1} \xrightarrow{0 \ast \cdots \ast 0} S^{pn-1} & \text{if } E \neq \sigma(E) \text{ for any } \sigma \in \pi_p \end{cases}$$
ii) $\bar{p}_{E_0} = p_{E_0}|_{X_{E_0}}$.

Introduce continuous maps $\bar{h}_{E_0}: L_p^{(2m+1)} = W^{(2m+1)}/\pi_p \to G(pn)$, for $E_0 \in \mathcal{C}_0$, as follows. $\bar{h}_{E_0}(\omega)$, $\omega \in W^{(2m+1)}$ represents the following map.

(5-17)
$$\bar{h}_{E_0}(\omega): S^{pn-1} \xrightarrow{\bar{\rho}(\omega)^{-1}} S^{pn-1} \xrightarrow{\varphi_2 * \cdots * \varphi_2} X \xrightarrow{p_{E_0}} S^{pn-1} \xrightarrow{\bar{\rho}(\omega)} S^{pn-1}$$

PROPOSITION 5-8. The following diagram is homotopy commutative for $E_0 \in \mathscr{C}_0$, $0 \leq |E_0| \leq p$.

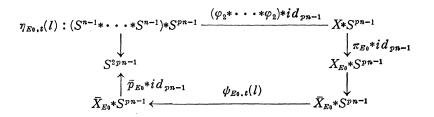
where $l_{E_0}(l) = l^{\epsilon_1} \cdot \cdot \cdot \cdot \cdot l^{\epsilon_p}$, $E_0 = (\varepsilon_1, \cdot \cdot \cdot, \varepsilon_p)$, $l_j^0 = id$, $l_j^1 = l_j$.

Proof. At first, choose a homotopy $F_{E_0,t}: \Omega_0^{n-1}S^{n-1} \to G_0(2pn)$ with the properties, a) $F_{E_0,0}(l) = (l^{\epsilon_1} \cdot \cdot \cdot \cdot l^{\epsilon_p}) \cdot id_{pn-1}$. b) $F_{E_0,1}(l) = id_{pn-1} \cdot (l^{\epsilon_1} \cdot \cdot \cdot \cdot l^{\epsilon_p})$. And then define $\varphi_{E_0,t}: \Omega_0^{n-1}S^{n-1} \to G(\bar{X}_{E_0})$

 $*S^{p_{n-1}}, \bar{X}_{E_0}*S^{p_{n-1}}) \text{ as follows, where } \bar{X}_{E_0}=X_{E_0}/\triangle^{p_{-1}}=\bigvee_{\sigma\in\pi_p}\bar{S}^{p_{n-1}}_{\sigma(E_0)}, \bar{S}^{p_{n-1}}_{\sigma(E_0)}=S^{p_{n-1}}_{\sigma(E_0)}/\triangle^{p_{-1}}.$

$$\psi_{E_0,t}(l)|_{\overline{S}_{\sigma(E_{\tau})}^{p_{n-1}}} * S^{p_{n-1}}} = (\rho(\sigma) * id_{p_{n-1}}) \circ F_{E_0,t}(l) \circ (\rho(\sigma)^{-1} * id_{p_{n-1}}).$$

And define $\eta_{E_{0,t}}: \Omega_0^{n-1}S^{n-1} \to G(2pn)$, as follows, $l \in {}_0^{n-1}S^{n-1}$.



And define $\bar{\theta}_{E_0,t}(\omega, l) = (\bar{\rho}(\omega)*id_{pn-1}) \circ (\eta_{E_0,t}(l)) \circ (\bar{\rho}(\omega)^{-1}*id_{pn-1})$. Then it is easy to show that $\bar{\theta}_{E_0,0}$ and $(*id_{pn-1})(id \times \Delta_p)$ is homotopic, and $\bar{\theta}_{E_0,1}$ and (*) $(hE_0 \times \bar{l}_{E_0})$ is homotopic. This gives the proof.

Now introduce the following map $\bar{\theta}_p: W^{(2m+1)} \times (\Omega_0^{n-1}S^{n-1})^p \to G_0(pn)$ as follows.

(5-19)
$$\tilde{\theta}_p(\omega ; l_1, \cdots, l_p) = \bar{\rho}(\omega) \cdot (l_1 \ast \cdots \ast l_p) \cdot \bar{\rho}(\omega)^{-1}.$$

PROPOSITION 5-9. $\bar{\theta}_p$ and $\bar{\theta}_{(1,\ldots,1)}: W^{(2m+1)} \times_{\pi_p} (\Omega_0^{n-1} S^{n-1})^p \to G_0(pn)$ are homotopic.

This proposition is proved by the same idea of two proof of proposition 5-8, so we omit the proof.

The following is the easy consequence of proposition 5-9.

PROPOSITION 5-10. The following diagram is commutative.

$$(5-20)$$

$$\begin{array}{c} id \times \pi_{p}(0)^{p} & id \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1} \times \Omega_{0}^{n-1}S^{n-1})^{p} & \downarrow d \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1})^{p} \\ \downarrow \bigtriangleup \times id & \downarrow \bar{\theta}_{(1,\ldots,1)} \\ (W^{(2m+1)} \times W^{(2m+1)}) & \times \\ & \downarrow \\ W^{(2m+1)} \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1}) \times W^{(2m+1)} \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1})^{p} & \overline{\theta}_{(1,\ldots,1)} \times \bar{\theta}_{(1,\ldots,1)} \\ \downarrow \\ & \downarrow \\ W^{(2m+1)} \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1}) \times W^{(2m+1)} \times \pi_{p}(\Omega_{0}^{n-1}S^{n-1})^{p} & \overline{\theta}_{(1,\ldots,1)} \times \bar{\theta}_{(1,\ldots,1)} \\ \end{array}$$

Next define $\bar{\theta}_q^{(q)} : W^{(2m+1)} \times_{\pi_p} (\mathcal{Q}_q^{n-1} S^{n-1})^p \longrightarrow G_{q^p}(pn)$ as $\bar{\theta}_p^{(q)}(\omega; l_1, \cdots, l_p) = \bar{\rho}(\omega) \cdot (l_1 * \cdots * l_p) \cdot \bar{\rho}(\omega)^{-1}$. Then we obtain following proposition easily.

PROPOSITION 5-11. The following diagram is commutative.

Remark 5-12. By remark 4-4, $\bar{\theta}_p$, and $\bar{\theta}_p^{(q)}$ can be extended on $J^{(t)} \sum_p \times_{\Sigma_p} (\Omega^{n-1} S^{n-1})^p \to G(pn)$.

§6. Computation of the spectral sequence.

6-1. We shall introduce the extended *p*-th power operations \bar{Q}_j , j=0, 1,2,... on $H_*(BSF, Z_p)$ and $H_*(SF, Z_p)$, where *p* is an odd prime number. For an element $x \in H_*(BSF, Z_p)$ and $j \ge 0$, we shall pick up a large number *n* divisible by *p*^{*} for large *s*, and represent *x* as an element of $H_*(BSG(n), Z_p)$, and then define $\bar{Q}_j(x)$ as the element $\bar{\theta}_*(e_j \otimes x^p)$. Then by Proposition 4-11, $\bar{Q}_j(x)$ does not depend on the choice of *n*. For $x \in H_*(SF, Z_p)$ we shall define $\bar{Q}_j(x)$ similarly.

These operations \bar{Q}_j have the similar properties as the extended *p*-th power operation Q_j defined by Dyer-Lashof [4].

(6-1) a)
$$\bar{Q}_i$$
 is Z_p -module homomorphism. $j = 0, 1, 2, \cdots$

b) \bar{Q}_0 is the Pontrjagin *p*-th power.

- c) $\bar{Q}_{2j-1} = \beta_p \bar{Q}_{2j}$, where β_p is the Bockstein operation.
- d) For $x \in H_r(SF, Z_p)$ or $x \in H_r(BSF, Z_p)$, $\bar{Q}_{2j}(x) = 0$ unless the change of dimension 2j + pr r is even multiple of p 1.
- e) Cartan-formula holds, i.e. for $x \in H_r(BSF, Z_p)$, $y \in H_s(BSF, Z_p)$ or $x \in H_r(SF, Z_p)$, $y \in H_s(SF, Z_p)$, following formula holds:

$$\bar{Q}_{2j}(xy) = (-1)^{rs(p-1)/2} \sum_{i=0}^{j} \bar{Q}_{2i}(x) \bar{Q}_{2j-2i}(y).$$

Now we shall consider the following principal fibering $SF \rightarrow ESF \rightarrow BSF$. And then consider the Serre spectral sequence associated with this fibering. Then we obtain the following proposition.

PROPOSITION 6-1. (transgression theorem) In the spectral sequence $E_{**}^2 \cong H_*(BSF, Z_p) \otimes H_*(SF, S_p)$, $E_{**}^{\infty} \cong Z_p$. We obtain the following relation.

Suppose $x \in E_{2n,0}^2$ is a transgressive element, and $y \in E_{0,2n-1}^2$ is an element such that, $\tau(x) = y$ in $E_{0,2n-1}^{2n}$. Then

(6-2)

a)
$$\tau(\bar{Q}_0(x)) = \tau(x^p) = cQ_{p-1}(y)$$
 in $E_{0,2np-1}^{2np}$, $c \neq 0$,
b) $\tau(x^{p-1} \otimes y) = c\bar{Q}_{p-2}(y)$ in $E_{0,2np-2}^{2n(p-1)}$, $c \neq 0$.

This proposition can be proved by the same method as Theorem 4-7 of Dyer-Lashof [4], so we omit the proof.

We will compute this spectral sequence using this proposition. So we must compute $\bar{Q}_{p-2}(x)$ and $\bar{Q}_{p-1}(x)$ in $H_*(SF, Z_p)$. The answer of this problem is the following proposition.

PROPOSITION 6-2. For any $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$, $r \ge 1$, $\varepsilon_i = 0$ or 1, $j_i \ge 0$, and $\varepsilon = 0$ or 1, and j > 0. $\bar{Q}_{p-2}(Q_J\beta_p^*x_j)$ and $\bar{Q}_{p-1}(Q_J\beta_p^*x_j)$ belong to $G_{p^{r+1}}$, and as elements of $G_{p^{r+1}/(G_{p^{r+1}+1} + decomp.))$, they coincide with $c(Q_{p-2}Q_J\beta^*x_j)$ and $c(Q_{p-1}Q_J\beta^*x_j)$ respectively, where c is a non-zero constant. And decomp. means subspace of $G_{p^{r+1}}$ consisting of decomposable elements in $H_*(SF)$.

Let $q_j \in H^{2j(p-1)}(BSF, Z_p)$ denote the *j*-th Wu-class $j = 1, 2, \dots, and \Delta q_j$ denotes its Bockstein image.

LEMMA 6-3. For any $x \in H_*(SF, Z_p)$, $x \in G_2$, $\langle x, \sigma(\triangle q_j) \rangle = 0$ and $\langle x, \sigma(q) \rangle = 0$, where σ denotes the suspension homomorphism and $\langle \tilde{x}_j, \sigma(\triangle q_j) \rangle \neq 0$ and $\langle \beta_p \tilde{x}_j, \sigma(q_j) \rangle \neq 0$.

LEMMA 6-4. For $J = (\varepsilon_1, j_1, \dots, \varepsilon_r, j_r)$, $r \ge 0$, $\varepsilon_i = 0$ or 1, $j_i \ge 0$, $i \ge 0$, $\varepsilon = 0$ or 1, j > 0. $\bar{\theta}_{E_0*}(e_i \bigotimes (Q_J \beta_p^* x_j)^p)$ belongs to $G_{2^{r+1}+1}$, if $|E_0| \ne 0, 1, p$.

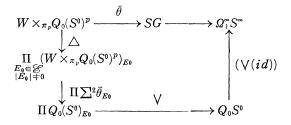
https://doi.org/10.1017/S0027763000014355 Published online by Cambridge University Press

LEMMA 6-5. If J, i, ε and j are the same as lemma 6-4. Then $\overline{\theta}_{(1,0,\ldots,0)*}$ $(e_i \otimes (Q_J \beta_p^{\epsilon} x_j)^p)$ belongs to $G_{p^{r+1}}$, and as an element of $G_{p^{r+1}/(G_{p^{r+1}+1} + \operatorname{decomp}))$ it coincides with $c(Q_i Q_J \beta_p^{\epsilon} x_j), c \neq 0$, decomposable means in $H_*(Q_0 S^0 : Z_p)$.

LEMMA 6-6. If $J = (\varepsilon_1, j_1, \cdots, \varepsilon_r, j_r)$, $r \ge 1$ and $i \le p-1$. Then $\bar{\theta}_{(1,\ldots,1)*}$ $(e_i \otimes (Q_J \beta_p^* x_j)^p)$ belongs to $G_{p^{r+1}+1}$.

These lemmas will be proved in §7.

Proof of Proposition 6-2. From the proposition 5-7, the following diagram is homotopy commutative:



On the other hand, we have

So above homotopy commutative diagram, and Lemma 6-4, 6-5 and 6-6 show that $(\bigvee_*)(\prod \sum^2 \bar{\theta}_{E_0})_* \bigtriangleup_* (e_i \otimes (Q_J \beta_p^* x_j)^p)$ belongs to $G_{p^{r+1}}$, and as an element of $H_*(Q_0S^0; Z_p)$, it is of the form $cQ_iQ_J\beta_p^* x_j + x + y$, $x \in G_{p^{r+1}}$, $y \in G_{p^{r+1}+1}$, and x is decomposable as an element of $H_*(Q_0S^0)$. Since $i_*(x) \in H_*(SF; Z_p)$ can be expressed as $x_1 + x_2$, $x_1 \in G_{p^{r+1}}$, $x_2 \in G_{p^{r+1}}$, and x_1 is decomposable as an element of $H_*(SF)$, this proves proposition 6-2.

It is well known the following results.

(6-3) a)
$$H_*(SO, Z_2) \cong \Lambda(u_1, u_2, \cdots)$$
 as an algebra, where deg $u_i = 4i - 1$.

- b) $H_*(BSO, Z_{\gamma}) \cong Z_{\gamma}[v_1, v_2, \cdots]$ as an algebra, where deg $v_i = 4i$, and $\triangle(v_j) = \sum_{j_1+j_2=j} v_{j_1} \otimes v_{j_2}$. $v_0 = 1$.
- c) In the homology spectral sequence associated to the universal fibering $SO \to ESO \to BSO$, $E_{**}^2 \cong H_*(BSO, \mathbb{Z}_p) \otimes H_*(SO, \mathbb{Z}_p)$, $E_{**}^{\infty} \cong \mathbb{Z}_p$.

i)
$$d_{4jp^{k}}(v_{j}^{p^{k}}) = y_{p^{k}j}$$
 if $(j, p) = 1, k \ge 0$

ii) $d_{4jp^{k-1}(p-1)}(v_{jp^k}) = (v_j)^{p^{k-1}(p-1)} \otimes u_{jp^{k-1}}, (j, p) = 1, k \ge 1.$

We shall denote the inclusion $SO \to SF$, $BSO \to BSF$ by j. Then by Peterson-Toda [12], $Im \ j_* \ H_*(BSF, Z_p)$ is the polynomial ring generated by $j_*(v_{\frac{p-1}{i}}), \ i = 1, 2, \cdots$, and by dimensional reason, $j_*(v_j) = 0$, if $j \equiv 0, \frac{(p-1)}{2}$. We shall denote $\tilde{z}_j = j_*(v_{\frac{p-1}{2}}), \ j = 0, 1, 2, \cdots$, then $\triangle(\tilde{z}_j) = \sum_{j_1+j_2=j} \tilde{z}_j \otimes \tilde{z}_{j_2}$. We consider $j_*(u_{\frac{p-1}{2}i}) = \tilde{y}_i, \ i = 1, 2, \cdots$. Then we obtain the following lemma.

LEMMA 6-7.
$$\tilde{y}_j = c \widetilde{\beta_p} x_j + x$$
, $x \in G_2$, $c \neq 0$, in $H_*(SF, Z_p)$.

Proof. Because $\langle \tilde{y}_j, \sigma(q_j) \rangle \neq 0$, so this follows from Lemma 6-3.

PROPOSITION 6-8. As the algebraic generators of $H_*(SF, Z_p)$, we can choose the following elements:

- (6-4) i) $\tilde{x}_{j}, \tilde{y}_{j}, j = 1, 2, \cdots$
 - ii) \tilde{x}_I , $I \in H_i^+$, i = 1, 2.
 - iii) $\bar{Q}_{p-1} \cdot \cdot \cdot \bar{Q}_{p-1}(\tilde{x}_I), I \in H_i, i = 1, 2.$ \bar{Q}_{p-1} operates on \tilde{x}_I, k -times $k \ge 0.$
 - iv) $\bar{Q}_{p-2}\bar{Q}_{p-1}\cdots \bar{Q}_{p-1}(\tilde{x}_I)$, $I \in \bar{H}_i$, i=1,2. \bar{Q}_{p-1} operates on \tilde{x}_I , k-times $k \ge 0$.

Proof. This follows trivially from Proposition 6-2 and Lemma 6-7. We can now formulate the main Theorem and prove it.

THEOREM 2. i) $H_*(BSF, Z_p) = Z_p[\tilde{z}_1, \tilde{z}_2, \cdots] \otimes \Lambda(\sigma \tilde{x}_1, \sigma \tilde{x}_2, \cdots) \otimes C_*$, where C_* is the free commutative algebra generated by $\sigma \tilde{x}_J$, $J \in H_1 \cup H_2$, $\sigma \tilde{x}_j$ and $\sigma \tilde{x}_J$ are primitive elements and $\triangle(\tilde{z}_j) = \sum_{j_1+j_2=j} \tilde{z}_{j_1} \otimes \tilde{z}_{j_2}$.

ii) $H^*(BSF, \mathbb{Z}_p) \cong \mathbb{Z}_p[q_1, q_2, \cdots] \otimes \Lambda(\bigtriangleup q_1, \bigtriangleup q_2, \cdots) \otimes \mathbb{C}, \ \mathbb{C} = \bigwedge_{I \in H_1^+ \cup H_2^+} ((\sigma \tilde{x}_1)^*) \otimes \prod_{J \in H_1^- \cup H_2^-} [(\sigma (\tilde{x}_J))^*], \ where \ ()^* \ denote \ the \ dual \ elements.$

Proof. ii) follows easily from i) and the following facts

- a) $\langle x, q_j \rangle = 0$, $\langle x, \triangle q_j \rangle = 0$, if $x \in C_*$;
- b) $\langle \sigma \tilde{x}_j, \bigtriangleup q_j \rangle \neq 0, \quad j = 1, 2, \cdots;$
- c) \tilde{z}_i is in the image of $j_*: H_*(BSO) \to H_*(BSF)$.

So it is sufficient to prove i).

We shall consider the following formal spectral algebra:

$${}^{\prime}E_{**}^2 \cong (Z_p[\tilde{z}_j] \otimes \wedge (\sigma \tilde{x}_j) \otimes C_*) \otimes H_*(SF, Z_p),$$

with differential d_r :

- a) $d_r(xy) = d_r(x)y + (-1)^{\deg x} x d_r(y),$
- b) $d_{2(p-1)j p^{k}}((\tilde{z}_{j})^{p^{k}}) = \tilde{y}_{p^{k}j}$, if (j, p) = 1, $k \ge 0$,
- c) $d_{2(p-1)j} p^{k-1}(\tilde{z}_j p^k) = (\tilde{z}_j)^{p^{k-1}(p-1)} \otimes y_j p^{k-1}$, if $(j, p) = 1, k \ge 1$.
- d) $d_{2j(p-1)}(\sigma(\tilde{x}_j)) = \tilde{x}_j, \ j = 1, 2, \cdots,$
- e) $d_{p^kq}(\sigma \tilde{x}_1)^{p^k}) = \bar{Q}_{p-1}^k(\tilde{x}_I), I \in H_i^-, i = 1, 2 \text{ and } q = \deg(\sigma(x_I)), \bar{Q}_{p-1}^k = \bar{Q}_{p-1} \cdots \bar{Q}_{p-1}, k \text{-times, } k \ge 0,$
- $\begin{aligned} f \end{pmatrix} \quad d_{p^{k}(p-1)}(\sigma(\tilde{x}_{I})^{p^{k}(p-1)} \otimes \bar{Q}_{p-1}^{k}(\tilde{x}_{I})) &= \bar{Q}_{p-2}\bar{Q}_{p-1}^{k}(\tilde{x}_{I}), \\ q &= \deg \sigma(\tilde{x}_{I}), \ I \in H_{i}^{-}, \ i = 1, 2, \ k \ge 0, \end{aligned}$
- g) $d_q(\sigma(\tilde{x}_I)) = \tilde{x}_I$, $I \in H_i^+$, i = 1, 2, $q = \deg(\sigma(x_I))$.

Then d_r is determined uniquely and $E_{*,*}^{\mathfrak{s}} \cong Z_p$. Then we shall difine the spectral algebra homomorphism $f^r : E_{*,*}^r \to E_{*,*}^q$ with $f^2(z_j) = z_j$, $f^2(\sigma(x)) = \sigma(x)$, $x = \tilde{x}_j$ or \tilde{x}_j . By Proposition 6-1, and the properties of d_r in the homology spectral sequence associated to $SO \to ESO \to BSO$, f^r extsts. Then the comparison theorem for spectral sequence shows that f^r is an isomorphism for $r \ge 2$. So we obtain $H_*(BSF, Z_p) \cong Z_p[\tilde{z}_j] \otimes A(\sigma(\tilde{x}_j)) \otimes C_*$. So we obtain the theorem.

§7. Proof of Lemma 6-3, 6-4, 6-5, and 6-6

7-1. The object of this section is to prove Lemma 6-3, 6-4, 6-5 and 6-6. p is always an odd prime number.

Let X be a finite connected CW complex with base point, and $f: X \to SG(N)$ be a continuous map. Let $\xi = \xi_f \to SX$ be the spherical fiber space of fiber S^{N-1} over SX associated to f. Let $f: X \times S^{N-1} \to S^{N-1}$ be the representative of f, and $G(f): X * S^{N-1} \to S^N$ be the Hopf construction of f.

LEMMA 7-1. Let $T(\xi)$ be the Thom complex of $\xi = \xi_f$. Then $T(\xi)$ is homotopy equivalent to $S^N \cup C(X*S^{N-1})$, the mapping cone of G(f).

Let $g: X \to \mathcal{Q}_0^{N-1}S^{N-1}$ be a continuous map, and consider $\bar{g} = (g \lor id_{N-1})$: $X \to \mathcal{Q}_1^{N-1}S^{N-1} \to SG(N)$. Let $x_0 \in X$, $s_0 \in S^{N-1}$ be the base points, then $X^*S^{N-1}/(X^*s_0) \lor (x_0^*S^{N-1})$ is equal to $X \land S^1 \land S^{N-1}$, and this gives the homotopy equivalence between X^*S^{N-1} and $X \land S^1 \land S^{N-1}$, and we identify X^*S^{N-1} with $X \land S^1 \land S^{N-1}$ by this map. **LEMMA** 7-2. $G(\overline{g}): X * S^{N-1} \to S^N$ is homotopic to $(id_1 \wedge g): X \wedge S^N \to S^N$, where $id_1 \wedge g$ is adjoint map of $id_1 \wedge g: X \to \Omega_0^N S^N$.

LEMMA 7-3. Let X_i , X_2 be finite connected CW complexes with base points. And f_i ; $X_i \to S^{n_i}$ are continuous maps preserving base points, $i = 1, 2, n_i > 0$. And assume $f_i^* : \tilde{H}^*(S^{n_i} : Z_p) \to \tilde{H}^*(X_i : Z_p)$ are zero maps, i = 1, 2. Consider $f_1 \wedge f_2$: $X_1 \wedge X_2 \to S^{n_1} \wedge S^{n_2} = S^{n_1+n_2}$. Then in $H^*(S^{n_1+n_2} \cup C(X_1 \wedge X_2) : Z_p)$, $P^j(s) = 0$, $j \ge 1$, where P^j is Steenrod reduced power, and $s \in H^{n_1+n_2}(S^{n_1+n_2} \cup C(X_1 \wedge X_2) : Z_p)$ is the generator representing $S^{n_1+n_2}$.

7-2. Proof of Lemma 6-3. If $x \in H_*(SF, Z_p)$ is a decomposable element, it is well known that $\langle x, \sigma(\bigtriangleup q_j) \rangle = \langle x, \sigma(q_j) \rangle = 0$. By the result of §2 and §3, the algebraic generators of Pontrjagin ring $H_*(SF)$ are in the image of $i_*(\xi_1 \land \xi_r)_* : H_*(L_p \land L_p^r) \to H_*(Q_0S^0) \to H_*(SF), r \ge 0$. So to prove the result that for $x \in G_2$, $\langle x, \sigma(\bigtriangleup q_j) \rangle = \langle x, \sigma(q_j) \rangle = 0$, we can assume that x is in the image of $i_*(\xi_1 \land \xi_r), r \ge 1$. Let $g: (L_p^{(m_0)})^{r+1} \to \Omega_0^{N-1}S^{N-1}$ be the representative of $\xi_1 \land \xi_r, r \ge 1$. And consider $\bar{g} = g \lor id_{N-1} : (L_p^{(m_0)})^{r+1} \to \Omega_0^{N-1}S^{N-1} \to SG(N)$. Then by lemma 7-1 and 7-2, Thom complex of $\xi_{\overline{\sigma}}$ is of the form $S^N \cup C((L_p^{(m_0)})^{r+1} \land S^N)$. By lemma 7-3, in $H^*(S^N \cup C((L_p^{(m_0)})^{r+1} \land S^N) : Z_p), P^j(s_N)$ and $\bigtriangleup P^j(s_N)$ is equal to zero, $j \ge 1$. This proves the results that $\langle x, \sigma(\bigtriangleup q_j) \rangle \neq 0$, $j \ge 1$, it is sufficient to prove that $\sigma(\bigtriangleup q_j) \neq 0$ in $H^*(SF: Z_p)$. This is the result of Peterson-Toda [12], indeed they proved that there is a continuous map $h: SL_p \to BSF$ such that $h^*(\bigtriangleup q_j) \neq 0$.

7-3. At first we shall prove the following lemma.

LEMMA 7-4. Let $\xi = (\bigvee)_* \circ (\bigtriangleup_p)_* : H_*(\Omega_0^{n-1}S^{n-1}:Z_p) \to H_*(\Omega_0^{n-1}S^{n-1} \times \cdots \times \Omega_0^{n-1}S^{n-1}:Z_p) \to H_*(\Omega_0^{n-1}S^{n-1}:Z_p)$. If $x \in H_r(\Omega_0^{n-1}S^{n-1})$ belongs to G_q , r > 0. then $\xi(x)$ is of the form $\sum y^p$, $y \in G_q$.

Proof. Since ξ is an algebra homomorphism, it is sufficient to assume $x = Q_J \beta_p^* x_J$. Then Cartan formula shows the lemma.

7-4. *Proof of lemma* 6-4. By proposition 5-8, the following diagram is commutative.

CHARACTERISTIC CLASSES

By lemma 2-11, and its proof, the element $e_i \otimes (Q_I(\beta_p^* x_j)^p \in H_*(W^{(2m+1)} \times \pi_p))$ $(\mathcal{Q}_0^{n-1}S^{n-1})^p)$ is in the image of $(id \times \triangle_p)_*(A)$, where A is the submodule of $H_*(L_p^{(2m+1)} \times \mathcal{Q}_0^{n-1}S^{n-1})$ generated by $e_k \otimes Q_I \beta_p^* x_l, r = |I| = |J|, l = 0, 1, \cdots,$ $k = 0, 1, 2, \cdots, \epsilon = 0$ or 1. So that it is sufficient to prove that $(*)_* (\bar{h}_{E_0} \times \bar{l}_{H_0})_*$ $(e_k \otimes Q_I \beta_p^e x_l)$ belongs to $G_{p^{r+1}+1}$, where $e_k \otimes Q_I \beta_p^e x_l \in A$. If $\deg (Q_I \beta_p^e x_l) = 0$, then deg $e_k > 0$, so that $(*)_*(\bar{h}_{E_0}(e_k) \otimes \bar{l}_{E_0}(Q_I \beta_p^* x_l)) = 0$. So that we can assume deg $(Q_I \beta_p^{\epsilon} x_l) > 0$. On the other hand $\overline{l}_{E_0} : \Omega_0^{n-1} S^{n-1} \to G_0(pn)$ is homotopic to the map : $\Omega_0^{n-1}S^{n-1} \xrightarrow{\bigtriangleup_{k_0}} \Omega_0^{n-1}S^{n-1} \times \cdots \times \Omega_0^{n-1}S^{n-1} \xrightarrow{\bigwedge} \Omega_0^{k_0(n-1)}S^{k_0(n-1)} \xrightarrow{i} G_0(pn),$ $1 \leq k_0 = |E_0| \leq p$. So $\overline{l}_{E_0*}(Q_I \beta_p^* x_l)$ belongs to $G_{p^{k_0 + k_0 - 1}}$ by Cartan formula for Q_I , proposition 2-8, iii), and proposition 2-10. Let $\bar{h}_{E_0,0}$ denote the following map: $L_p^{(2m+1)} \xrightarrow{\bar{h}_{E_0}} G_0(pn) \xrightarrow{i} \Omega_p^{pn} S^{pn} \xrightarrow{(\bigvee (-pid))} \Omega_0^{pn} S^{pn}$. Then $L^{(2m+1)} \times G_0(pn)$ $\xrightarrow{\bar{h}_{E_0} \times id} G_p(pn) \times G_0(pn) \xrightarrow{*} G_0(2pn) \xrightarrow{*} Q_0^{2pn} S^{2pn}$ is homotopic to the map, $L_p^{(2m+1)}$ $\times G_0(pn) \xrightarrow{\bar{h}_{E_0,0} \times \triangle_2} \mathcal{Q}_0^{pn} S^{pn} \times G_0(pn) \times G_0(pn) \xrightarrow{id \times i \times \triangle_p} \mathcal{Q}_0^{pn} S^{pn} \times \mathcal{Q}_0^{pn} \times \mathcal{Q}_0^{pn} S^{pn} \times \mathcal{Q}_0^{pn} \times \mathcal{Q}$ $(G_0(pn))^p \xrightarrow{\bigwedge \times (i)^p} \mathcal{Q}_0^{2pn} S^{2pn} \times (\mathcal{Q}_0^{2pn} S^{2pn})^p \xrightarrow{id \times \bigvee} \mathcal{Q}_0^{2pn} S^{2pn} \times \mathcal{Q}_0^{2pn} S^{2pn} \xrightarrow{\bigvee} \mathcal{Q}_0^{2pn} S^{2pn} \cdot \mathcal{Q}_0^{2pn} S^{2pn} \cdot \mathcal{Q}_0^{2pn} \cdot \mathcal{Q}_0$ So the above homomorphism maps A in $G_{p^{k_0r+k_0-1}+1}$ by using lemma 7-4 and On the other hand $k_0r + k_0 - 1 \ge r + 1$, since $k_0 \ge 2$, the result of §2. $r \ge 0$. This proves the lemma.

7-5. We shall consider $\bar{h}_1 \equiv \bar{h}_{(1,0,\ldots,0)}$; $L_p^{(2m+1)} \to G_p(pn)$ defined in §5. Let $\bar{h}_1 : L_p^{(2m+1)} \times S^{pn-1} \to S^{pn-1}$ be the representative of \bar{h}_1 . And consider the mapping cone $C_{\bar{h}_1}$ of \bar{h}_1 .

LEMMA 7-5. In $H^*(C_{\overline{h}_1}: Z_p)$, $P^j(s) \neq 0$, $\triangle P^j(s) \neq 0$, $j = 1, 2, \cdots [2m + 1/p - 1]$, where $s \in H^{pn-1}(C_{\overline{h}}: Z_p)$ be the generator representing S^{pn-1} of $C_{\overline{h}} = S^{pn-1} \cup C(L_p^{(2m+1)} \times S^{pn-1})$.

This lemma is proved by tediously long caluculation acording to the result of Nakaoka [10], so we omit the proof.

Next define $\bar{h}_{1,0}$ as follows, $\bar{h}_{1,0}: L_p^{(2m+1)} \xrightarrow{\bar{h}_1} G_p(pn) \xrightarrow{i} \Omega_p^{pn} S^{pn} \xrightarrow{(\bigvee -pidn)} \Omega_0^{pn} S^{pn}$.

COROLLARY 7-6. In $H^*(C_{\overline{h}_{i+0}}: \mathbb{Z}_p)$, $P^j(S) \neq 0$, $\Delta P^j(S) \neq 0$, $j = 1, \cdots$ [(2m+1)/(p-1)], for $s \in H^{pn-1}(C_{\overline{h}_{i+0}}: \mathbb{Z}_p)$ generator.

LEMMA 7-7. In $\dot{H}_*(L_p; Z_p)$ for any $i_0 > 1$, there is a number r > 0, such that $P^r_*(e_{2i_0(p+1)}) \neq 0$. or $P^r_*(e_{2i_0(p-1)-1}) \neq 0$.

LEMMA 7-8. Consider $\bar{h}_{1,0^*}: H_*(L_p^{(2m+1)}:Z_p) \to H_*(\Omega_0^{n-1}S^{n-1}:Z_p)$, then we have $\bar{h}_{1,0^*}(e_{2i(p-1)}) = cx_i + x$ $\bar{h}_{1,0^*}(e_{2i(p-1)}) = c\beta_p x_i + y, \quad i = 1, 2, \cdots [(2m+1)/(p-1)]$ $\bar{h}_{1,0^*}(e_j) = 0 \quad \text{if} \quad j \neq 2i(p-1) \quad \text{or} \quad 2i(p-1) - 1.$

where $x, y \in G_2$, and $c \in Z_p$ is non zero constant not dependent on *i*.

Proof. By lemma 7-6 and lemma 6-3, $h_{1,0} \cdot (e_{2i(p-1)}) = c_i x_i + x, c_i \neq 0$, $x \in G_2$. We shall prove that c_i is indepent on *i* by induction. Assume $c = c_1 = \cdots = c_{i_{0-1}}$ for $i_0 > 1$. By lemma 7-7, there exists r > 0, such that $P_*^r(e_{2i_0(p-1)}) = ae_{2(i_0-r)(p-1)}$, or $P_*^r(\beta_p e_{2i_0(p-1)}) = a\beta_p e_{2(i_0-r)(p-1)}$, for some $0 \neq a \in Z_p$. And since $x_i = h_{0*}(e_{2i(p-1)})$ for $h_0 : L_p^{(2m+1)} \rightarrow \Omega_0^{n-1}S^{n-1}$, $P_*^r(x_{i_0}) = ax_{i_0-r}$ or $P_*^r(\beta_p x_{i_0}) = a\beta_p x_{i_0-r}$. So that $\bar{h}_{1,0} \cdot (P_*^r e_{2i_0(p-1)}) = \bar{h}_{1,0} \cdot (ae_{(i_0-r)(p-1)}) = acx_{i_0-r} + x'$ or $\bar{h}_{1,0} \cdot (P_*^r \beta_p e_{2i(p-1)}) = ac\beta_p x_{i_0-r} + y'$ for some, x' or $y' \in G_2$. On the other hand by naturality of P_*^r or $P^r \beta_*$, $\bar{h}_{1,0} \cdot (P_*^r e_{2i_0(p-1)}) = P_*^r(\bar{h}_{1,0} \cdot (e_{2i_0(p-1)}) = P_*^r(c_{i_0} x_{i_0} + x)$ $= ac_{i_0} x_{i_0-r} + P_*^r(x)$ or $\bar{h}_{1,0} \cdot (P^r \beta_p e_{2i_0(p-1)}) = P_*^r \beta_p (\bar{h}_{1,0} \cdot (e_{2i_0(p-1)})) = P_*^r \beta_p (c_{i_0} x_{i_0} + x)$ $= ac_{i_0} p_x_{i_0-r} + P_*^r \beta_p x$. On the other hand by the result of Nishida [11], $P_*^r(x)$, $P_*^r \beta_p x \in G_2$. This shows $c_{i_0} = c$. The results that $\bar{h}_{1,0} \cdot (e_j) = 0$ for $j \neq 2i(p-1)$, 2i(p-1) - 1, follows from the Remark in §5 that \bar{h}_1 factors through $B \sum_p (t)$ as follows, $\bar{h}_1 : L_p^{(2m+1)} \to B \sum_p (t) \to G_p(pn)$.

7-6. Proof of Lemma 6-5. We are given an element $e_i \bigotimes_{\pi_p} (Q_1 \beta_p^* x_j)^p \in H_*(W^{(2m+1)} \times \pi_p (\Omega_0^{n-1} S^{n-1})^p : Z_p)$ where $J = (\varepsilon_1, j_1, \cdots, \varepsilon_r, j_r), r \ge 0$. By proposition 1-9 the following diagram is commutative.

$$\begin{array}{c} H_{*}(L_{p} \times Q_{0}S^{0}) \xrightarrow{id \times \bigtriangleup_{p}} H_{*}(W \times \pi_{p}(Q_{0}S^{0})^{p}) \\ \downarrow h \times id \qquad \qquad \qquad \downarrow \theta \\ H_{*}(Q_{p}S^{0} \times Q_{0}S^{0}) \xrightarrow{\wedge} H_{*}(Q_{0}S^{0}) \end{array}$$

On the other hand by proposition 5-8, the following diagram is commutative.

$$\begin{array}{c} H_{*}(L_{p} \times Q_{0}S^{0}) \xrightarrow{id \times \Delta_{p}} H_{*}(W \times \pi_{\circ}(Q_{0}S^{0})^{p}) \\ \downarrow \bar{h}_{(1,0,\ldots,0)} \times \overline{l}_{(1,0,\ldots,0)} & \downarrow \bar{\theta}_{(1,0,\ldots,0)} \\ H_{*}(QS_{0} \times Q_{0}S^{0}) \xrightarrow{\wedge} H_{*}(Q_{0}S^{0}) \end{array}$$

We can choose an element $x \in H_*(L_p \times Q_0 S^0)$ such that $(id \times \Delta_p)_*(x) = e_i \otimes (Q_J \beta_p^* x_j)^p$. Then by lemma 2-11, x is of the form $\sum c(k, I, \varepsilon', l) (e_k \otimes Q_I \beta_p^* x_l)$, where $j \ge 0$, $I = (\varepsilon_1, i_1, \cdots, \varepsilon_r, j_r)$, $\varepsilon' = 0$ or 1, and $l = 0, 1, 2, \cdots$. So $Q_i Q_J \beta_p^* x_j = \sum c(k, I, \varepsilon', l) (h_*(e_k) \wedge (Q_I \beta_p^* x_l))$. On the other hand $\bar{\theta}_{(1,0,\ldots,0)*}(e_i \otimes Q_J \beta_p^* x_j)^p) = \sum c(k, I, \varepsilon', l) (\bar{h}_{(1,0,\ldots,0)*}(e_k) \wedge (Q_I \beta_p^* x_l)) = \sum c(0, I, \varepsilon', l) (\bar{h}_{(1,0,\ldots,0)*}(e_0) \wedge (Q_I \beta_p^* x_l))$ $+ \sum_{j \neq 0} c(k, I, \varepsilon', l) (\bar{h}_{(1,0,\ldots,0)*}(e_k) \wedge (Q_I \beta_p^* x_l))$. By lemma 7-8, $\bar{h}_{(1,0,\ldots,0)*}(e_k) = c \cdot h_*(e_k) + x$, if $k \neq 0$, and $x \in G_2$, $c \neq 0$. And by extension of proposition 2-8, iv), Cartan formula, and extension of proposition 2-10 shows that $x \wedge (Q_I \beta_p^* x_l) \in G_{p^{r+1}+1}$, and by lemma 7-4, $h_*(e_0) \wedge (Q_I \beta_p^* x_l) = \bar{h}_{(1,0,\ldots,0)*}(e_0) \wedge (Q_I \beta_p^* x_l)$ belongs to $G_{p^{r+1}}$, and decomposable. So $\bar{\theta}_{(1,0,\ldots,0)*}(e_i \otimes (Q_J \beta_p^* x_j)^p) = cQ_i Q_J \beta_p^* x_j + x + y$, for $x \in G_{p^{r+1}}$, x: decomposable, and $y \in G_{p^{r+1}+1}$. This shows the lemma.

7.7. Proof of Lemma 6-6. By proposition 5-9, $\bar{\theta}_{(1,\ldots,1)*} = \bar{\theta}_{p^*}$. If i = 0, then $\bar{\theta}_{p^*}(e_0 \otimes (Q_J \beta_p^* x_j)^p) = \bigwedge_*((Q_J \beta_p^* x_j)^p) = \bigwedge_*((Q_J \beta_p^* x_j) \otimes \cdots \otimes (Q_J \beta_p^* x_j))$, where $\bigwedge : \Omega_0^{n-1} S^{n-1} \times \cdots \times \Omega_0^{n-1} S^{n-1} \to \Omega_0^{(n-1)p} S^{(n-1)p} \to G_0(pn)$. So this element belongs to $G_{p^{pr+p-1}}$. So lemma is valid for this case. By Remark 5-12, $\bar{\theta}_{p^*}(e_i \otimes x^p) = 0$, if $i \equiv 0 \mod (p-1)$ or (p-2) or 2(p-1)-1. So we can assume i = p-2or p-1. And we shall prove in the case i = p-2, when i = p-1 the proof is similar. By proposition 5-11, the following diagram is commutative:

$$\begin{array}{c} H_{*}(W^{(2m+1)} \times \pi_{p}(\mathcal{Q}_{p}^{n-1}S^{n-1} \times \mathcal{Q}_{0}^{n-1}S^{n-1})^{p}) \xrightarrow{(id \times (\circ)^{p})_{*}} H_{*}(W^{(2m+1)} \times \pi_{p}(\mathcal{Q}_{0}^{n-1}S^{n-1})^{p}) \\ \downarrow (\bigtriangleup \times id)_{*} & \downarrow \tilde{\theta}_{p}^{*} \\ H_{*}((W^{(2m+1)} \times W^{(2m+1)}) \times (\mathcal{Q}_{p}^{n-1}S^{n-1} \times \mathcal{Q}_{0}^{n-1}S^{n-1})^{p}) & H_{*}(G_{0}(pn)) \\ \downarrow & \downarrow & \tilde{\theta}_{p}^{(p)} \times \tilde{\theta}_{p}^{*} \\ H_{*}(W^{(2m+1)} \times \pi_{p}(\mathcal{Q}_{p}^{n-1}S^{n-1})^{p} \times W^{(2m+1)} \times \pi_{p}(\mathcal{Q}_{0}^{n-1}S^{n-1})^{p}) \longrightarrow H_{*}(G_{p}(pn) \times G_{0}(pn)) \end{array}$$

On the other hand $Q_J \beta_p^* x_j \in H_*(\Omega_0^{n-1}S^{n-1})$ belongs to the image of $B_r \supseteq H_*(\Omega_p^{n-1}S^{n-1} \times \Omega_0^{n-1}S^{n-1})$ by $(\circ)_*$, where B_r is the submodule of $H_*(\Omega_p^{n-1}S^{n-1}) \otimes H_*(\Omega_0^{n-1}S^{n-1})$, generated by $(\beta_p^* x_k) \otimes (Q_I \beta_p^{\epsilon'} x_l)$, $k = 0, 1, \dots, \varepsilon$, $\varepsilon' = 0$ or 1, $l = 0, 1, 2, \dots, |I| = r - 1, r \ge 1$. We shall prove this lemma by induction or r.

i) r = 1. It is sufficient to prove $(\circ)_*(\bar{\theta}_p \times \bar{\theta}_p)_*(\bigtriangleup \times id)_*(e_{p-2} \otimes (\beta_p^* x_k \otimes \beta_p^* x_l))$ belongs to $G_{p^{2}+1}$. $(\bigtriangleup \times id)_*((e_{p-2}) \otimes (\beta_p^* x_k \otimes \beta_p^* x_l)^p) = \sum_{i_1+i_2=p-2} (-1)^*(e_{i_1} \otimes (\beta_p^* x_k)^p) \otimes (e_{i_2} \otimes (\beta_p^* x_l)^p)$. On the other hand $\bar{\theta}_p^{(p)}_*(e_{i_1} \otimes \beta_p^* x_k)^p) = 0$ except the case $i_1 = 0$, p - 2, and so on $\bar{\theta}_{p^*}(e_{i_2} \otimes (\beta_p^* x_l)^p) = 0$. So that $(\bar{\theta}_p^{(p)} \otimes \bar{\theta}_p)_*(\bigtriangleup \times id)_*(e_{p-2} \otimes (\beta_p^* x_k \otimes \beta_p^* x_l)^p) \otimes \bar{\theta}_{p^*}(e_0 \otimes (\beta_p^* x_l)^p) + (-1)^* \bar{\theta}_p^{(p)}_*(e_0 \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_{p-2} \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_0 \otimes (\beta_p^* x_l)^p) + (-1)^* \bar{\theta}_p^{(p)}_*(e_0 \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_{p-2} \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_0 \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_{p-2} \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_0 \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_{p^*}(e_{p-2} \otimes (\beta_$

ii) We assume that lemma holds when $r \leq r_0$, $r_0 \geq 1$. We shall prove $(\circ)_*(\bar{\theta}_p^{(p)} \times \bar{\theta}_p)_*(\triangle \times id)_*(e_{p-2} \otimes (\beta_p^* x_k \otimes Q_I \beta_p^{'} x_l)^p)$ belongs to $G_{p^{r_0+2}+1}$, where $I = (\varepsilon_1, j_1, \cdots, \varepsilon_{r_0}, j_{r_0})$. $(\bar{\theta}_p^{(p)} \times \bar{\theta}_p)_*(\triangle \times id)_*(e_{p-2} \otimes (\beta_p^* x_k \otimes Q_I \beta_p^{'} x_l)^p) = \bar{\theta}_p^{(p)}_*(e_{p-2} \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_p^*(e_0 \otimes (Q_I \beta_p^{*'} x_l)^p) + (-1)^* \bar{\theta}_p^{(p)}_*(e_0 \otimes (\beta_p^* x_k)^p) \otimes \bar{\theta}_p^*(e_{p-2} \otimes (Q_I \beta_p^{*'} x_l)^p)$. Then lemma in this case is proved by using induction dividing two cases a) deg $\beta_p^* x_k > 0$, deg $(Q_I \beta_p^{*'} x_l) > 0$, b) deg $\beta_p^* x_k = 0$, deg $(Q_I \beta_p^{*'} x_l) > 0$. And these proves the lemma.

References

- [1] J. Adem, The Relations on Steenrod Reduced Powers of Cohomology Classes. Algebraic geometry and Topology. Princeton.
- [2] S. Araki and Kudo, Topology of H_n -spaces and H-squring operations, Memories of the Faculty of Science, Kyushu Univ. 10. 85–120 (1956).
- [3] W. Browder, On differentiable Hopf algebras. Transaction of the Amer. Math. 153–176 (1963).
- [4] E. Dyer and R.K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84. 35–88 (1962).
- [5] I.M. Hall, The generalized Whitney sum. Quart. J. Math. 16. 360-384 (1965).
- [6] T. Kambe, The structure of K_d -rings of the lens spaces and their Applications. Jour. Math. Soc. of Japan, 18. 135-146 (1966).
- [7] P-May, The homology of F, F/0, BF, preprint.
- [8] J. Milnor, On characteristic classes for spherical fiber spaces, Comment. Math. Helv. 43. 51-77 (1968).
- [9] J. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math. 81. 211–264 (1965).
- [10] M. Nakaoka, Cohomology theory of a complex with a transformation of prime period and its applications, Jour. of the Inst. Poly. Osaka City Univ. 7. 52-101 (1956).
- [11] G. Nishida, Cohomology Operations in iterated loop spaces, Proc. of the Japan acad.
 44, No. 3. 104-109 (1968).

- [12] F.K. Peterson and H. Toda, On the structure of $H^*(BSF:\mathbb{Z}_p)$ Jour. of Math. of Kyoto Univ. Vol. 7. No. 2. 113–121 (1967).
- [13] N.E. Steenrod, Cohomology operations. Ann. Math. Study. 51. (1962).
- [14] A. Tsuchiya, Characteristic classes for spherical fiber spaces, Proc. of the Japan acad., 44. No. 7, 617-622 (1968).
- [15] A. Tsuchiya, Characteristic classes for P.L.-micro bundles, Nagoya Math. Journal. Vol 43.

Mathematical Institute, Nagoya University.