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By the systematic use of Fourier transforms and suitable weight
functions L. R. Volevich and B. P. Paneyakh brought many classes of
spaces of distributions (including the Sobolev spaces) and their topological
duals under the one unifying definition. The main purpose here is to demon-
strate that the representation of multipliers between pairs of these spaces
(that is, continuous linear operators from one space into another which
commute with translations) may be related to the representation of multi-
pliers between Lv and L". Also, complete representations of the multipliers
from Qi and ^", the space of 'rapidly decreasing' functions, into Sf", the
space of temperate distributions, are given. The proofs of these results
depend heavily upon the boundedness theorem 2.3, which also provides a
means of establishing new sufficient conditions for a distribution to be
temperate.

1. The spaces of distributions H*

Some familiarity with the elementary properties and topologies of the
(distribution) spaces first described by Schwartz (see [9], I & II) will be
assumed. For example: @{Q), the inductive limit of Fre'chet spaces 3>{K),
K ranging over compact subsets of Q, where Q is an open subset of R",
3l'(Q) and Q>m{K) ([9], Chapitre I, §§ 2, 3; for convenience, we write
@{K) in place of (@K), etc.); Sf and ST ([9], Chapitre VII, §§ 3, 4). As
usual, 3) will denote 3)(Rn) and, unless stated otherwise, 3i'(Q) and 9"
will be considered to be equipped with their strong topologies.

If 1 g; p, q ^ oo, denote by L\ the set of / e Sf" satisfying

(1.1) H / * ^ ^ const. | |V | | , for y, e f,

where H-H, denotes the usual norm on the space Lv = L"(Rn). The space
L\, along with Mq

p = JTLJ, the space of Schwartz-Fourier transforms of
elements in L\, has been extensively studied with an aim to providing it
with a more concrete description (see, for example, [3], [4] and [6]; the
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authors of [3] and [4] consider a locally compact Abelian Hausdorff topo-
logical group in place of Rn). The interest in Lp will be made clear by [6],
Theorem 1.2, which asserts that, if T is a multiplier from Lv into L", then
there exists a unique l e l j such that

(1.2) Ty = X*y>

for tp e y ; and conversely, each X e L"p defines via (1.2) a multiplier from
Sf, equipped with the I,"-norm, into L".

A norm / -> Mq
v(f) is defined on Mp as the norm of the map y> -> / * rp,

where / = ^~xf, from Sf, equipped with the Z^-norm, into L", This norm
is precisely the smallest constant which may be used in (1.1).

In [6], Hormander shows that L\ = Mp = {0} for p > q and that
M*CM\ = L°°.

Finally we come to the generalized function spaces H%. These are
essentially those defined and studied in [11], (Hormander [7] also gives
an independent discussion of the spaces H$), although for a different class
of weight functions since we will not require H* to be a module over 2,
but will require that multiplication by the weight functions and their
inverses define continuous isomorphisms from SP onto itself. Denote by 33
the class of C°°(Rn)-iunctions fi with the property that each of fi, p~x,
Dr/n, Drjj,~1 (r ranging over all indices) is of polynomial order at infinity.

1.1 DEFINITION. H% = {y> e ST : <p = ^^(jixp) e Lp}, where fi e 93,
and y> = iFy denotes the Schwartz-Fourier transform of ip.

1.2 Defining a norm on H* by \\ip\\* = H^ll, makes H% isometrically
isomorphic to Lv. Also

(1.3) SeCH%Q9",

where in both cases the embedded space is dense (provided p =/= oo in the
first inclusion) in the enveloping space, and the inclusion maps are both
continuous ([11], p. 67).

1.3 EXAMPLE: THE SOBOLEV SPACE W™. Consider the space Hp, where
1 < p < oo and p(x) = (l + |x|2)m/2, m being any non-negative integer.
The Sobolev space W™ is the space of temperate distributions which, along
with their generalized derivatives of orders not exceeding m, belong to Lv.
When 1 5S p ^ oo, W™ will be equipped with its usual norm, namely
/->• sup {IID'/Hj, : \r\ 5Sj m). It follows easily from a sufficient condition
of Mihlin, refined by Lizorkin (see [11], Lemma 13.1), that, for \r\ ^ m and
1 < p < oo, xrp~1 e Ml where r — {r1, • • •, rn), an w-tuple of non-negative
integers; \r\ = ^ + • • • -\-rn; and xr = xr£ • • • xTj. We will prove that, with
1 < p < oo, the fact that xrp~1 e Mv

v for \r\ ̂  m is equivalent to the state-
ment that Hp coincides, in the sense of topological vector spaces, with W™.
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PROOF. Calderon ([1], Theorem 7), for example, uses xrp~^eMv
v,

\r\ ^ m, to prove that Hp coincides with W™. Alternatively, assume that
B.% and W™ coincide. Let y> e V. Then J^-^p"1^) e Hp

p = W™ and so
D^J^-^p-1^)) e Lp for \r\ ^ m, where Dr = Drf • • • Dr

n» and D{ denotes
differentiation, in the sense of distributions, with respect to the i-th.
natural co-ordinate function on Rn. Now

•F-^z'p-1) *y> = D'd—i^jr-ip-1) * f = (—iy^D'i&'-ip-1 * y>)

where i2 = — 1. Applying the 'exchange formula' ([9], II. p. 124) to the
last term shows that it equals (—i)'r|Dr(Jr~1(p^1y)) which, from the above
discussion, belongs to Lp. To prove that xrp~1 e Mv

v, or equivalently,
that ^r~1{xrp~1) e Lp

p, it will suffice to show that the linear operator
w : f -> ^r~1(xrp~1) * y> is continuous from Lv into Lp (see (1.1)). Since
w(y>) = ^r-1(xrp~1ip) and IF, !F~X and multiplication by C°°-functions of
polynomial order are continuous operators from S/" into &" it follows that
the graph of w is closed. Banach's original version of the 'closed graph'
theorem yields the required continuity of w.

As is commonly done, the normed dual of W™, 1 sS p < oo, will be
denoted by W y , where l/p'+l/p = 1. When 1 < p < oo, it follows
readily that this dual is precisely H%,, where p'(x) = p-1(x) = (l + [a;|2)~m/2

(see [11], p. 66).

2. Preliminary results on temperate distributions

2.1 & (and J^""1) defines a continuous isomorphism from Sf and Sf"
onto y and Sf" respectively ([9], Chapitre VII, § 6). Multiplication by /J,
(and [i-1) e S3 is a continuous isomorphism from S? onto itself. (This is
evident from the definition of S3.)

The topology of SP may be defined by the sequence of seminorms

(2.1) SB(v) = sup{( l + M)»|Z)'v>(a;)|:M ^ p , x e R"}

for p = 0, 1, 2, • • •. Let S'p denote the topological dual of Sf equipped with
the norm Sv(-). The natural norm of S'p will be denoted by S'p(-). It is not
difficult to show that U^i^p = 9"• For completeness, we include the
following known result.

2.2 LEMMA. A set B in &" is (weakly or strongly) bounded if and only if
it is bounded in some S'm.

PROOF. Since 9 is barrelled, every weakly bounded subset of 9" is
equicontinuous ([2], 7.1.1), a fortiori strongly bounded. Let B be a strongly
bounded set in Sf", that is

sup {|</, v>| : / e B, tp e U} < co
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for any bounded set U in y . Then B is bounded on some open non-void
neighbourhood of 0 in Sf, V = {y> : Sm{y>) < 6} say ([2], 0.3.18 and (2.1)
above). The converse is evident.

2.3 THEOREM. Let <% be a set of continuous linear operators from
into £f" which is {weakly or strongly) bounded at each point of 2{Q), where Q
is an open subset of Rn. Then to each non-void compact subset K of Q there
corresponds an integer m such that ^U is equicontinuous from @{K), equipped
with the 2>m{K)-norm, into Sf".

PROOF. Since 3){Q) is the internal inductive limit of spaces @(<o),
co a relatively compact subset of Q, the restrictions of each u in ffl to 3>{K)
are continuous. Now Qi{K) is a Frechet space whose topology is defined
by an increasing sequence of norms

Np{y>) = sup {\Drip(x)\ : \r\ ^ m, xeK},

p = 0, 1, 2, • • -. Since 9" = U^.i s». i4 f o l l o w s t h a t &" = U ^ ? * , .
where Bv= {f e S'p : S'p{f) ^ 1}. Now each Bp is strongly (even weakly)
closed in &". (Let {/J be a directed family in Bp converging weakly in 9"
to /; that is, </, \f) = lim^ Qu y>y for each y> e Sf. Then, for each index i,
!</„?>! ^S,\ip) for all y>ey, and so \(f, v>| ^SB{y>) for all y e ^ ;
that is / e BP.) Thus (9BP}~a=1 forms a countable, closed, convex, balanced
covering of Sf".

For each qBv we define

Clearly the V{q, p) are closed, convex and balanced. Moreover, since °ll is
bounded at each point, they form a countable covering of 3){K). (Let
ip e Qi(K). Then &{y) = {uf : u e ^ } is bounded in 9" and so the previous
lemma shows that this set must belong to some qBv. Then y> belongs to the
corresponding V{q, p).)

Now 3s{K) is metrizable and complete so that, by the Baire category
theorem, 2{K) is non-meagre in itself. This assures the existence of positive
integers k, k' such that V(k', k) has non-void interior. So °M maps a non-void
open subset V(CV(k',k)) of @(K) into a bounded subset of ST.
{%{V) = {uf : u e %, y> e V} is bounded since it is a subset of k'Bk.)
We may suppose V is of the form f0

JrU where U = {y> : Nm(f) < A}. The
set ^(y0) is bounded in 9", by hypothesis, and therefore so is ^(U). This
implies that °il is equicontinuous from @i{K), equipped with the 2m{K)-
topology, into 9", since the fixed bounded set <%{U) is, by definition,
absorbed by any neighbourhood of 0 in 9". This completes the proof.

The following is an application of the above theorem which improves
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results of Schwartz (see [9]; VII, Thioreme VI, 2° et 3°) by giving weaker
sufficient conditions for a distribution to be temperate.

2.4. COROLLARY. Let X be a distribution and Q some non-void open
subset of Rn. Then for X to be temperate it is necessary and sufficient that
either

(1) X*xpe9" for each xpe3>{Q),

(2) Xxp € 9" for each xp e 3s (Q).

PROOF. The necessity is obvious in both cases. Let X * xp e 9"
(Xxp e 9") for each xp e@(Q). Clearly this hypothesis will be satisfied for
xp e 3)(h-{-Q), where heRn, so that without loss of generality we may,
and will, assume that Q is a neighbourhood of zero. After introducing
operators u{ : xp ->- X( *xp (vt : xp -> Y\xp) where Xt = X * d{ (Yt = Xd()
belongs to Sf" and {<5JSa is a regularizing sequence (see 3.1) in 3>{Q), the
proof follows along exactly the same lines as that of Theorem 3.1, finally
showing that {X(} ({YJ) is bounded in 9".

3. Multipliers with range in 9"

3.1. THEOREM. Let T be a multiplier from S> into Sf". Then there exists
a unique X e Sf" such that

(3.1) Txp = X*xp

for xp e 2. Conversely, each X e 9" defines a multiplier from 3) into 9"
via (3.1).

PROOF. The converse follows readily from well-known properties of the
convolution operator, for example see Schwartz [9], Chapitre VII, Theoreme
XI, and Chapitre VI, Theoreme IX.

Let T be a multiplier from S> into 9", and put Td{ = Xt e 9", where
{<5j} is a regularizing sequence in @); that is jRndi(x)dx = 1 and supp dt -^- {0}
as i -> oo. Since T is also a multiplier from 3/ into 3)' we learn from Edwards
[2], 5.11.3 that T also commutes with convolutions. Thus

(3.2) Txp = lim T(8i * xp) = lim Xt * xp
i i

for each xp e 3i. Let Ttxp = Xt * xp. Evidently the Tt are continuous linear
operators from 3) into Sf", and satisfy the hypotheses of Theorem 2.3.

Let K be any compact neighbourhood of 0 in Rn. Then there exists an
integer m such that {T{} is equicontinuous from 3>m(K) into 9" (where Tt

also denotes the unique continuous extension of T{ to all of <3m{K)). By a
suitable choice of a parametrix xpoe3>m(K) (see [9], (VI, 6; 22) or [2],
5.11.2) we have
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Akip0 = d—cp,

where Ak is the iterated Laplacian, 6 is the Dirac measure, and q> e 3){K).
Thus

(3.3) X{ = Xt * d = Xt * Aky>0+Xi * <p = zl*:7>0+7>.

Now {JTJY>}£LI ^ bounded in SP for each y> e £&m(K). (Let [7 be a convex
neighbourhood of 0 in SP and let y e 3>m{K). Since S(K) is dense in 3)m{K)
and the Tt are equicontinuous, then there exists rpl e £^(i£) such that
Tiy—Tfip! e [7 for i = 1, 2, • • •. But { r ^ J J i j is bounded in SP, whence
there exists X > 0 such that {Tftp^} C AfJ, and so Tfy> e £/+A£/ for
i = 1, 2, • • •. Since C7 is convex, U+MJ = (1+A)C7, so that {rfy} is ab-
sorbed by U, and thus is bounded.) Thus (3.3) shows that the sequence
{Xt} is bounded in ff", is therefore strongly relatively compact ([2], 8.4.7
and 8.4.12), and so possesses a limit point, X say. This completes the proof
since the limit of Xt * y in (3.2) can only be X * y>.

3.2. REMARKS. The multipliers T from £? into Sf" are also represented
exactly by (3.1) with X e Sf". This is evident from the initial references
in the previous proof and the facts that T\3i is a multiplier from 2 into S/",
and 9) is dense in «$". This result will act as a sort of 'blanket' theorem for
the following representations of multipliers between spaces of the form H%.

4. Representation of multipliers of //£

The proof of the theorem in this section uses the idea of (^")-convolu-
tion introduced by Hirata and Ogata [5]; the (^')-convolution of /, g e 9"
exists if and only if « , ) 3 e y implies (/ * a) • (g * /2) e L1. Of course the
existence of the (S?')-convolution implies the existence of the Schwartz
convolution. (See Shiraishi [10] for analogous definitions of the (<$*")-
convolution and Schwartz convolution.) The motivation behind the
(SP)-convolution is that if the (^^-convolution is defined between
/, g e SP, then the exchange formula is satisfied, that is

(4-1) (f*gf = f-g.

4.1. The {SP)-convolution between /eZ.J and (f>eLv is defined, where
1 5S p, q f£ oo, and belongs to L". If p ^ oo, then <f> -*• f * <f> is continuous
from V into Lq.

PROOF. Let a, 0 e ST. Then / * a e L? n Z / , by (1.1), since / e LJ = L£
([6], Theorem 1.3); and ^*J8eLI ) , by Young's inequality, so that
(/ * a) • ($ * /?) e Zp' • Z.11 C L1, as required. When 1 ^ >̂ < oo, the operator
</> -+ f * <f> is continuous from Lp into S ' (Yoshinaga and Ogata [12],
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Theorem 3(2)). But from (1.1) we know that <f> -> / * <f> for <f> e £f may be
uniquely extended to a continuous operator from Lv (1 <^ p < oo) into
L" (1 ̂  q ^ oo). This extension must be <j> -> / * <f> for <f>eLv, so that

When p = oo, we need only consider q = co, since LJ = {0} when
p >q [10]. First construct a sequence {<f>n}C@ which is bounded in L°°
and converges to <j> weakly in £&'. (Eg. <pn = /„ * <5n, where /„ = / for |a;| 5S «
and 0 otherwise.) Since {<f>n} is bounded in 1.°°, {/ *<(>„} is bounded in Z,°°,
and thus is relatively weakly compact, so that it possesses a a(L°°, Z.1)-limit
point in L°°. This limit point in L°° can be none other than / * <f>.

4.2. THEOREM. Let The a multiplier from H% into H"q, where (i, v e S3 and
1 ^ p, q ̂  oo- ^^w tfAerg ea;isis a unique Y e &" satisfying f e ii\vM\
such that

(4.2) 7> = Y * y

/or tp e /?J te<Ae« /> ^ oo, or xp e y zcAe» p = co. Conversely, Y e ^ ^
defines a multiplier from H% when p ^ oo, or 6? equipped with the H^-norm
when p = oo, into H"q via (4.2).

PROOF. Throughout the proof we will assume 1 t== p < oo; the proof
for p = oo follows with minor modification. We begin with the converse.
Let y> e H%, that is there exists <f> e Lp such that y = /J"1^; and let
Y e^^dijvMl), that is there exists feLq

p such that T = jt/vf. Let
«, ̂  e y . Following the lines of the proof of 4.1 we have

y, * a = . T - 1 ^ • a) = «£ * ̂ - i ^ - i f t ) e L»,

since JF-1 (/*-!£) 6 & by 2.1; and Y * /? = / * J*"-1 ( /̂»/J) e Lp', since
/ e Z J = Z#. Thus (Y*/S) • (v * a) e L1 and the (^-convolution of Y
and ^ is defined. Furthermore, application of (4.1) to Y, xp, then to /, <f>,
combined with 4.1, yields

(4.3) 3F~\v (Y * y)A) =&~Hf-$)=f*<l,e L",

that is Y * y> e ̂ . That the operator ip ->- Y * y is continuous from i?£
into /?J follows from (4.3) and the continuity of <j> ->• / * <f> from Lv into Le;
while that it is linear and commutes with translations follows from the
references in 3.1.

Let T be a multiplier from H? into H"q. From 1.2, we know that T\Sf
is a continuous linear operator from ^ i n t o ' ^ " . Thus it satisfies the hypoth-
eses of 3.2 and so there exists Y e Sf" such that (4.2) is valid for ip e Sf.
It remains to show that Y e n\vMq

v.
Now T is continuous, and therefore bounded. We note from Remark 2

of Shiraishi [10] that the conditions of Hirata and Ogata [5] for the exchange
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formula to be valid are satisfied in the following manipulation, with the
supremum taken over non-zero y> e SP;

= sup {\\&-Hv[Y * vTHUW^frM,} W definition,
(4.4) = sup {||.F-i(v[Y * ifr-1G«-V)r)ll«/llvll,} by 2.1,

Since v/ftt e SP' by 2.1, we have M%(v\nY) = | | r | | by (4.4) and the
definition of the norm of Mv. Thus v/fiY e Mp and so we have the required
fBJX\VM%. If p < oo, y is dense in #£ (by (1.3)); and (4.2) for y e f l j
is obtained as the continuous extension of xp -> Y * y> for y> e SP.

REMARKS, (i) In particular cases it may be possible to obtain some
information about (x\v from the following theorem, Theorem 13.1 of [11],
'For H* to be embedded in Hv

q it is necessary and sufficient that vj[i e M\'.
(ii) In the previous proof we noted that en, /? e SP implied xp * a € Lp

and Y *peLv' n Lp, where ip e H* and Y e ^^{jijvMl). But this shows
that ip e ^^p and Y e 3>'Lf n ^ i , , (see Schwartz [9], Chapitre VI, Theoreme
XXV, 2°) which provides an alternative verification that Y * ip exists
{op. dt. Theoreme XXVI, 2°).

The following specialization (cf. [6], Theorem 1.2 and [4], Theorem 2.1)
of 4.1 to the Sobolev spaces mentioned in 1.3 is obvious since here
^^(ji/vMl) =L%. For 1 < p <: 2, 1 S q ^ 2 and m = 0, 1, • • •, this
result was first proved by J. C. Merlo [8] using a completely different
method which relied on a decomposition of elements in Lp.

4.3. COROLLARY. Let T be a multiplier from W™ into W™, where
1 < p, q < oo and m is any integer. Then there exists a unique Y e Lp such
that (4.2) is valid for y> e W™; and conversely.

REMARK. When p = 1 or oo, 1 sS q ^ oo, and m i s a positive integer,
a sufficient condition for an operator from SP, equipped with the PF^-norm,
into W™ to be a multiplier is that it is of the form (4.2) with Y e L\. This
follows readily by noting the continuity from SP with the Z^-norm into LQ

of Drf ->• Y * Drf = Dr(Y *f) for each r : \r\ ^ m. An unpublished result
of I. W. Wright shows that the condition is necessary when p = 1,
1 5g q < oo and « = 1, but no necessary conditions of this nature are
known for higher dimensions when p is 1 or oo.

The author wishes to thank his supervisor, Dr R. E. Edwards, for
discussions and helpful comments during the preparation of this paper,
and for suggesting the final version of Theorem 2.3.
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