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MODULAR FORMS AND THE AUTOMORPHISM GROUP

OF LEECH LATTICE

MASAO KOIKE

Dedicated to Professor Michio Kuga on his 60th birthday

This is a continuation of my previous papers [2], [3], [4] concerning
to the monstrous moonshine.

The automorphism group 0 of the Leech lattice L plays an impor-
tant role in the study of moonshine. Especially it is important to study
theta functions associated with quadratic sublattices of L consisting of
fixed vectors of elements of 0. In this paper, we discuss the properties
that these functions are expected to satisfy in the relation to the mon-
strous moonshine.

The author would like to express his sincere gratitude to Prof.
Kondo and Mr. Lang for their invaluable communications during the
preparation of this paper.

§1-
1.1. Throughout this paper, we use the same notation as in [4] and

[5]. We recall them first.
O has a natural 24-dimensional representation over Q induced by

the action on the Leech lattice. So each element π of 0 is described
by Frame shape with respect to this representation:

π = Π *r% rteZ.

Then deg π = 2] t rt = 24. Let wt π = j 2] rt. We classify every elements
of 0 into the following 3 types:

(1.1) π is called type C if rt ^ 0 for all t ^ 1.

(1.2) π is called type E if wtπ is positive but there exists some t
such that rt < 0.

(1.3) 7r is called type F if wt π = 0.

For each π, we can suitably choose a positive integer N which is a
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multiple of ordτr = l.c.m. of all t with rt Φ 0. Let Q be any Hall divisor

of N9. i.e. Q is a positive divisor of N and (Q, N/Q) = 1. Then we define

Atkin-Lehner's involution WQiN as follows:

πowQtN= π

We denote by S(π) the set of all distinct images of π by WQ%N for all

Hall divisors of N. When TΓ is of type C, we know that S(π) = {7r}.

When π is of type E, for any π' e S(π), we know that

(1.4) TΓ' is a Frame shape of a certain element of O or deg π' == 0.

Moreover, for π of type E, we call π self-conjugate if the following con-

dition is satisfied:

(1.5) If πf e S(π) is not equal to TΓ, then deg π' = 0.

If π does not satisfy the above condition, we call π non-self-conjugate.

For each π, we consider two kinds of modular forms ηπ(z) and <9π(z)

defined as follows:

Π

where η(z) is the Dedekind ^-function and Lπ = {x e L; π x = x}. These are

modular forms of weight wt π.

Concerning to these modular forms, the following problem is very

important.

PROBLEM 1.1. Does there exist a theta function f(z) satisfying that

there exists an element g of jF\ such that

-ίΦ- = TJz) + c , c: constant,

where Tg(z) denotes the Thompson series assigned to g in (1). In Section

4 of [4], we discussed this problem in enlarging the choices of the func-

tions of right hand side.

Concerning to this problem, there is a remarkable conjecture by

Conway and Norton

CONJECTURE 1.1. The notation being as above, and let π be an ele-

ment of 0 of type C or of self-conjugate type E. Then there exists an
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element g of Fx such that

^βL = TJz) + c, c: a constant.

Namely, <9π(z) is a solution for ηπ{z) in Problem 1.1.

&π(z) are given explicitly when π is of type C or π is of self-conjugate

type E which belongs to the monomial subgroup 212 Mu by Kondo-Tasaka

[6] and Kondo [7], For these cases, it is seen that Conjecture 1.1 is true

by [4], [6].

However, when π is of non-self-conjugate type E, we can not expect
- <# (z)

the*"above conjecture is true. In this case, Λ ' have other good prop-

erty in the relation to the moonshine, and moreover, some elements of

self-conjugate type E are also seen to have this property; this is a main

theme of this paper.

1.2. We mainly consider modular functions written by * ^ guided

by a suggestion of Conway and Norton [1] in the following sections, but,

modular functions of a form ^π^z' are also relevant to the Thompson
ηΛz)

series. In this paragraph, we study these modular functions.
Let π — l\ trt and πr — Π ^r* he generalized permutations. We define

the quotient of π by πf as follows:

This is also a generalized permutation.

Let π be any element of O such that S(π) contains an element πf of

degree 0. Then the quotient — is of degree 24.

THEOREM 1.1. For any π and π1 as above, the quotient — is also a

Frame shape of an element of O.

Proof. By speculations on the tables in [5].

Since ηΛ/1t»(z) — ^z\ , V*'\z) i s equal to a Thompson series for some
ηβ.(z) ηπ(z)

element of Fx up to a constant term.

This result will be useful in the following sections.
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§2.

To state our result, we classify elements π of self-conjugate type E

more in detail:

(2.1) π is called type Ex if S(π) = {π}.

(2.2) π is called type E2 if S(π) Φ {π}.

We shall see that all π of non-self-conjugate type E or type E2 have other

good property which is explained a little bit later. We shall state our

results in the following 3 cases:

Case 1. We discuss all π which are of type E2 and S(π) consists of

two elements.

Case 2. We discuss all π which are of type E2 but are not contained

in Case 1.

Case 3. We discuss all π which are of non-self-conjugate type E.

We give the tables of π, N, and S(π) contained in these cases.

Table 1. π in Case 1 (19 elements).

N S(π)\{π} N S(π)\{π}

216

I 8

39

I 3

48

24

26 44

I 4

55

1
24 64

1 2 3 2

3 3 63

1-2
84

42

23 4 82

1*
93

3

2

3

4

4

5

6

6

8

9

Γ6

28

Γ
3 s

I8

24

2" Γ
44

I 5

5
Γ-34

22 62

Γ-23

3-6
I 4

22

Γ-2-43

82

I 3

3

2 33 123

1-4-65

42 122

2-6
Γ-123

2-3-4-6
22 142

1-7
12 152

3-5
1-2-10-20

4-5
22 5 20

1-4
1-4-6-24

3-8
2-3-4-24

1-8

12

12

12

14

15

20

20

24

24

23 3 12
Γ-32

2-6
33 43

1-2-612

I2 T
2-14
3*-52

1 1 5
2-4-5-10

1-20
1-4-102

5-20
2-3-8-12

1-24
1-6-8-12

3-24
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Γ 48

28

2 6
4

π

l
22

23 6
1-3

24 !
' 44

8-24
12 '

6β

33

• 12
42

Table 2.

N

R

2

12

LEECH LATTICE

π in Case 2 (2 elements)

2 36

12 6 3 '

23 32 6
Γ-4-12'

Table 3. All π of type

34

>

1

Γ 84

22 4 2 '

4 7 28
2-14

13 93 Γ
32 '

S(π)\{π}

3 26 3
Γ 6 2 ' 2

2 42-63 I 2

1-3-122 ' 32

Eι (9 elements)

.32 42 122 22

22 62 ' 4-

.6 6
3 32

2 63

4-12

162 Γ 162

•8 ' 2-8

67

2.1. Case 1. For each π, we can associate two kinds of modular func-

tions which appear in the monstrous moonshine [1].

We use the following convention like in [1]: for each element g in Fl9

Tg{z) denotes the Thompson series given in [1] which is of the form

Tg(z) = q-1 + 0 + Σ w = 1 Hn{g)q\ We put tgtC = Tg(z) + c, c: a constant,

and if we don't need to specify the constant term c, we simply write tg

instead of tgtC.

THEOREM 2.1. Let π be in Case 1. Then there exists a unique modu-

lar form 6π(z) = 2ϋίΓ«i Un(π)qn satisfying the following conditions.

(2.3) θπ(z) is a theta function of some even integral, positive definite

quadratic lattice.

(2.4) ax(fi) = 0.

(2.5) There exists an element g in Ft such that

(2.6) There exists an element gr in Fx such that

^^- = 1 + βj?1, βx: a constant.
VAz)

(2.7) Let m denote the order of g in the above condition (2.5). Then

there exists a constant aπ such that
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= t m + ( z )

where S(π) = {π, π'} and m + denote the element of Ft given in [1].

Proof. In Theorem 3.2 in [4], we gave all automorphic forms θa(z)

satisfying (2.3), (2.4), and (2.5). Then, by checking the condition (2.7) for

each case, we can find a unique solution which is given by the following

table. Each element in Ft is written by the Atlas name in [1] like mA,

mB, . Here m denote the order of the element. By using the formula

of symmetrizations in [1], we see that (2.7) implies (2.6).

Table 4.

π

2 l β

r
3 9

I 3

2Ϊ

2β 4 4

I 4

55

1

2 4 64

Γ - 3 2

3 3 63

1-2

¥
23 4 82

I 2

¥
2 33 123

1 4 63

g

25

35

4C

4C

5 5

6C

Q 7TT
OJOJ

8£J

95

125

28

34

25

26

52

24

33

23

24

32

3

θ(2z; Es)

q°(l,0,54,

θ \2z;

"2
1
1
1

Q°(l,0,12,

q°(l, 0,10,

θUz;
Γ2
1
1
1

em

q°(l, 0,2, ί

' ( * « ! ! •

βXz)

72,0,

1 1
2 0
0 2
0 0

432,270,0, •••)

11
0
0
2 )

64,60,0,160,384, •)

20,0,

i])1

1 1
2 0
0 2
0 0

'•>, 6 , 1 6

3)
a)

20,0, •••)

11
0
0
2. )

. 1 2 , 0 , •'••)
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θ,(z)

I 3 19 3

1 LΔ 12H - 12 3 4 6
2 2 1 4 2 UB 2*

1-7

Γ 152

3-5

l 2 10 20

4-5

ff 5 20

1-4

1 4 6 24

? 3)
Ή 2 i])

MC 1 .(,;[« 1])

20F - 1 θ(z; ]ί gl)

20C 5 eh,;[l »])

24/ 1
3 Q

* O

O Λ OΛ

24C 3

Ήi

Q9

Remark 2.1. In [4], we could not prove that 0,(3) for π = — in

Theorem 1.2 is a theta function. Here we show that this is true. We

consider θπ(z) \ W3tZ, where W3,3 denote the Atkin-Lehner's involution. Then

we see that this coincides with θ(z; E6) up to a constant factor, where E6

denotes the even integral, positive definite quadratic lattice obtained from

Lie algebra E6. This also shows that θπ(z) itself is a theta function.

PROPOSITION 2.1. The notation being the same as above, we have θπ(z)

— ηz,(z) = bπηπ(z), where bπ are non zero constants.

Proof. By comparing Theorem 1.1 and (2.5) in Theorem 2.1, we see

that y*'^' and * ^ correspond to the Thompson series of the same
ηπ(z) ηπ(z)

element in Fx', this implies Proposition 2.1.

Remark 2.2. By comparing (2.6) in Theorem 2.1 and Proposition 2.1,

we see that g1 in (2.6) is the same as g in (2.5).

2.2. Case 2. In Table 2, we put S(π)\{π} = {πu π2, πs} in order.

When π = ̂ —, put θΠ(z) = θfez; Γ̂  ^]) a n d w h e n
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I})-
PROPOSITION 2.2. The notation being the same as above, we have θπ(z)

— ηκ,{z) = bπ,ηπ(z) with some non zero constants bπ, for any πf 6 {πu π2, τr3}.

Proof. For each π, the levels, characters and weights of ηπ(z), ηκ.(z)

and θπ(z) are the same, so we get the proof by computing a few Fourier

coefficients of these modular forms.

THEOREM 2.2. The notation being the same as above, we have the fol-

lowing formula.

(2.8) When π = =^-t, u*

θπ(Z) _ -, 9/_i θπ(z) _ -i ,

() ()

(2.9) WΛen Γ = 2 > '6 '1f, α β

t/6E,4 j

_ t

f
ci2/,o >

_ 1 I

Proo/. The statement for ff^ ' can proved by using Theorem 3.2 in

[4]. Other statements are proved by combining this result and Theorem

1.1 and Proposition 2.2.

We put

JTΓW y-τ- 9 J*AZ) ZΓY ί o r ^ — 1, A o .

Then we have COROLLARY 2.1.

COROLLARY 2.1.

(2.10) When π = ~ 3 , we have
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(2.11) When π = 2>'6'1f, we have

jπ(z) - 2jni(z) + 3jjz) + 6jπ£z) = ί12+fβ.

Proof By combining (2.8) with the formula of symmetrizations in [1],

we can see that the left hand side of (2.10) is equal to

ttB9i - 3 - (he - t6E) + 4 + (t6D - t6E) + 12 + (t6B - t6E).

Then, by using the formula in p. 319 in [1], we get the proof. (2.11) can

be proved by the similar method.

As is seen in Theorem 3.2 in [4], θ(2z; ί̂  Ώj and θUz; L

satisfy the conditions (2.3) and (2.4) in Theorem 2.1 for the above π.

Moreover, when π is of type Ely we showed in Theorem 1.2 in [4]

that there exists a unique solution θπ(z) satisfying the above conditions

(2.3), (2.4) and (2.5). Of course, we should remark that some of them are

not yet proved to be theta functions. Then, to strengthen Conjecture 1.1,

we propose the following

CONJECTURE 2.1. The notation being as above, for any π of self-conjugate

type E, we have

(2.12) θπ(z) = θ(z; L*).

By the result of Kondo [7], we know that this conjecture is true if

7Γ belongs to the monomial subgroup 212 M24 of 0.

§3.

Case 3. In this case, we know that there exists no solution of Prob-

lem 1.1. So there is no clue to search for θ(z; Lπ) through considering

Problem 1.1.

On the other hand, Prof. Kondo [7] informed us the explicit descrip-

tion of θ(z;Lπ) for all π in 212 M24. To be lucky enough, 212 M24 contains

several elements of non-self-conjugate type E. His result is as follows:

Table 5.

I4

π

2
34

65

5

θ(z;

a - 5E™
+ 9 E&)

5 2>3
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7Γ

O5 O4 ί?

I4

12 2 1O3

52

23 52 10
I 2

1-6-10-15
3-5

2-3-5-30
1 1 5

12 4-62 12

32

22 32-4 12
I2

9 £ <
5 '

3 '

5 £ (

3 x

θ(z; L')

„ 9 „„, 9 „
'6 5 6 α 5 '

i l l )
ί i ] )
+ 3E& - 3£$ -f

+ .1

(3) + 9 K<3»

'• 5 2 > 3

i..» + y^,5

" *̂ 4 3

Here we use the same notation as in Appendix of [4]. ψ> denotes the

Dirichlet character modulo 12 defined by ψ(d) = (— l)(*-1)/2(—V Fourier

coefficients for small n of these forms are given in Table 8.

θ(z* Lπ)

But we can not see the relation between — ^ — - and modular func-

tions appeared in monstrous moonshine directly. So, like in Section 2,

we had better to consider linear sums of these functions.

There are 15 elements of non-self-conjugate type E. Some of them

are transformed into each other by the actions of Atkin-Lehner's involu-

tions, and there exist only 5 different S(π) as follows:

Table β.

7Γ N S(π) = {TΓI, π 2 ,7Γ 3 , π 4 }

25 34-6 6 25 3 4 6 Γ 2 65 Γ-3-6 4 1 2 4 3 5

I 4 I 4 3 4 24 64

23»52-10 1 0 2 3 .5 2 10 12 2 1O3 13-5»1O2 l»2 2»5 3

I 2 I 2 ' 52 ' 22 ' 102

1-6-10-15 3 0 1-6-10-15 2-3-5-30 2 3 5 30 1-6-10-15
35 35 ' 1-15 ' 6 10 ' 2-30
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N S(π) = {πιt π2, πs, τr4}

22 9 18 l g 22 9 18 1-2-182 12 9 18 1 2 92

1-6 1-6 6-9 2-3 3 1 8

22 32 4 12 1 9 22 32 4 12 Γ 4 62 12 1 22 312 2 1 3 42 62

122

Each S(π) consists of four elements and we denote them by πl9 π2, τr3

and τr4 in order. This ordering of elements of S(π) has an important

meaning which we explain now. They satisfy the following properties in

common:

(3.1) πί9 τr2 and π3 are elements of O and deg ττ4 = 0.

(3.2) If one of elements in S(π) belongs to the monomial subgroup

212 M24, then only πx and π2 belong to this subgroup.

Moreover, the first four S(π) in Table 6 satisfy the following prop-

erties in common:

(3.3) Let τri, π\ and π\ denote elements of O by taking the second

power. Then Frame shapes of πl, and π\ coincide with each other and

its weight is not equal to that of πlt

(3.4) The weight of Frame shape of π\ is equal to that of τr3.

Table 7.

π

25 34 6
I 4

23 52 10
I2

1-61015
3-5

22 9 18
1-6

22 32 4 12
I2

Γ 36

14 54

1 3 5 15

Γ 93

32

12 22 32 62

39

I 3

5 5

1

1 2 15 2

3-5

93

3

Γ 3 64

24
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Table 8.

π

25 34 6
I 4

23 52 10
I 2

l 6 10 15
3-5

22 9 18
1-6

q\l, 0,54,72,0,432,270,0,918, •)
q°(l,72,270,720,936,2160,2214,3600,4590, •)

g\l, 0,10,20,0,20, 0, 60,50, •)
q°(l, 20,30, 60, 60,120,40,180,150, •)

>«i il)
*Πl I})

THEOREM 3.1. Let π and S(π) be in Table 6 except for the last one.

The notation is the same as above. For such π, let θπχ(z) and θX2(z) be

given in Table 8. Put jπ£z) = θ'&} for ί =-• 1, 2 and jπs(z) - θ*&] ,

where θπz{z) — θπi(\z). Then these modular functions satisfy the following

properties:

(3.5) θπ.(z) for i = 1, 2, 3 are theta functions of some even integral,

positive definite quadratic lattices.

(3.6) There exist some elements g and gf in Fλ such that

where bu ct are constants depending on πt but g and gf can be chosen to

depend only on π.

(3.7) There exist some elements g, gr and gt for i = 1, 2, 3 in Fx such

that

j*i(z) = tg + tg, - tgi,

where g and gf can be chosen to depend only on π.

Proof. The proof of (3.6) is done by giving explicitly these elements

in Fx as follows:
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Table 9.

75

2

1

1

23

I 2

I 3

π

5 3
I 4

4 2
34

5 3
24

52

Γ

2
52

5
22

'•6

65

64

•10

103

102

g

6A, - 4
6C
6I>
GE

6,4,4
65
6C
6£

6A,5
65
6D
6£

10A, - 2
105
IOC
10£

10A,2
105
102)
10E

10A,3
IOC
10D
10E

g'

6 £ , - 5
6E,S
6£,4
65,12

6£J,3
6£,4
6E,-5
6D,-4

6E,4
6£,3
6£,-5
6C,-6

10£, - 3
10£,l
10£J,2
10A6

10£,l
10E, - 3
10£,2
IOC, - 2

10£,2
10E, - 3
10£,l
105, - 4

c

-72
- 8

9
1

8
9

72
81

- 9
- 8
72
64

-20
- 4

5
1

1
20

5
25

- 5
20

- 4
16

π

1-61015
3-5

2 3 5 30
1-15

2 3 5 30
6 1 0

22 9 18
1-6

1-2182

6-9

12 9 18
2-3

g

305,1
30C
30F
30G

305, - 1
30A
30C
30G

305,0
30A
30F
30G

185, - 1
18A
18C
18Z>

185,1
18C
18£
18D

185,2
ISA
18C
18D

g'

30G,0
30G, - 2
30G, - 1
30A, - 3

30G, - 2
30G, - 1
30G,0
30F,l

30G, - 1
30G, - 2
30G,0
30C, - 1

18 A - 2
18Z>,1
18A0
18^,3

18D,0
18 A - 2
18D,1
18A, - 1

18D,1
18Z>, - 2
18A0
18C, - 3

c

- 2
2

- 1
1

- 2
- 1

2
1

1
2
2
4

- 6
3

- 2
1

2
6
3
9

- 3
6

- 2
4

For each π, each line means that jπ — tg + c-t~}. If g and gf have
the same order as that of π, those given in the above are all solutions
satisfying the equation in (3.6).

For each π, we see that the elements g and gf appeared in the first
line are the same for all πi9 i = 1, 2, 3. So we get the proof of (3.6).
For example, the first line shows that

725.34.6(2:) = t6A,_4 — 72ί 6~i )_5.
14

Here the constant term of jπ(z) appears in the second column, we only
write it once for each π.
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From the above table with the formulae of symmetrizations, it follows

(3.7) for the following data. For example; let π = ?!l?jJ>. Then jπi(z) =

UA — 72ί6"i,_5. The symmetrization shows that t6B = t6E + 72ί6~i}_5, hence we

have jKι(z) = t6Λ 4- t6E — t6B. When we apply the same argument to the

second line with the symmetrization t6D = t6E — 8ί6~i}3, we have jπi(z) =

Uc + t6D — t6E. So we get the relation between Thompson series t6A +

2t6E — t6B — Uc — tQD — 0 which is already described at p. 319 in [1]. From

the third and fourth line, we obtain the same equations as aobve.

Table 10.

π g gf gi gi gz

2 5 * 3 4 ' 6 6A 6E 65 6D 6C
I4

23 52 10
I 2

1 6 . 1 0 1 5
35

22 9.18
6 9

2 2 3 2 4 1 2

10A 10E 10D IOC 10B

SOB 30G 30A SOF 30C

18B 18D 18E 18A 18C

12A 127 12H 12B 12E

Remark 3.1. Let m denote the order of π. Then the symbols of g

and gr appeared in (3.6) and (3.7) are equal to m+ and m— respectively,

except for 30G.

Remark 3.2. The following fact was remarked by Mr. Lang; since

the weight of ττ3 and π\ are equal, we see that Z/3 = L**, so θ(z\ Lπz) =

θ(z; L*'). In the above cases, all π\ are of self-conjugate type E, and we

already obtained the conjectured form of its associated theta function.

We can see that these results are compatible with the above remark.
22.32.4.12

In Theorem 3.1, we can not deal with the case π = —-—-—-— in the

I 2

same manner, because you see in Table 7 that π does not satisfy (3.9).

But we can obtain the following similar result.

Let {πl9 π2, τr3, τr4} be the same as in Table 6. For i = 1, 2, put θπi(z) =

θ(z; Lπi) given in Table 5. Put

https://doi.org/10.1017/S0027763000001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001148


LEECH LATTICE 77

•4 2 2 2'
2 4 1 1

1 4 1
1 1 4

= g°(l, 0,14,12, 0, 40,18, 0, 62, 40, •),

and put Λ/2) = for i = 1, 2, 3.

THEOREM 3.2. Under the notation as above, the same statements as
(3.5), (3.6) and (3.7) are true.

Proof. The proof is the same as in Theorem 3.1. We obtain the
following table in this case like Table 9:

π

22 32 4 12
Γ

12 4 62 12
32

1-22 3 122

42

g

12A,
12B
12E
121

12A,
12E
12H
12/

12A,
12B
12H
12/

Table

- 2

2

1

11.

8'

121, - 3
12/, 0
12/, 1
12#,4

12/, 1
12/, - 3
12/, 0
125, - 4

12/, 0
12/, - 3
12/, 1
12E, -2

c

-12
- 3

4
1

- 4
12

- 3
9

3
12
4

16

Summing up the above results, we may conjecture the following

CONJECTURE 3.1. Let π be any element of O of non-self-conjugate
type E. Under the notation as above, we have

θπ(z) = θ(z; L«).

To describe completely the relation between Thompson series of F1 and
modular functions j\(z), we need to study jxtk(z) defined by the following:
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9 2 . Φ . A . 1 9
When π = 2 , we put

Θ.S.Z) = Q°(l. 12, 18, 40, 60, 24, 70, •)

= - £<»+ + 12EZ - 3E$ + AE%

For the remaining π, we put

and define j j z ) =

THEOREM 3.3. Let π be any element of Ό of non-self-conjugate type

E, and let m denote the order of π. Then we have

US?) = tg- tg> ,

where g and gf are given in the Table 10.

Proof. By the direct computations.

Hence, we can describe Thompson series appeared in Theorem 3.1 as

linear sums of jκt(z)9 i — 1, 2, 3, 4. For example:

COROLLARY 3.1. We have

Σsjπi(z) = 3tm+ .
1

§4. Concluding Remark

In Section 2 and Section 3, we describe 6(z; Lπ) explicitly for all ele-
ments π of O at least as conjectures. We study one more nice property
that these modular functions satisfy.

Let π be an element of O. Then, as we see in Section 2, there ex-
ists a suitable integer N such that, for all Hall divisor Q of N, the
image of π by the action of Atkin-Lehner's involution WQ,N becomes also
an element of 0 or has degree 0.

On the other hand, it is known that WQ,N acts on theta functions.
Namely, we know that

where Θ(z; π, Q, N) is a theta function of some even integral, positive
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definite quadratic lattice and c is a constant.
So we ask naturally what is the relation between these actions of

Atkin-Lehner's involutions. The answer is very simple:

THEOREM 4.1. Suppose that π-WQiN is an element of 0. Then

0*.wQ.M = θ(z; π, Q, N).

Proof. θπ(z) can be written as a linear sum of Eisenstein series and
cusp forms. The action of Atkin-Lehner's involution on these modular
forms can be easily seen. When π belongs to Cases 1 and 2, Propositions
2.1 and 2.2 are also useful. So comparing these results with the table of
θπ(z), we can obtain the proof.

It seems interesting to find an intrinsic proof of this theorem.

Added in proof Recently, M. Lang [8] has succeeded in computing
9π(z) for all π in Ό and Conjectures 2.1 and 3.1 are solved affimatively.
Theorem 4.1 also describes the property of $π(z).
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