W. H. Fleming and M. NisioNagoya Math. J.Vol. 93 (1984), 71-108

ON STOCHASTIC RELAXED CONTROL FOR PARTIALLY OBSERVED DIFFUSIONS

W. H. FLEMING AND M. NISIO

§ 1. Introduction

In this paper we are concerned with stochastic relaxed control problems of the following kind. Let X(t), $t \geq 0$, denote the state of a process being controlled, Y(t), $t \geq 0$, the observation process and $p(t, \cdot)$ a relaxed control, that is a process with values probability measures on the control region Γ . The state and observation processes are governed by stochastic differential equations

(1.1)
$$\begin{cases} dX(t) = \alpha(X(t))dB(t) + \int_{\Gamma} \gamma(X(t), u)p(t, du)dt \\ X(0) = \xi \end{cases}$$

and

(1.2)
$$\begin{cases} dY(t) = h(X(t))dt + dW(t) \\ Y(0) = 0 \end{cases}$$

where B and W are independent Brownian motions with values in R^n and R^m respectively, (put m = 1 for simplicity).

The problem is to maximize a criterion of the form

$$J = Ef(X(T))$$

by a suitable choice of admissible relaxed control p. In a customary version of stochastic control under partial observation, $p(t, \cdot)$ is measurable with respect to σ -field generated by the observation process Y(s), $s \leq t$. Instead of discussing the problem of this type, we treat some wider class of admissible relaxed controls (see § 2), inspired by Fleming-Pardoux [8]. Roughly speaking, our problem is the following: Let

Received September 13, 1982.

This research was supported in part by the National Science Foundation under contract MCS 79-03554 and in part by the Air Force Office of Scientific Research under contract AF-AFOSR 81-0116.

(1.3)
$$L(T) = \exp\left\{ \int_0^T h(X(s))dY(s) - \frac{1}{2} \int_0^T |h(X(s))|^2 ds \right\}.$$

Then B and Y turn out as independent Brownian motions under a new probability \mathring{P} , defined by

$$\frac{d\mathring{P}}{dP} = L^{-1}(T)$$

appealing to the so-called Girsanov transformation. For admissibility we merely require that $p(t, \cdot)$ is independent of future increments of $Y(\theta) - Y(s)$, θ , $s \ge t$, and B, with respect to \dot{P} . Moreover we are concerned with q(dt, du) instead of p(t, du)dt. (see Definition 1). Thus the criterion J can be expressed as

$$(1.5) J = \mathring{E}f(X(T))L(T)$$

where \mathring{E} stands for the expectation with respect to \mathring{P} , and X(t) is a solution of the following system equation;

(1.6)
$$dX(t) = \alpha(X(t))dB(t) + \int_{\Gamma} \gamma(X(t), u)q(dt, du).$$

Under Lipschitz continuity and boundedness of α and γ , (1.6) has a unique solution (Theorem 1).

In Section 2 we introduce some metric spaces which are appropriate to our optimization problems. In Section 3 we prove the compactness of spaces of solutions and relaxed controls q. This guarantees the existence of optimal one (Theorem 3).

In the latter half we treat a nonlinear semigroup associated with relaxed control under partial observation. In this case we regard, as the state space, the unnormalized conditional distribution $\Lambda(t)$ of X(t) given past observation and control. Hence $\Lambda(t)$ is a process valued in measures on R^n and satisfying the Zakai equation. Thus our problems turn out as optimization problems of measure valued processes. After we prove the continuity of $\Lambda(t)$ with respect to initial distribution X(0) and data of past observation and control, (see Theorem 5), we construct a nonlinear semigroup S(t), $t \geq 0$, on a Banach lattice of bounded and uniformly continuous functions, defined on the space of measures (Theorem 7). Following Fleming [6], we show that the generator of S(t) relates to a dynamic programming equation, so-called Mortensen's equation.

§ 2. Notations and preliminaries

Let $(\Omega, F, \mathring{P})$ be a probability space. Let B and Y be n-dimensional and 1-dimensional Brownian motions, defined on $(\Omega, F, \mathring{P})$ respectively. Γ is a given convex compact subset of R^k , called a control region. $M(\Gamma)$ denotes the totality of positive finite measures defined on $B(\Gamma)$ (=Borel field of Γ). By $\hat{M}([0\ T] \times \Gamma)$ we denote the set of all mappings λ : $[0\ T] \times B(\Gamma) \to [0\ T]$ such that

- 0) $\lambda(0, A) = 0 \quad \forall A \in B(\Gamma)$
- i) $\lambda(t, \Gamma) = t \quad \forall t \geq 0$
- ii) $\lambda(t, \cdot) \in M(\Gamma)$ for all t > 0
- iii) $\lambda(t, A)$ is increasing in t for all $A \in B(\Gamma)$
- iv) $\sup_{A\in B(\Gamma)} |\lambda(s, A) \lambda(t, A)| = |t s|.$

From (ii) and (iii), λ determines a measure on $[0 \ T] \times \Gamma$ and $\lambda([s, t], \cdot) \equiv \lambda(t, \cdot) - \lambda(s, \cdot) \in M(\Gamma)$, if t > s, and $\lambda([s, t], \Gamma) = t - s$.

Let q be a mapping; $[0 \ T] \times B(\Gamma) \times \Omega \rightarrow [0, 1]$, such that

- v) for all $A \in B(\Gamma)$, $q(\cdot, A, \cdot)$ is $B[0 \ T] \times F$ -measurable
- vi) $q \in \hat{M}([0 \ T] \times \Gamma)$ \mathring{P} -almost surely.

DEFINITION 1. $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ is called an admissible (relaxed) system, if ξ is an *n*-random vector on $(\Omega, F, \mathring{P})$, which is independent of (B, Y, q), B and (Y q) are independent and the increments $(Y(t) - Y(s), t \geq s)$ are independent of $\sigma_s(Y, q) (= \sigma$ -field generated by $Y(\theta), \theta \leq s$ and $q(\theta, A), \theta \leq s, A \in B(\Gamma)$).

DEFINITION 2. The component q of $\mathscr A$ is called a relaxed control, and we denote it by $q_{\mathscr A}$ when $\mathscr A$ is stressed. $\lambda \in \hat M([0\ T] \times \Gamma)$ can be regarded as a relaxed control. $\mathfrak A$ denotes the totality of admissible systems.

Let $\alpha(x)$ be a symmetric $n \times n$ matrix valued function on R^n and r an n-vector continuous function on $R^n \times \Gamma$. We assume the following conditions

- (A1) $|g(x, u)| \leq b$, $\forall x \in \mathbb{R}^n$, $u \in \Gamma$ $g = \alpha, \gamma$
- (A2) $|g(x, u) g(x', u)| \le K|x x'|, \forall x, x' \in \mathbb{R}^n \ u \in \Gamma, g = \alpha, \Upsilon.$

For an admissible system $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ we consider the stochastic differential equation (SDE in short)

(2.1)
$$\begin{cases} dX(t) = \alpha(X(t)dB(t) + \int_{\Gamma} \gamma(X(t), u)q(dt, du) \\ X(0) = \xi. \end{cases}$$

Theorem 1. There exists a unique solution X of (2.1) which is $\sigma_t(\xi, B, q)$ -progressively measurable and has continuous paths.

Proof. We apply a usual successive approximation method. We define X_n in the following way

$$X_{0}(t) = \varepsilon$$

(2.2)
$$X_{n+1}(t) = \xi + \int_0^t \alpha(X_n(s))dB(s) + \int_0^t \int_{\Gamma} \gamma(X_n(s), u)q(ds, du)$$
$$n = 0, 1, 2, \cdots$$

Then, X_n is $\sigma_i(\xi, B, q)$ -progressively measurable and has continuous paths by (iv) and (A1).

$$X_{n+1}(t) - X_n(t) = \int_0^t (\alpha(X_n(s)) - \alpha(X_{n-1}(s))dB(s)) + \int_0^t \int_{\Gamma} (\gamma(X_n(s), u) - \gamma(X_{n-1}(s), u))q(ds, du)$$

So, using (A1) and (A2) we see

$$egin{split} \left(\int_0^t\int_{arGamma} |\varUpsilon(X_n(s),\,u)-\varUpsilon(X_{n-1}(s),\,u)|\,q(ds,\,du)
ight)^2 \ &\leq \int_0^t\int_{arGamma} |\varUpsilon(X_n(s),\,u)-\varUpsilon(X_{n-1}(s),\,u)|^2q(ds,\,du)q(t,\,arGamma) \ &\leq Kt\int_0^t\int_{arGamma} |X_n(s)-X_{n-1}(s)|^2q(ds,\,du) \ &= Kt\int_0^t |X_n(s)-X_{n-1}(s)|^2ds \ . \end{split}$$

Putting $\rho_n(t) = E|X_{n+1}(t) - X_n(t)|^2$, we have

$$ho_n(t) \leq K_1 \int_0^t
ho_{n-1}(s) ds$$
, for $\forall t \leq T$,

with some $K_1 = K_1(T)$. This implies

(2.3)
$$\rho_n(t) \leq \frac{t^{n-1}K_1^{n-1}}{(n-1)!} \mathring{E}|\xi|^2.$$

Therefore

$$\sum_{n} \mathring{E}|X_{n+1}(t) - X_n(t)| \leq \sum \sqrt{\rho_n(t)} < \infty$$
.

This implies that $X_n(t)$ converges \mathring{P} -almost surely. Hence $X(t) = \lim_{n \to \infty} X_n(t)$

can be regarded as $\sigma_t(\xi, B, q)$ -progressively measurable and moreover a martingale inequality tells us that, as $n \to \infty$,

$$(2.4) \qquad \int_0^t \alpha(X_n(s))dB(s) \to \int_0^t \alpha(X(s))dB(s) \quad \text{uniformly in } t \in [0, T],$$

 \mathring{P} -almost surely. On the other hand

$$egin{aligned} \sup_{t \leq T} \left| \int_0^t \int_{arGamma} \varUpsilon(X_n(s),\,u) - \varUpsilon(X(s),\,u) q(ds,\,du)
ight. \ & \leq \int_0^T \int_{arGamma} \left| \varUpsilon(X_n(s),\,u) - \varUpsilon(X(s),\,u)
ight| q(ds,\,du) \ & \leq K \int_0^T \min \left(|X_n(s) - X(s)|,\,2b
ight) ds \,. \end{aligned}$$

By virtue of the convergence theorem we get, as $n \to \infty$,

(2.5)
$$\int_0^t \int_{\Gamma} \Upsilon(X_n(s), u) q(ds, du) \to \int_0^t \int_{\Gamma} \Upsilon(X(s), u) q(ds, du),$$

uniformly in $t \in [0, T]$, \mathring{P} -almost surely.

Combining (2.4) and (2.5) with (2.2), X turns out as a solution of (2.1) and $X_n(t)$ converges to X(t) uniformly in $t \in [0 \ T]$ \mathring{P} -almost surely. Hence X has continuous paths.

Let Y be a $\sigma_t(\xi, B, q)$ -progressively measurable solution of (2.1). Then, applying a routine method, we can easily see for $\forall t$,

$$X(t) = Y(t)$$
 \mathring{P} -almost surely.

This completes the proof of Proposition 2.1.

L denotes the Prohorov metric for probability measures. That is following, [11]. Let ε_{21} be the infinimum of ε such that

$$\mu_{\scriptscriptstyle \rm I}(F) \le \mu_{\scriptscriptstyle \rm I}(U_{\scriptscriptstyle \epsilon}(F)) + \varepsilon$$
 for all closed subset F ,

where $U_{\epsilon}(F)$ is the ϵ -neighbourhood of F. ϵ_{12} is defined by switching μ_1 and μ_2 . Set

$$(2.6) L(\mu_1, \mu_2) = \max(\varepsilon_{12}, \varepsilon_{21}).$$

Put

(2.7)
$$M(\Gamma, t) = \{\lambda \in M(\Gamma); \lambda(\Gamma) = t\}, t > 0.$$

Define a metric ρ_t as follows

(2.8)
$$\rho_t(\lambda_1, \lambda_2) = L\left(\frac{\lambda_1}{t}, \frac{\lambda_2}{t}\right), \qquad \lambda_i \in M(\Gamma, t).$$

Since Γ is compact, $(M(\Gamma, t), \rho_t)$ is a compact metric space. Put $D = \{r_t, \text{rational} \in [0, T], i = 1, 2, \cdots\}$ and

(2.9)
$$\tilde{M}_{\scriptscriptstyle T} = \prod_{i=1}^{\scriptscriptstyle m} M(\Gamma, r_i).$$

We endow $\tilde{M}_{\scriptscriptstyle T}$ with a metric $\tilde{d}_{\scriptscriptstyle T}$ such that

(2.10)
$$\tilde{d}_{T}(\tilde{\lambda}, \tilde{\mu}) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \rho_{r_{n}}(\lambda_{n}, \mu_{n})$$

where $\tilde{\lambda} = (\lambda_1, \lambda_2, \cdots)$ and $\tilde{\mu} = (\mu_1, \mu_2, \cdots)$. Hence $\tilde{\lambda}_k, k = 1, 2, \cdots$ is a \tilde{d}_T -Cauchy sequence, iff $\lambda_{k,i}, k = 1, 2, \cdots$ is a ρ_{τ_i} -Cauchy sequence for any component i. Therefore again $(\tilde{M}_T, \tilde{d}_T)$ is a compact metric space.

Since $\lambda \in \tilde{M}([0\ T] \times \Gamma)$ is determined by $\tilde{\lambda} = (\lambda(r_1), \lambda(r_2), \cdots) \in \tilde{M}_T$, we define a metric \hat{d}_T on $\hat{M}([0\ T] \times \Gamma)$ by

(2.11)
$$\hat{d}_{T}(\lambda, \mu) = \tilde{d}_{T}(\tilde{\lambda}, \tilde{\mu}) .$$

Proposition 2.1. $\hat{M}([0\ T] \times \Gamma, \hat{d}_T)$ is a compact metric space.

Proof. Let $\lambda_k(r_i, \cdot)$ converge to $\lambda_{(i)}$ in ρ_{r_i} . Then $\lambda_{(i)} \in M(\Gamma, r_i)$ and for $g \in C_b(\Gamma)$ (=bounded continuous function on Γ).

(2.12)
$$\int_{\Gamma} g(u) \lambda_k(r_i, du) \to \int g(u) \lambda_{(i)}(du), \quad \text{as } k \to \infty.$$

Define $\lambda(r_i, A)$ by $\lambda(r_i, A) = \lambda_{(i)}(A)$. Then putting g = 1 in (2.12), we see

$$\lambda(r_{i}, \Gamma) = r_{i}$$

Let $r_i > r_j$ and set $R(A) = \lambda(r_i, A) - \lambda(r_j, A)$. Then R is a signed measure on Γ . Since $\lambda_k(r_i, \cdot) - \lambda_k(r_j, \cdot) \in M(\Gamma, r_i - r_j)$ and $\lambda_k(r_i, \cdot) - \lambda_k(r_j, \cdot)$ converges to R weakly by (2.12). R turns out as a positive measure and $R \in M(\Gamma, r_i - r_j)$. This means

(2.13)
$$\lambda(r, A)$$
 is increasing in rational r

and

$$(2.14) |\lambda(r_i, A) - \lambda(r_i, A)| \leq |\lambda(r_i, \Gamma) - \lambda(r_i, \Gamma)| = r_i - r_i.$$

Now we will construct λ which corresponds to $(\lambda(r_i, \cdot), i = 1, 2, \cdots) \in \tilde{M}_T$, in the following way,

(2.15)
$$\lambda(t, A) = \lim_{r \to t} \lambda(r_i, A).$$

Then λ clearly satisfies the conditions (0) \sim (iv), namely $\lambda \in M([0\ T] \times \Gamma)$ and $\hat{d}_T(\lambda_k, \lambda) \to 0$, as $k \to \infty$.

Remark. $\rho_i(\lambda_k(t), \lambda(t)) \leq (4/r_i)|t-r_i| + \rho_{r_i}(\lambda_k(r_i), \lambda(r_i))$ by condition (iv). Hence

$$\lambda_k(t) \to \lambda(t)$$
 in ρ_t .

For $g \in C([0 \ T] \times \Gamma)$ (= continuous function on $[0 \ T] \times \Gamma$)

(2.16)
$$\int_0^t g(s, u) \lambda_k(ds, du) \to \int_0^t g(s, u) \lambda(ds, du), \quad \text{as } k \to \infty.$$

Proof of (2.16). Since g is uniformly continuous, $g([2^n t]/2^n, u)$ converges to g(t, u) uniformly on $[0 \ T] \times \Gamma$, where [c] is the largest integer $\leq c$. Suppose $\sup_{s,u} |g([2^n s]/2^n, u) - g(s, u)| < \varepsilon$. Then

$$egin{aligned} \left| \int_0^t \int_{\Gamma} g(s,u) \lambda_k(ds,du) - \int_0^t \int_{\Gamma} g(s,u) \lambda(ds,du)
ight| \ & \leq \int_0^t \int_{\Gamma} \left| g(s,u) - g\left(rac{[2^n s]}{2^n},u
ight)
ight| (\lambda_k(ds,du) + \lambda(ds,du)) \ & + \left| \int_0^t \int_{\Gamma} g\left(rac{[2^n s]}{2^n},u
ight) \lambda_k(ds,du) - \int_0^t \int_{\Gamma} g\left(rac{[2^n s]}{2^n},u
ight) \lambda(ds,du)
ight| \ & \leq 2arepsilon t + 2\mathrm{nd} \ \mathrm{term}. \end{aligned}$$

Appealing to (2.15), we see that the 2nd term tends to 0, as $k \to \infty$, for any n. Hence we can conclude (2.16).

Let ζ_i , i=1,2, be \tilde{M}_T (or $\hat{M}([0\ T]\times \Gamma)$)-valued random variables, which may be defined on different probability spaces. ν_i denotes the probability distribution of ζ_i . So, ν_i is a probability on $(\tilde{M}_T, \tilde{d}_T)$ (or $(\hat{M}([0\ T]\times \Gamma), \hat{d}_T)$) respectively). Let \tilde{m}_T (or \hat{m}_T) denote the totality of \tilde{M}_T (or $\hat{M}([0\ T]\times \Gamma)$)-valued random variables. We endow the following Prohorov metric \tilde{D}_T (or \hat{D}_T) on \tilde{m}_T (or \hat{m}_T resp.),

(2.17)
$$\tilde{D}_{T}(\zeta_{1}, \zeta_{2}) = L(\nu_{1}, \nu_{2}) \\
\tilde{D}_{T}(\zeta_{1}, \zeta_{2}) = L(\nu_{1}, \nu_{2}).$$

Since \tilde{M}_T and $\hat{M}([0\ T] \times \Gamma)$ are compact metric spaces, $(\tilde{m}_T, \tilde{D}_T)$ and (\hat{m}_T, \hat{D}_T) are also compact spaces.

For $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$, we sometimes denote ξ by $\xi_{\mathscr{A}}$ and so on, when any confusion might occur. Let $X(=X_{\mathscr{A}})$ be a solution of (2.1) for \mathscr{A} . Then (X, ξ, B, Y, q) becomes a $M_T = C([0, T] \to R^n) \times R^n \times C([0, T] \to R^n) \times ([0, T] \to R^n) \times \mathring{M}([0, T] \times \Gamma)$ valued random variable. Endowing M_T

with a usual metric $d_T(= \text{sum of metric of each component})$ M_T turns out as a complete separable metric space. Let m_T denote the totality of M_T -valued random variables and D_T the Prohorov metric on m_T . Hereafter we denote (X, ξ, B, Y, q) by (X, \mathscr{A}) for simplicity if no confusion occurs. We also say that $\mathscr{A}_n \to \mathscr{A}$ (in Prohorov topology), if $(\xi_n, B_n, Y_n, q_n) \to (\xi, B, Y, q)$ in Prohorov topology. Ω_n, F_n, P_n can also depend on n. $\xi_{\mathscr{A}}, B_{\mathscr{A}}$ and $(Y_{\mathscr{A}}, q_{\mathscr{A}})$ are independent for any $\mathscr{A} \in \mathfrak{A}$ and $B_{\mathscr{A}}$ is a Brownian motion. Therefore we have

Proposition 2.2. $\mathscr{A}_n \to \mathscr{A}$, iff $\xi_n \to \xi$ in law and $(Y_n, q_n) \to (Y, q)$ in Prohorov topology.

Now we put the set $\mathscr{P}_{\mu} = \text{totality of probability distributions of } (Y_{\mathscr{A}}, q_{\mathscr{A}}),$ $\mathscr{A} \in \mathfrak{A}(\mu), \, \mathfrak{A}(\mu)$ defined later (3.8). Since $\xi_{\mathscr{A}}, \, B_{\mathscr{A}}$ and $(Y_{\mathscr{A}}, \, q_{\mathscr{A}})$ are independent for $\mathscr{A} \in \mathfrak{A}, \, \mathscr{P}_{\mu}$ does not depend on μ , say \mathscr{P} . Moreover $\pi \in \mathscr{P}$, iff π is a probability on $C([0\ T] \to R^1) \times \hat{M}([0\ T] \times \Gamma)$ such that the first component y is a Brownian motion under π and its increments y(t) - y(s) is independent of $\sigma_s(y,\lambda)$ for t>s, where λ is the second component, (see § 2 of Fleming-Pardoux [8]). Since $C([0\ T] \to R^1) \times \hat{M}([0\ T] \times \Gamma)$ is a product of complete separable metric space, it becomes a complete separable metric space. So we introduce the Prohorov topology on \mathscr{P} . Then \mathscr{P} is a compact metric space, because the first component is a Browian motion and $\hat{M}([0\ T] \times \Gamma)$ is a compact metric space. Now we have

Proposition 2.3.

- i) $\mathscr{P}=$ totality of probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}), \mathscr{A} \in \mathfrak{A}$, is a compact metric space with Prohorov metric.
- ii) $\mathscr{P} = totality$ of probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}), \mathscr{A} \in \mathfrak{U}(\mu)$, for any μ .
- iii) For \mathscr{A} , $\mathscr{A}' \in \mathfrak{A}(\mu)$, $D_T((X_{\mathscr{A}}, \mathscr{A}), (X_{\mathscr{A}'}, \mathscr{A}')) = 0$ iff probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}) = probability$ distribution of $(Y_{\mathscr{A}'}, q_{\mathscr{A}'})$.

§ 3. Existence of optimal relaxed control

Let N be a compact subset of probability measures on R^n with Prohorov metric. Put $P_{\eta} =$ Probability law of η and

$$\mathfrak{N}=\{(X,\,\mathcal{A});\,P_{\xi_{\mathcal{A}}}\in N\}\,.$$

Proposition 3.1. \mathfrak{N} is a compact subset of (m_T, D_T) .

Proof. By the condition (A1), $\{X_{\mathscr{A}}; P_{\xi_{\mathscr{A}}} \in N\}$ is totally bounded in Prohorov topology. $B_{\mathscr{A}}$ and $Y_{\mathscr{A}}$ are Brownian motions for any $\mathscr{A} \in \mathfrak{A}$. Since \hat{m}_T is compact, $\{q_{\mathscr{A}}; \mathscr{A} \in \mathfrak{A}\}$ is totality bounded. Therefore

$$\mathfrak{N} = \{(X, \mathscr{A}); P_{\xi} \in N\}$$

is a totally bounded subset of (m_T, D_T) .

Now we will show that \mathfrak{N} is closed. Let (X_k, \mathscr{A}_k) , $k=1, 2, \cdots$ be a Cauchy sequence. Using Skorobod's theorem, we can construct $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ and $(X^*, \xi^*, B^*, Y^*, q^*)$ on a probability space $(\Omega^*, F^*, \mathring{P}^*)$, so that

- (3.1) $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ has the same probability law as $(X_k, \xi_k, B_k, Y_k, q_k)$, $k = 1, 2, \cdots$.
- (3.2) As $k \to \infty$, $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ converges to $(X^*, \xi^*, B^*, Y^*, q^*)$ in d_T metric, \mathring{P}^* -almost surely.

Hence ξ^* , B^* and (Y^*, q^*) are independent and B^* and Y^* are Brownian motions. Moreover we see that, for a.a. $\omega(\mathring{P}^*)$, $q^*(\cdot, \omega) \in \mathring{M}([0\ T] \times \varGamma)$ and $\mathring{d}_T(q_k^*(\cdot, \omega), q^*(\cdot, \omega))$ tends to 0 as $k \to \infty$, by virtue of Proposition 2.2. On the other hand (2.15) implies that $q^*(t, A, \cdot)$ is F^* -measurable. Since $q(t, A, \omega)$ is continuous in t, $q^*(\cdot, A, \cdot)$ is $B_1[0\ T] \times F^*$ -measurable. Namely q^* satisfies the conditions (v) and (vi). (3.2) again tells us that $Y^*(t) - Y^*(r_i)$ is independent of $\sigma_s(Y^*, q^*)$ whenever $s \le r_i \le t$. Since Y^* has continuous paths, this implies that $Y^*(t) - Y^*(s)$ is independent of $\sigma_s(Y^*, q^*)$, Therefore $\mathscr{A}^* = (\Omega^*, F^*, \mathring{P}^*, \xi^*, B^*, Y^*, q^*) \in \mathfrak{A}$.

Next we will show that X^* is a solution of (2.1) for \mathcal{A}^* .

$$(3.3) \qquad \left| \int_0^t \int_\Gamma \Upsilon(X_k^*(s,\omega), u) q_k^*(ds, du, \omega) - \int_0^t \int_\Gamma \Upsilon(X^*(s,\omega), u) q^*(ds, du, \omega) \right|$$

$$\leq \int_0^t \int_\Gamma |\Upsilon(X_k^*(s,\omega), u) - \Upsilon(X^*(s,\omega), u)| q_k^*(ds, du, \omega)$$

$$+ \left| \int_0^t \int_\Gamma \Upsilon(X^*(s,\omega), u) (q_k^*(ds, du, \omega) - q^*(ds, du, \omega)) \right|$$

the 1st term
$$\leq K \int_0^t |X_k^*(s,\omega) - X^*(s,\omega)| \, q_k^*(ds,arGamma,\omega) \ = K \int_0^t |X_k^*(s,\omega) - X^*(s,\omega)| \, ds \, .$$

Since $X_k^*(\cdot, \omega)$ converges to $X^*(\cdot, \omega)$ uniformly in [0, T], the 1st term

converges to 0, as $k \to \infty$. Appealing to Remark of Proposition 2.1, the 2nd term converges to 0, as $k \to \infty$. So, we have

$$(3.4) \qquad \int_0^t \int_{\Gamma} \Upsilon(X_k^*(s,\omega), u) q_k^*(ds, du, \omega) \longrightarrow \int_0^t \int_{\Gamma} \Upsilon(X^*(s,\omega) q^*(ds, du, \omega)) ds$$

Using a routine method we get

(3.5)
$$\int_0^t \alpha(X_k^*(s)dB_k^*(s)) \longrightarrow \int_0^t \alpha(X^*(s)dB^*(s)) \quad \text{in proba } (\mathring{P}^*).$$

From (3.4) and (3.5), we conclude that X^* is a solution of (2.1) for \mathcal{A}^* . This completes the proof of Proposition 3.1.

COROLLARY. If
$$\mathscr{A}_k \to \mathscr{A}$$
, then $(X_k, \mathscr{A}_k) \to (X, \mathscr{A})$ in D_T .

Let f and h be bounded and uniformly continuous functions on R^n . Define a pay-off function $J(\mathscr{A})$ as follows,

(3.6)
$$J(\mathscr{A}) = \mathring{E}f(X_{\mathscr{A}}(T))L(T,\mathscr{A})$$

where \mathring{E} stands for the expectation in $(\Omega, F, \mathring{P})$, and

(3.7)
$$L(T, \mathcal{A}) = \exp\left(\int_0^T h(X(s))dY(s) - \frac{1}{2}\int_0^T |h(X(s))|^2 ds\right)$$

where $X = X_{\mathscr{A}}$ and $Y = Y_{\mathscr{A}}$.

For a probability measure μ , we denote

(3.8)
$$\mathfrak{A}(\mu) = \{ \mathscr{A} \in \mathfrak{A}; P_{\xi} = \mu \}$$

i.e. the set of all admissible system where initial distribution equals to μ . For a given μ we want to maximize $J(\mathscr{A})$ by a suitable choice of $\mathscr{A} \in \mathfrak{A}(\mu)$.

Theorem 2. There exists an optimal admissible system $\widetilde{\mathscr{A}}\in\mathfrak{A}(\mu),$ that is

(3.9)
$$\sup_{\mathscr{A} \in \mathfrak{A}(\mu)} J(\mathscr{A}) = J(\widetilde{\mathscr{A}}).$$

Proof. Let $\mathscr{A}_k \in \mathfrak{A}(\mu)$ be approximately optimal, i.e.

(3.10)
$$\lim_{k \to \infty} J(\mathscr{A}_k) = \sup_{\mathscr{A} \in \mathfrak{A}(\mu)} J(\mathscr{A}).$$

By virtue of Proposition 3.1, some subsequence $(X_{k_i}, \mathscr{A}_{k_i})$ converges to (X, \mathscr{A}) in Prohorov topology. For simplicity we may assume $(X_k, \mathscr{A}_k) \to$

 (X, \mathscr{A}) as $k \to \infty$. Again Skorobod's theorem tells us that their suitable version satisfy (3.1) and (3.2). So we again assume that (X_k, \mathscr{A}_k) and (X, \mathscr{A}) satisfy (3.1) and (3.2), since $J(\mathscr{A})$ depends on only probability law.

From boundedness of f and h, we have

(3.11)
$$\mathring{E}(f(X_k(T))L(T, \mathscr{A}_k))^2 < ||f||^2 e^{2T||h||}, \qquad k = 1, 2, \cdots.$$

Hence $\{f(X_k(T))L(T, \mathscr{A}_k), k = 1, 2, \cdots\}$ is uniformly integrable. On the other hand $L(T, \mathscr{A}_k)$ tends to $L(T, \mathscr{A})$ in proba. Appealing to the convergence theorem we get

(3.12)
$$\lim_{k \to \infty} J(\mathscr{A}_k) = J(\mathscr{A}).$$

Combining (3.12) with (3.10), we complete the proof.

Remark. Appealing to Corollary of Proposition 3.1, we see that if $\mathcal{A}_k \to \mathcal{A}$, then $J(\mathcal{A}_k) \to J(\mathcal{A})$.

Now we treat the following case; $r(x, u) = b_1(x) + b_2(x)u$ where $b_2(x)$ is $x \times k$ matrix.

THEOREM 3. If $r(x, u) = b_1(x) + b_2(x)u$, then $q = q_{\mathscr{A}}$ can be replaced by a Γ -valued $\sigma_t(q)$ -progressively measurable process U (i.e. usual admissible control under partial observation). That is, $X = X_{\mathscr{A}}$ is a unique solution of the following S.D.E.

(3.13)
$$\begin{cases} dX(t) = \alpha(X(t))dB(t) + \gamma(X(t), U(t))dt \\ X(0) = \xi \end{cases}$$

where $B = B_{\mathscr{A}}$ and $\xi = \xi_{\mathscr{A}}$.

Proof. Our required U is obtained by the following lemma.

Lemma. There exists a $\sigma_t(q)$ -progressively measurable Γ -valued process U such that

(3.14)
$$\int_0^t \int_{\Gamma} uq(ds, du) = \int_0^t U(s)ds, \quad \text{for } \forall t \leq T.$$

Proof. Define U_k as follows

$$(3.15) \quad U_{\scriptscriptstyle k}(t,\omega) = \begin{cases} 2^{\scriptscriptstyle k} \int_{\, \Gamma} u(q(t,\,du,\,\omega) - q(t-\,2^{\scriptscriptstyle -k},\,du,\,\omega))\,, & \text{for } t \geq 2^{\scriptscriptstyle -k} \\ \frac{1}{t} \int_{\, \Gamma} uq(t,\,du,\,\omega)\,, & \text{for } 0 < t < 2^{\scriptscriptstyle -k}\,. \end{cases}$$

Since Γ is convex compact, $U_k(t, \omega) \in \Gamma$ and $\sigma_l(q)$ -progressively measurable. Moreover the compactness of Γ tells us that $\{U_k, k=1, 2, \cdots\}$ is weakly totally bounded in $L^2([0\ T] \times \Omega)$. Hence some subsequence converges weakly and their suitable convex combinations converge strongly, say $\sum_{p=\ell}^{N\ell} \sigma_p^\ell U_{n_p}(t, \omega)$ converges to $U(t, \omega)$ in $L^2([0\ T] \times \Omega)$, as $\ell \to \infty$. So U is a Γ -valued $\sigma_l(q)$ -progressively measurable process.

On the other hand the definition of U_k implies

$$(3.16) \qquad \int_0^t U_k(s,\,\omega)ds \to \int_\Gamma uq(t,\,du,\,\omega) \Big(=\int_0^t \int_\Gamma uq(ds,\,du,\,\omega)\Big).$$

as $k \to \infty$. Taking the convex combination of U_{n_p} , we can conclude that U satisfies (3.14) by bounded convergence theorem.

Now we return to the proof of Theorem 3. Since ξ , B and U are independent, (3.13) has a unique solution. So it is enough to show that $X = X_{\mathscr{A}}$ satisfies (3.13). By the Lemma we can see

Using "
$$\int_0^t b_i(X(s))q(ds, du) = \int_0^t b_i(X(s))ds$$
", we have

(3.18)
$$\int_0^t \int_\Gamma \Upsilon(X(s), u) q(ds, du) = \int_0^t \Upsilon(X(s), U(s)) ds.$$

This completes the proof of Theorem 3.

DEFINITION 3. A Γ -valued process U is called an admissible control under partial observation, if ξ , B and (Y, U) are independent and Y(t) - Y(s) is independent of $\sigma_s(Y, U)$. Precisely speaking $\mathscr{A}_U = (\Omega, F, \mathring{P}, \xi, B, Y, U)$ is called an admissible usual system.

An admissible control U can be regarded as the following relaxed control q,

(3.19)
$$q(t, A, \omega) = \int_{0}^{t} \delta_{U(s, \omega)}(A) ds = |s \leq t; \ U(s, \omega) \in A|$$

where δ_a is the δ -measure at α . Appealing to Theorems 2 and 3, we can derived,

COROLLARY. If $r(x, u) = b_1(x) + b_2(x)u$, then there exists an optimal admissible usual system \tilde{A}_U . That is,

$$(3.20) J(\tilde{\mathscr{A}}_{\scriptscriptstyle U}) = \sup_{\mathscr{A}_{\scriptscriptstyle U}: \text{ad. usual sys}} J(\mathscr{A}_{\scriptscriptstyle U}) = \sup_{\mathscr{A}\in\mathfrak{A}(\scriptscriptstyle U)} J(\mathscr{A}) \ .$$

This fact was directly proved by Haussmann [9] and in a slightly different form by Fleming-Pardoux [8].

§ 4. Approximation by usual controls

For $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ we define P_n by

$$(4.1) \qquad P_{\scriptscriptstyle n}(t,\,A,\,\omega) = \begin{cases} \frac{1}{t}\,q(t,\,A,\,\omega) & 0 < t < 2^{-n} \\ (q(t,\,A,\,\omega) - q(t - 2^{-n},\,A,\,\omega))2^{n}, & 2^{-n} \leq t\,, \end{cases}$$

namely P_n is an approximate time derivative of q. $P_n(\cdot, A, \cdot)$ is $\sigma_l(q)$ -progressively measurable and $P_n(t, \cdot, \omega)$ is a probability on Γ . Define q_n by

$$(4.2) q_n(t, A, \omega) = \int_0^t P_n(s, A, \omega) ds.$$

Then q_n satisfies the conditions (v) and (vi) and $\mathscr{A}_n = (\Omega, F, \mathring{P}, \xi, B, Y, q_n) \in \mathfrak{A}$. Since we have

$$(4.3) \quad |q_n(t,A,\omega) - q(t,A,\omega)| \leq 2^{-n} + 2^n \int_{t-2^{-n}}^t |q(s,A,\omega) - q(t,A,\omega)| \, ds \,,$$
for a.a. $\omega(\mathring{P})$.

the condition (iv) implies, as $n \to \infty$,

(4.4)
$$\sup_{A} |q_n(t, A, \omega) - q(t, A, \omega)| \to 0, \text{ uniformly on } [0, T].$$

and

$$\hat{d}_{\tau}(q_{\tau}(\cdot,\omega), q(\cdot,\omega)) \longrightarrow 0.$$

Fix $u_0 \in \Gamma$ arbitrarily and define $P_{n,k}$ by

$$(4.6) \qquad P_{n,k}(t,A,\omega) = \begin{cases} P_n\Big(\frac{[2^kt]}{2^k},A,\omega\Big), & \text{for } t \geq 2^{-k} \\ \delta_{u_0}(A) & \text{for } t < 2^{-k}. \end{cases}$$

Then $P_{n,k}$ is a step function in the time variable t. Put $q_{n,k}$ as follows.

$$q_{n,k}(t,A,\omega) = \int_0^t P_{n,k}(s,A,\omega) ds.$$

We call $q_{n,k}$ a switching relaxed control with interval 2^{-k} . It is clear that $(\Omega, F, \mathring{P}, \xi, B, Y, q_{n,k}) \in \mathfrak{A}$ and

$$|q_{n,k}(t, A, \omega) - q_n(t, A, \omega)| \leq 2^{n-k-1}t + 2^{-k}.$$

Therefore we get

(4.9)
$$\lim_{k\to\infty} \sup_{t\leq T,A} |q_{n,k}(t,A,\omega)-q_n(t,A,\omega)|=0.$$

Now we conclude the following proposition,

PROPOSITION 4.1. For $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{A}$, there exists an approximate sequence of switching relaxed control q_k with interval 2^{-k} , such that $q_k(\cdot, A, \cdot)$ is $\sigma_t(q)$ -progressively measurable and moreover

$$(4.10) \qquad \lim_{k \to \infty} \sup_{0 \le t \le T, A} |q_k(t, A) - q(t, A)| = 0, \qquad \mathring{P}\text{-almost surely}$$

and

(4.11)
$$\lim_{k\to\infty}\hat{d}_{T}(q_{k},q)=0\,,\qquad \mathring{P}\text{-almost surely}\,.$$

Putting $\mathcal{A}_k = (\Omega, F, \mathring{P}, \xi, B, Y, q_k)$, we can see the following corollary, by virtue of the Remark of Theorem 2.

Corollary. There exists an approximate admissible switching system \mathcal{A}_k , such that

$$(4.12) \mathcal{A}_k \longrightarrow \mathcal{A}, as k \to \infty.$$

Hence $J(\mathcal{A}_k)$ converges to $J(\mathcal{A})$.

Theorem 4. There exists a Γ -valued $\sigma_{\iota}(q)$ -progressively measurable process U_{ι} , such that

$$(4.13) q_k(t, A, \omega) = \int_0^t \delta_{U_k(s, \omega)}(A) ds$$

approximates q in the following sence; $\mathscr{A}_k = (\Omega, F, \mathring{P}, \xi, B, Y, q_k)$ satisfies (4.12).

Proof. By the Corollary of Proposition 4.1, we may assume that \mathscr{A} is an admissible switching system with interval 2^{-N} . Appealing to a Chattering Lemma [5], we will construct our desired U_{k_i} in the following way.

Let $\{u_1, \dots, u_m\}$ be an ε -net of Γ , and $V_1, \dots, V_m \in B(\Gamma)$ a partition of Γ such that

$$(4.14) |u_i - u| < \varepsilon \text{for } \forall u \in V_i.$$

Since a given q is a switching relaxed control, it can be written by

$$q(t, A, \omega) = \int_{a}^{t} p(s, A, \omega) ds$$

with p of step function in s. Define $\hat{p}=\hat{p}_{\epsilon}$ and $\hat{q}=\hat{q}_{\epsilon}$ as follows,

(4.15)
$$\hat{p}(s, \{u_i\}, \omega) = p(s, V_i, \omega)$$

and

(4.16)
$$\hat{q}(t, \{u_i\}, \omega) = \int_0^t \hat{p}(s, \{u_i\}, \omega) ds.$$

Then $\hat{p}(t, \cdot, \omega)$ is a discrete probability on Γ and for $\forall g \in C(\Gamma)$

$$(4.17) \qquad \int_{\Gamma} g(u)\hat{p}_{\varepsilon}(t, du, \omega) \longrightarrow \int_{\Gamma} g(u)p(t, du, \omega), \text{ as } \varepsilon \downarrow 0.$$

Define θ_i , $i=0,\cdots,m$ as follows: Let $j^{\scriptscriptstyle 2^{-N}} \leq s_{\scriptscriptstyle 1} < s_{\scriptscriptstyle 2} < (j+1)2^{\scriptscriptstyle -N}$,

$$\begin{array}{c} \theta_0(\omega)=s_1\\ \theta_i(\omega)=\sum\limits_{\ell=1}^i\int_{s_1}^{s_2}\hat{p}(t,\{u_\ell\},\omega)dt+s_i, \qquad i=1,\,\cdots,\,m\,. \end{array}$$

Then $s_1 = \theta_0(\omega) \le \theta_1(\omega) \le \cdots \le \theta_m(\omega) = s_2$ and

$$\int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\hat{q}(dt, du, \omega) = \int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\hat{p}(t, du, \omega)dt$$

$$= \sum_{i=1}^{m} g(u_{i}) \int_{s_{1}}^{s_{2}} \hat{p}(t, \{u_{i}\}, \omega)dt = \sum_{i=1}^{m} g(u_{i})(\theta_{i}(\omega) - \theta_{i-1}(\omega))$$

$$= \int_{s_{1}}^{s_{2}} g(U(t, \omega))dt = \int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\delta_{U(t, \omega)}(du)dt$$

where

(4.20)
$$U(t, \omega) = U_{\epsilon, s_1, s_2}(t, \omega) = u_i$$
 on $[(\theta_{i-1}(\omega), \theta_i(\omega))]$.

Therefore $U_{\varepsilon, s_1, s_2}(t)$ is $\sigma_{j_2-N}(q)$ -measurable. Putting $\varepsilon=2^{-k}$, $s_1=\ell 2^{-k}(k>N)$, we define U_k by

$$U_{k}(t,\omega) = U_{2^{-k},\ell 2^{-k},(\ell+1)2^{-k}}(t,\omega)$$
 for $\ell 2^{-k} \leq t < (\ell+1)2^{-k}, \ \ell=0,\ 1,\ 2 \cdots$.

Consider the SDE

(4.22)
$$\begin{cases} d\xi_k(t) = \alpha(\xi_k(t))dB(t) + \gamma(\xi_k(t), U_k(t))dt \\ \xi_k(0) = \xi. \end{cases}$$

If we regard $U_k(t)$ as $\delta_{U_k(t)}$, then ξ_k turns out a solution of (2.1) for $\mathscr{A}_k = (\Omega, F, \mathring{P}, \xi, B, Y, q_k)$ where $q_k(t, A, \omega) = \int_0^t \delta_{U_k(s,\omega)}(A) ds$. Moreover (4.19) means

$$(4.23) q_k(\ell 2^{-k}, \cdot, \omega) = \hat{q}_{2^{-k}}(\ell 2^{-k}, \cdot, \omega), \ell = 0, 1, \cdots, [2^{\ell}T].$$

Hence, combining with (4.17), we can see that, as $k \to \infty$,

$$(4.24) \hat{d}_{T}(q_{k}, q) \longrightarrow 0, \mathring{P}-almost surely.$$

Evidently this completes the proof.

§ 5. Continuity of conditional expectation

According to [8] we define L pathwise. Hereafter we assume the following smoothness on h.

(A3) $h, \frac{\partial h}{\partial x_i}, \frac{\partial^2 h}{\partial x_i \partial x_j}$ $i, j = 1, \dots, n$ are bounded and uniformly continuous. Putting $X = X_{s'}$, Ito's formula tells us that

$$\int_0^T h(X(t))dY(t) = h(X(T))Y(T) - \int_0^T Y(t)dh(X(t))$$

$$= h(X(T))Y(T) - \sum_{ij} \int_0^T Y(t)\frac{\partial h}{\partial x_i}(X(t))\alpha_{ij}(X(t))dB_j$$

$$\int_0^T Y(t)A(t,q)h(X(t))dt$$

where

(5.2)
$$A(t,q)h = \frac{1}{2} \sum a_{i,j}(x) \frac{\partial^2 h}{\partial x_i \partial x_j} + \sum R_i(t,x,\omega;q) \frac{\partial h}{\partial x_i}$$

with

(5.3)
$$R(t, x, \omega; q) = \overline{\lim}_{n \to \infty} 2^n \int_{\Gamma} f(x, u) (q(t, du, \omega) - q(t - 2^{-n}, du, \omega)).$$

So, R is $\sigma_t(q)$ -progressively measurable for any x, and Lipschitz continuous with respect to x. Moreover for any (x, ω) ,

(5.4)
$$R(t, x, \omega; q) = \frac{\partial}{\partial t} \int_{\Gamma} f(x, u) q(t, du, \omega) \quad \text{for a.a. } t.$$

For $y \in C([0 \ T] \to R^n)$ and $\lambda \in \hat{M}([0 \ T] \times \Gamma)$ we define \mathscr{L} by $\mathscr{L}(\theta, \xi, B, y, \lambda)$

$$(5.5) \qquad = \exp\left[y(\theta)h(\eta(\theta)) - \int_0^\theta y(s)A(s,\lambda)h(\eta(s))ds - \frac{1}{2}\int_0^\theta |h(\eta(s))|^2 ds - \sum_{ij}\int_0^s y(s)\frac{\partial h}{\partial x_i}(\eta(s))\alpha_{ij}(\eta(s))dB_j(s)\right]$$

where η is a solution of S.D.E.

(5.6)
$$\begin{cases} d\eta(t) = \alpha(\eta(t))dB(t) + \int_{\Gamma} \gamma(y(t), u)\lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Applying a successive approximation, we can see that η is a Borel function of ξ , B and λ . Hence \mathscr{L} is Borel measurable with respect to θ , ξ , B, γ , λ . From (A1) and (A3) we have the following evaluation,

$$e^{-F(y,\theta)} \exp\left[-\sum_{i,j} \int_{0}^{\theta} y(t) \frac{\partial h}{\partial x_{i}}(\eta(t)) \alpha_{ij}(\eta(t)) dB_{j}(t) - \frac{1}{2} \int_{0}^{t} \sum_{j} \left(y(t) \sum_{i} \frac{\partial h}{\partial x_{i}}(\eta(t)) \alpha_{ij}(\eta(t))\right)^{2} dt\right]$$

$$\leq \mathcal{L}(\theta, \xi, B, y, \lambda) \leq e^{F(y,\theta)} \exp\left[-\sum_{i,j} \int_{0}^{\theta} \cdots dB_{j}(t) - \frac{1}{2} \int_{0}^{t} \cdots dt\right]$$
where
$$F(y,\theta) = K_{1}(\sup_{t \leq \theta} |y(t)| + 1)^{2}(\theta + 1).$$

Since $(C[0\ T] \to R^n)$, $\| \ \|$ and $(\hat{M}[0\ T) \times \Gamma, \hat{d}_T)$ are complete separable metric spaces, the regular conditional probability $\hat{P}((X, \xi, B, Y, q) \in \cdot / Y = y, q = \lambda)$ exists. This regular conditional probability is nothing but the probability distribution of $(\eta, \xi, B, y, \lambda)$, because (ξ, B) and (Y, q) are independent. Putting $\mu = P_{\xi}(=$ probability distribution of ξ), we have a version of conditional expectation as follows.

where $\eta(\theta, x)$ is a solution of (5.6) with $\eta(0, x) = x$. The right side of (5.8) is Borel measurable with respect to θ , y, λ , which depends on f and μ . So we denote the right side of (5.8) by $C(\theta, y, \lambda, \mu, f)$. Moreover $C(\theta, y, \lambda, \mu, f)$ depends on the value of y and λ up to time θ . Stressing μ we denote \mathring{E} by \mathring{E}_{μ} . That is,

(5.9)
$$C(\theta, Y, q, \mu, f) = \mathring{E}_{\mu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\tau}(Y, q))$$
$$= \mathring{E}_{\mu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\theta}(Y, q)), \quad \mathring{P}\text{-almost surely.}$$

Using (5.7) we have

(5.10)
$$e^{-F(Y,\theta)} \leq C(\theta, Y, q, \mu, 1) \leq e^{F(Y,\theta)}$$
.

Now we define $C(\theta, Y, q, \nu, f)$ for a positive measure ν as follows

(5.11)
$$C(\theta, Y, q, \nu, f) = \|\nu\| C(\theta, Y, q, \frac{\nu}{\|\nu\|}, f)$$

where $\|\nu\| = \nu(R^n)$ and we apply the same notations E, for a general positive measure ν , that is

$$\dot{E}_{\nu}(f(X(\theta))L(\theta, \mathcal{A})/\sigma_{\theta}(Y, q)) = C(\theta, Y, q, \nu, f)$$

with $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ for $P_{\xi} = \nu/\|\nu\|$. The left side of (5.12) stands for

$$(5.13) \qquad \mathring{E}_{\nu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\theta}(Y, q)) = \|\nu\|\mathring{E}_{\nu/\|\nu\|}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\theta}(Y, q)).$$

Since ξ is independent of (B, Y, q), the right side of (5.13) does not depend on a special choice of ξ .

Define $\Lambda(\theta, y, \lambda, \nu)(A)$ by

(5.14)
$$\Lambda(\theta, y, \lambda, \nu)(A) = C(\theta, y, \lambda, \nu, \chi_A), \quad A \in \mathbf{B}_n.$$

Then $\Lambda(\theta, y, \lambda, \nu)$ is a positive measure on \mathbb{R}^n and for any bounded Borel function f.

(5.15)
$$\langle f, \Lambda(\theta, y, \lambda, \nu) \rangle = C(\theta, y, \lambda, \nu, f)$$

where $\langle f, A \rangle = \int_{\mathbb{R}^n} f(x) A(dx)$. From (5.10) we see

(5.16)
$$\|\nu\|e^{-F(y,\theta)} \leq \|A(\theta,y,\lambda,\nu)\| \leq \|\nu\|e^{F(y,\theta)}.$$

On the other hand $\mathcal{L}(\theta, \xi, B, y, \lambda)$ is continuous in θ , \mathring{P} -almost surely, and (5.7) implies the uniformly integrability of $\{\mathcal{L}(\theta, \xi, B, y, \lambda), \theta \in [0, T]\}$. Hence $\|A(\theta, y, \lambda, \nu)\| = \|\nu\| \mathring{E}\mathcal{L}(\theta, \xi, B, y, \lambda)$ is continuous in θ .

Define a metric Δ on $M(\mathbb{R}^n)$ (= totality of positive measure on \mathbb{R}^n) as follows

(5.17)
$$\Delta(\mu, \nu) = L\left(\frac{\mu}{\|\mu\|}, \frac{\nu}{\|\nu\|}\right) + |\|\mu\| - \|\nu\|| + \left|\frac{1}{\|\mu\|} - \frac{1}{\|\nu\|}\right|.$$

Then $(M(R^n), \Delta)$ is a complete separable metric space and ν_k , $k = 1, 2, \cdots$ is a Cauchy sequence, iff $\langle f, \nu_k \rangle$ converges for any $f \in C_b(R^n)$, as $k \to \infty$. and $\lim_{k \to \infty} \langle 1, \nu_k \rangle (= ||\nu_k||) > 0$. Recalling Prohorov's theorem we have

PROPOSITION 5.1. $N \supset M(R^n)$ is Δ -totally bounded, iff there exist positive constants c and c' and for $\forall \varepsilon > 0$ there is a compact subset $K_{\varepsilon} \subset R^n$ such that

$$(5.18) c' \leq ||\nu|| \leq c \quad and \quad \nu(K_{\epsilon}^{\circ}) < \varepsilon \quad for \ \nu \in N.$$

Put m = totality of $M(R^n)$ -valued random variables, which may be defined on different probability spaces. We endow the Prohorov metric on m, (called δ metric), namely

$$\delta(\zeta_1,\,\zeta_2)=L(\mu_1,\,\mu_2)$$

where μ_i is the probability distribution of ζ_i . Then (m, δ) is a complete separable metric space, because $(M(\mathbb{R}^n), \Delta)$ is a complete separable metric space.

Concerning the continuity of Λ , we can prove the following theorem.

Theorem 5. If $y_k \to y$ in $C([0\ T] \to R^1)$, $\nu_k \to \nu$ in Δ , $\lambda_k \to \lambda$ in \hat{d}_T and $\theta_k \to \theta$, then

(5.19)
$$\Lambda(\theta_k, y_k, \lambda_k, \nu_k) \longrightarrow \Lambda(\theta, y, \lambda, \nu) \quad in \ \Delta.$$

Proof. Firstly we remark that

(5.20)
$$\int_0^s R(t, x, \lambda_k) dt \longrightarrow \int_0^s R(t, x, \lambda) dt.$$

Recalling the definition of R for $\lambda \in \hat{M}([0\ T] \times \Gamma)$ (see (5.3)), we get, for any x,

(5.21)
$$R(t, x, \lambda_k) = \lim_{\lambda \to \infty} \int_{\Gamma} \Upsilon(x, u) (\lambda_k(t, du) - \lambda_k(t - 2^{-n}, du)) 2^n$$
 for a.a. t .

Hence the bounded convergence theorem implies

(5.22)
$$\int_{0}^{s} R(t, x, \lambda_{k}) dt = \lim_{n \to \infty} \left[\int_{0}^{s} \int_{\Gamma} 2^{n} \gamma(x, u) \lambda_{k}(t, du) dt - \int_{2^{n}}^{s} \int_{\Gamma} 2^{n} \gamma(x, u) \lambda_{k}(t - 2^{-n}, du) dt \right]$$
$$= \int_{\Gamma} \gamma(x, u) \lambda_{k}(s, du).$$

Since $\lambda_k \to \lambda$ in \hat{d}_T , (5.22) means (5.20).

Consequently we can easily see

LEMMA. If $\phi_k \to \phi$ and $\psi_k \to \psi$ in $C([0\ T] \to R^n)$ and $C([0\ T] \to R^1)$ respectively, then

(5.23)
$$\int_0^s R(t, \phi_k(t), \lambda_k) \psi_k(t) dt \longrightarrow \int_0^s R(t, \phi(t), \lambda) \psi(t) dt .$$

Putting $\Lambda_k = \Lambda(\theta_k, y, \lambda_k, \nu_k)$ and $\Lambda = \Lambda(\theta, y, \lambda, \nu)$, we will show

$$(5.24) \langle f, \Lambda_k \rangle \longrightarrow \langle f, \Lambda \rangle \text{for } f \in C_b(\mathbb{R}^n).$$

Consider the SDE on $(\Omega_k, F_k, \mathring{P}_k)$

(5.25)
$$\begin{cases} d\eta_k(t) = \alpha(\eta_k(t))dB_k(t) + \int_{\Gamma} \gamma(\eta_k(t), u)\lambda_k(dt, du) \\ \eta_k(0) = \xi_k \end{cases}$$

and on $(\Omega, F, \mathring{P})$

(5.26)
$$\begin{cases} d\eta(t) = \alpha(\eta(t))dB(t) + \int_{\Gamma} \gamma(\eta(t), u)\lambda(dt, du) \\ \eta(0) = \xi \end{cases}$$

where ξ_k and ξ have probability distributions $\nu_k/\|\nu_k\|$ and $\nu/\|\nu\|$ respectively. Since $\{(\eta_k, \xi_k, B_k), k = 1, 2, \cdots\}$ is totally bounded in Prohorov topology and any convergent subsequence tends to (η, ξ, B) in Prohorov topology, $(\eta_k, \xi_k, B_k), k = 1, 2, \cdots$ itself converges to (η, ξ, B) in Prohorov topology. Appealing to Skorobod's theorem, we will assume that $\Omega_k = \Omega$, $F_k = F$, $\mathring{P}_k = \mathring{P}$ and \mathring{P} -almost surely $\eta_k \to \eta$ in $C([0\ T] \to R^n)$, $B_k \to B$ in $C([0\ T] \to R^n)$ and $\xi_k \to \xi$ in R^n . Therefore the lemma guarantees

(5.27)
$$\int_0^{\theta_k} y_k(s) A(s, \lambda_k) h(\eta_k(s)) ds \longrightarrow \int_0^{\theta} y(s) A(s, \lambda) h(\eta(s)) ds ,$$

$$\mathring{P}\text{-almost surely.}$$

Furthermore, using a routine method we have

$$(5.28) \qquad \int_{0}^{\theta_{k}} y_{k}(s) \frac{\partial h}{\partial x_{i}} (\eta_{k}(s)) \alpha_{ij}(\eta_{k}(s)) dB_{k,j}(s)$$

$$\longrightarrow \int_{0}^{\theta} y(s) \frac{\partial h}{\partial x_{i}} (\eta(s)) \alpha_{ij}(\eta(s)) dB_{j}(s) \qquad \text{in proba } \mathring{P}.$$

Hence we have

(5.29)
$$\mathscr{L}(\theta_k, \xi_k, B_k, y_k, \lambda_k) \longrightarrow \mathscr{L}(\theta, \xi, B, y, \lambda)$$
 in proba \mathring{P} .

Since (5.7) means the uniformly integrability of $\{f(\eta_k(\theta_k)\mathcal{L}(\theta_k, \xi_k, B_k, y_k, \lambda_k), k = 1, 2, \dots\}$, (5.29) implies (5.24).

By virtue of Proposition 5.1, (5.16) and (5.20) guarantee the totally boundedness of $\{\Lambda_k, k=1, 2, \cdots\}$. Consequently, again (5.24) tells us that Λ_k converges to Λ in metric Λ . This completes the proof of Theorem 5.

Now we apply this theorem to admissible systems.

Theorem 6. Let $\mathscr{A}_k = (\Omega_k, F_k, \mathring{P}_k, \xi_k, B_k, Y_k, q_k)$ and $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ where ξ_k and ξ have probability distributions $\nu_k/\|\nu_k\|$ and $\nu/\|\nu\|$ respectively. If $(Y_k, q_k) \to (Y, q)$ in Prohorov topology, $\nu_k \to \nu$ in Δ and $\theta_k \to \theta$, then

(5.30)
$$\Lambda(\theta_k, Y_k, q_k, \nu_k) \longrightarrow \Lambda(\theta, Y, q, \nu) \quad in \ metric \ \delta.$$

Proof. By the assumption $\mathscr{A}_k \to \mathscr{A}$ in Prohorov topology. Hence $(X_k, \mathscr{A}_k) \to (X, \mathscr{A})$ in Prohorov metric D_T , by virtue of Corollary of Proposition 3.1. By Skorobod's theorem we can construct copies (X_k^*, \mathscr{A}_k^*) and (X^*, \mathscr{A}^*) of (X_k, \mathscr{A}_k) and (X, \mathscr{A}) respectively, so that $\Omega_k^* = \Omega^*$, $F_k^* = F^*$, $\mathring{P}_k^* = \mathring{P}^*$ and \mathring{P}^* -almost surely $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*) \to (X^*, \xi^*, B^*, Y^*, q^*)$ in d_T . For non-exceptional $\omega \in \Omega^*$, we put $\lambda_k = q_k^*(\cdot, \omega)$, $\lambda_k = q_k^*(\cdot, \omega)$, $\lambda_k = q_k^*(\cdot, \omega)$ and $\lambda_k = q_k^*(\cdot, \omega)$. Then $\lambda_k = q_k^*(\cdot, \omega)$ and $\lambda_k = q_k^*(\cdot, \omega)$ are $\lambda_k = q_k^*(\cdot, \omega)$. Theorefore we have

(5.31)
$$\Lambda(\theta_k, Y_k^*, q_k^*, \nu_k) \longrightarrow \Lambda(\theta, Y^*, q^*, \nu), \quad \mathring{P}^*$$
-almost surely.

On the other hand Theorem 5 tells us that the mapping $\Lambda(\theta, \cdot, \cdot, \nu)$; $C([0\ T] \to R^1) \times (\hat{M}([0\ T] \times \Gamma)) \to M(R^n)$ is continuous. So $\Lambda(\theta, Y, q, \nu)$ is a random variable, i.e. $\Lambda(\theta, Y, q, \nu) \in m$. Consequently (5.31) implies (5.30). Recalling Corollary of Theorem 4, we get

COROLLARY. For any $\mathscr{A} \in \mathfrak{A}(\mu)$, there exists an approximate admissible switching system $\mathscr{A}_k \in \mathfrak{A}(\mu)$, such that

(5.32)
$$\Lambda(\theta_k, Y_k, q_k, \nu) \longrightarrow \Lambda(\theta, Y, q, \nu) \quad \text{in metric } \delta$$
 where $\mu = \nu/\|\nu\|$.

§ 6. Semigroup

Let C be the Banach lattice of the totality of bounded continuous mappings from $(M(\mathbb{R}^n), \Delta)$ into \mathbb{R}^1 , with supremum norm and the order \leq , i.e.

(6.1)
$$\phi \leq \psi \iff \phi(\nu) \leq \psi(\nu) \quad \text{for } \forall \nu \in M(\mathbb{R}^n).$$

For $\nu \in M(\mathbb{R}^n)$, $\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)$ and $\phi \in \mathbb{C}$ we define J by

(6.2)
$$J(t, \mathcal{A}, \nu, \phi) = \mathring{E}(\phi(\Lambda(t, Y, q, \nu)))$$

$$\mathring{E}[\mathring{E}(\phi(\Lambda(t, Y, q, \nu)/\sigma(Y, q))]$$

$$= \int_{C([0\ T] \to R^1) \times \mathring{M}([0\ T] \times \Gamma)} \mathring{E}(\phi(\Lambda(t, y, \lambda, \nu))\pi(dy, d\lambda))$$

where π is the probability distribution of (Y, q). Since $\mathring{E}(\phi(\Lambda(t, y, \lambda, \nu)))$ depends only on ϕ , ν , t, y and λ , $J(t, \mathcal{A}, \nu, \phi)$ can be denoted by $J(t, \pi, \nu, \phi)$. Define $S(t)\phi$ by

(6.4)
$$S(t)\phi(\nu) = \sup_{\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)} J(t, \mathscr{A}, \nu, \phi).$$

Then by Proposition 2.3 (ii) and (6.3) we have

(6.5)
$$S(t)\phi(\nu) = \sup_{\pi \in \mathscr{T}} J(t, \pi, \nu, \phi).$$

Proposition 6.1. $J(t, \pi, \nu, \phi)$ is continuous in $(t, \pi, \nu) \in [0 \ T] \times \mathscr{P} \times M(\mathbb{R}^n)$.

Proof. Let $t_k \to t$, $\pi_k \to \pi$ and $\nu_k \to \nu$ in their topologies. Take $\mathscr{A}_k \in \mathfrak{A}(\nu_k/\|\nu_k\|)$ (and $\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)$) such that the probability distribution of (y_k, q_k) (and (Y, q)) is π_k (and π respectively). Then $\mathscr{A}_k \to \mathscr{A}$ by Proposition 2.2. Therefore Theorem 6 guarantees that $\Lambda(t_k, \pi_k, \nu_k, \phi) \to \Lambda(t, \pi, \nu, \phi)$ in metric δ that is in the Prohorov topology. By Skorobod's theorem we can take a copy Λ_k^* of $\Lambda(t_k, \pi_k, \nu_k, \phi)$ and Λ^* of $\Lambda(t, \pi, \nu, \phi)$ so that Λ_k^* converges to Λ_k^* almost surely on $(\Omega^*, F^*, \mathring{P}^*)$. Since ϕ is bounded continuous, we see that

(6.6)
$$\begin{cases} J(t_k, \pi_k, \nu_k, \phi) = \mathring{E}_k \phi(\Lambda(t_k, Y_k, q_k, \nu_k)) = \mathring{E}^* \phi(\Lambda_k^*) \\ J(t, \pi, \nu, \phi) = \mathring{E} \phi(\Lambda(t, Y, q, \nu)) = \mathring{E}^* \phi(\Lambda^*) \\ \mathring{E}^* \phi(\Lambda_k^*) \to \mathring{E}^* \phi(\Lambda^*) \end{cases}.$$

This completes the proof of Proposition 6.1.

Since \mathcal{P} is a compact metric space by Proposition 2.3 (i), we can conclude the following proposition.

PROPOSITION 6.2. $S(t)\phi \in C$ whenever $\phi \in C$. That is, S(t) is a mapping from C into C. Recalling Corollary of Theorem 6, we see

(6.7)
$$S(t)\phi(\nu) = \sup_{\substack{\mathscr{A} \in \mathfrak{A}(\nu,||\nu||)\\ \mathscr{A} : \text{ sw isching syst.}}} J(t,\mathscr{A},\nu,\phi).$$

THEOREM 7. $S(t + \theta) = S(t)S(\theta)$, S(0) = identity.

Proof. Consider the SDE on $(\Omega, F, \mathring{P})$, for $\lambda \in \hat{M}([0 \ T] \times \Gamma)$

(6.8)
$$\begin{cases} d\eta(t) = \alpha(\eta(t))dB(t) + \int_{\Gamma} \gamma(\eta(t), u)\lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Since a solution $\eta(\cdot, \xi, B, \lambda)$ is unique, η satisfies the following relation

(6.9)
$$\eta(t+\theta,\xi,B,\lambda) = \eta(\theta,\eta(t,\xi,B,\lambda),B_t^+,\lambda_t^+)$$

where $B_t^+(s) = B(t+s) - B(t)$, $\lambda_t^+(s, A) = \lambda(t+s, A) - \lambda(t, A)$. Using Ito's formula we get

(6.10)
$$\mathscr{L}(t+s,\xi,B,y,\lambda) = \mathscr{L}(t,\xi,B,y,\lambda)\mathscr{L}(s,\eta(t,\xi,B,\lambda),B_t^+,y_t^+,\lambda_t^+)$$

Define $v\colon [0\ T]\times R^{\scriptscriptstyle n}\times C([0\ T]\to R^{\scriptscriptstyle l})\times \hat M([0\ T]\times \varGamma)\times C_{\scriptscriptstyle b}(R^{\scriptscriptstyle n})\to R^{\scriptscriptstyle l}$ by

(6.11)
$$v(t, x, y, \lambda, f) = \mathring{E}f(\eta(t, x, B, \lambda)) \mathscr{L}(t, x, B, y, \lambda)$$

where \mathring{E} of the right side stands for the expectation with respect to B, since the starting point x is not random. From (6.10) and (6.11) we have

$$(6.12) v(t+s, x, y, \lambda, f) = \mathring{E}f(\eta(t+s, x, B, \lambda))\mathscr{L}(t+s, x, B, y, \lambda)$$

$$= \mathring{E}[\mathscr{L}(t, x, B, y, \lambda)\mathring{E}(f(\eta(s, \eta(t, x, B, \lambda), B_t^+, \lambda_t^+))$$

$$\times \mathscr{L}(s, \eta(t, x, B, \lambda), B_t^+, \gamma_t^+, \lambda_t^+/\sigma_t(B))].$$

Since $\eta(t, x, B, \lambda)$ is $\sigma_t(B)$ -measurable, we see

(6.13)
$$\overset{\mathring{E}(f(\eta(s, \eta(t, x, B, \lambda), B_t^+, \lambda_t^+) \mathcal{L}(s, \eta(t, x, B, \lambda), B_t^+, y_t^+, \lambda_t^+)/\sigma_t(B)))}{= v(s, \eta(t, x, B, \lambda), y_t^+, \lambda_t^+, f)}$$

and, combining with (6.12) we get

(6.14)
$$v(t+s, x, y, \lambda, f) = \mathring{E}v(s, \eta(t, x, B, \lambda), y_t^+, \lambda_t^+, f) \mathscr{L}(t, x, B, y, \lambda) = v(t, x, y, \lambda, v(s, \cdot, y_t^+, \lambda_t^+, f)).$$

Recalling (5.8) and (5.15) we get

$$(6.15) \langle f, \Lambda(t, y, \lambda, \nu) \rangle = \langle v(t, \cdot, y, \lambda), \nu \rangle, f \in C_b(\mathbb{R}^n).$$

Hence, by (6.14), we have

(6.16)
$$\langle f, \Lambda(t+s, y, \lambda, \nu) \rangle = \langle v(t+s, \cdot, y, \lambda), \nu \rangle$$

$$= \langle v(t, \cdot, y, \lambda, v(s, \cdot, y_t^+, \lambda_t^+, f)), \nu \rangle$$

$$= \langle v(s, \cdot, y_t^+, \lambda_t^+, f), \Lambda(t, y, \lambda, \nu) \rangle$$

$$= \langle f, \Lambda(s, y_t^+, \lambda_t^+, \Lambda(t, y, \lambda, \nu)) \rangle, \qquad f \in C_b(\mathbb{R}^n).$$

Consequently

(6.17)
$$\Lambda(t+s,y,\lambda,\nu) = \Lambda(s,y_t^+,\lambda_t^+,\Lambda(t,y,\lambda,\nu)).$$

Since (6.17) holds for any $y \in C([0 \ T] \to R^1)$ and $\lambda \in \hat{M}(0 \ T] \times \Gamma)$, we have, for any $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{A}(\nu/||\nu||)$,

(6.18) $\Lambda(t+s, Y, q, \nu) = \Lambda(s, Y_t^+, q_t^+, \Lambda(t, Y, q, \nu)), \text{ } \dot{P}\text{-almost surely.}$

This implies

(6.19)
$$J(t + s, \mathcal{A}, \nu, \phi) = \mathring{E}\phi(\Lambda(t + s, Y, q, \nu))$$

$$= \mathring{E}[\mathring{E}(\phi(\Lambda(t + s, Y, q, \nu)/\sigma_{T}(Y q)))]$$

$$= \mathring{E}\phi(\Lambda(s, Y_{t}^{+}, q_{t}^{+}, \Lambda(t, Y, q, \nu)))$$

$$= \mathring{E}\mathring{E}(\phi(\Lambda(s, Y_{t}^{+}, q_{t}^{+}, \Lambda(t, Y, q, \nu))/\sigma_{t}(Y, q))).$$

Under the regular conditional probability $\mathring{P}(\ /\sigma_t(Y,q)),\ (B_t^+,\ Y_t^+)$ is $a\ (n+1)$ -dimensional Brownian motion, $(Y_t^+,\ q_t^+)$ independent of (B,ξ) and Y_t^+ is $\sigma_s(Y_t^+,\ q_t^+)$ -Brownian motion, i.e. independent increments. Hence $\eta(t,\xi,B,q),\ B_t^+$ and $(Y_t^+,\ q_t^+)$ are independent under conditional probability $\mathring{P}(\cdot/\sigma_t(Y,q)),\ \mathring{P}$ -almost surely, although the probability distribution of q_t^+ might depend on the past value of $(Y(\theta),\ q(\theta,A),\ \theta\leq t,\ A\in B(\Gamma))$. Hence there exists a null set $N\in\sigma_t(Y,q)$, such that for $\omega\notin N$, $(\Omega,F,\mathring{P}(\cdot/\sigma_t(Y,q)))$ $(\omega),\ \eta(t,\xi,B,q),\ B_t^+,\ Y_t^+,\ q_t^+)\in\mathfrak{A}$. Therefore

(6.20)
$$\mathring{E}(\phi(\Lambda(s, Y_t^+, q_t^+, \Lambda(t, Y, q, \nu))/\sigma_t(Y, q))) \leq (S(s)\phi)(\Lambda(t, Y, q, \nu)),$$

$$\mathring{P}\text{-almost surely}.$$

Combining (6.20) with (6.19), we have

(6.21)
$$J(t+s, \mathcal{A}, \nu, \phi) \leq S(t)(S(s)\phi)(\nu).$$

Taking the supremum with respect to $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we have

$$(6.22) S(t+s)\phi(\nu) < S(t)(S(s)\phi)(\nu).$$

For the converse inequality we will show some lemmas

LEMMA 1. Let $N \subset (M(\mathbb{R}^n), \Delta)$ be totally bounded. Then $\{\Lambda(t, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu); \mathscr{A} \in \mathfrak{A}(\nu/||\nu||), \nu \in N\}$ is totally bounded in (m, δ) .

Proof. Consider the SDE, for $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{A}(\nu/||\nu||).$

(6.23)
$$\begin{cases} d\eta(t) = \alpha(\eta(t))dB(t) + \int_{\Gamma} \Upsilon(\eta(t), u)\lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Then, using this unique solution $\eta(t) = \eta(t, \xi, B, \lambda)$ we have

(6.24)
$$\Lambda(t, y, \lambda, \nu)(A) = \|\nu\| \mathring{E} \chi_{\lambda}(\eta(t)) \mathscr{L}(t, \xi, B, y, \lambda).$$

Hence, by (5.7)

where $||y||_t = \sup_{s \le t} |y(s)|$. This means

(6.26)
$$\Lambda(t, y, \lambda, \nu)(A) \leq \|\nu\|^{\sqrt{\mathring{P}(\eta(t) \in A)}} \exp\left[K_2(t+1)(1+a)^2\right],$$
 whenever $\|y\|_t \leq a$.

On the other hand the condition (A1) implies that, for $\varepsilon' > 0$, there exists $b = b(\varepsilon', t, N)$ such that

$$(6\ 27) \quad \mathring{P}(|\eta(t,\xi,B,\lambda)|>b)<\varepsilon' \quad \text{for } \forall \lambda\in \hat{M}([0\ \ T]\times\varGamma), \ \mathscr{A}\in\mathfrak{A}\Big(\frac{\nu}{\|\nu\|}\Big), \ \nu\in N.$$

Since Y is a Brownian motion, for $\varepsilon > 0$ there exists $a = a(\varepsilon)$ such that

$$(6.28) \mathring{P}(\sup_{s \leq t} |Y(s)| \leq a) > 1 - \varepsilon \text{for } \forall \mathscr{A} \in \mathfrak{A}.$$

Putting $\varepsilon' = \varepsilon^2 e^{-2K_2(1+t)(1+a(\varepsilon))^2}$, (6.26) gives

(6.29)
$$\Lambda(t, y, \lambda, \nu)(K^{c}) < \varepsilon \|\nu\| \quad \text{for } \lambda \in \hat{M}([0 \ T] \times \Gamma)$$

whenever $||y||_t < a$, where the compact set K is given by

$$(6.30) K = \{x \in R^n : |x| \le b(\varepsilon', t, N)\}.$$

Therefore combining (6.28) and (6.29), we see, for $\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)$,

$$(6.31) \qquad 1-\varepsilon < \mathring{P}(\sup_{s < t} |Y(s)| \le a(\varepsilon)) \le \mathring{P}(\varLambda(t, Y, q, \nu)(K^c) < \varepsilon \|\nu\|) .$$

Recalling the condition " $0 < c' \le ||\nu|| \le c$ for $\forall \nu \in N$ ", (6.31) implies Lemma 1 by virtue of Proposition 5.1.

Applying Prohorov's theorem, Lemma 1 gives

Lemma 2. For $\varepsilon > 0$ and a totally bounded set $N \subset (M(R^n), \Delta)$ there exists a compact set $\tilde{N} = \tilde{N}(\varepsilon, t, N) \subset (M(R^n), \Delta)$ such that

$$(6.32) \qquad \mathring{P}(\Lambda(t, Y, q, \nu) \in \tilde{N}) > 1 - \varepsilon \qquad \textit{for } \mathscr{A} \in \mathfrak{A}\left(\frac{\nu}{\|\nu\|}\right), \ \nu \in N.$$

LEMMA 3. Suppose that $M(R^n) = M_0 \cup \cdots \cup M_\ell$ is a Borel partition of $M(R^n)$. Let $\nu_i \in M_i$ and $\mathscr{A} = (\Omega_i, F_i, \mathring{P}_i, \xi_i, B_i, Y_i, q_i) \in \mathfrak{A}(\nu_i/||\nu_i||)$. For any fixed $\mathscr{A} = (\Omega, F, P, \xi, B, Y, q) \in \mathfrak{A}(\nu/||\nu||)$ we define $\tilde{\Omega}, \tilde{F}, \mathring{P}, \tilde{\xi}, \tilde{B}, \tilde{Y}, \tilde{q}$ as follows.

$$egin{aligned} \hat{arOmega} &= arOmega imes arOmega_0 imes arOmega_1 imes \cdots imes arOmega_{\ell}, & ilde{F} = F imes F_0 imes \cdots imes F_{\ell} \ \hat{P} &= \mathring{P} imes \mathring{P}_1 imes \cdots imes \mathring{P}_{\ell}, & ilde{\xi} &= \xi \ & ilde{B}(heta) = egin{cases} B(heta) &, & heta \leq t \ B(t) + \sum_{i=0}^{\ell} B_i (heta - t) arVert_{M_i} (arOmega(t, Y, q,
u)), & heta \geq t \end{cases}. \end{aligned}$$

Y is defined in the same way.

$$ilde{q}(heta,A) = egin{cases} q(heta,A)\,, & heta \leq t \ q(t,A) + \sum\limits_{i=0}^\ell q_i(heta_i-t,A) \chi_{_{M_i}}(arLambda(t,Y,q,
u))\,, & heta \geq t\,. \end{cases}$$

Then $\tilde{\mathscr{A}} = (\tilde{\varOmega}, \tilde{F}, \tilde{P}, \tilde{\xi}, \tilde{B}, \tilde{Y}, \tilde{q}) \in \mathfrak{A}(\nu/||\nu||).$

Proof. ξ is independent of $\{(B, Y, q), (\xi_i, B_i, Y_i, q_i), i = 0, \dots, \ell\}$. So $\tilde{\xi}$ is independent of $(\tilde{B}, \tilde{Y}, \tilde{q})$.

 $ilde{B}$ is a Brownian motion, because for $g \in C_b((R^n)^k)$ and $\theta_j \geq t, j = 1, \dots, k$,

(6.33)
$$\overset{\mathring{E}}{E}(g(\tilde{B}_{j}(\theta_{j}) - \tilde{B}(t), j = 1, \dots, k) / \sigma_{t}(B, Y, q) \vee \sigma(Y_{i}, q_{i}), i = 0, \dots, \ell) \\
= \mathring{E}_{i}(g(B_{i}(\theta_{j} - t), j = 1, \dots, k) \quad \text{if } \Lambda(t, Y, q, \nu) \in M_{i}.$$

Hence $(\tilde{B}(s) - \tilde{B}(t), s \geq t)$ is a Brownian motion which is independent of $\sigma_t(B, Y, q) \vee \sigma(Y_0, q_0) \vee \cdots \vee \sigma(Y_t, q_t)$, since B_i is a Brownian motion. This implies that $(\tilde{B}(s) - \tilde{B}(t), s \geq t, B(\theta), \theta \leq t)$ is independent of $((Y, q), (Y_i, q_i), i = 0, \dots, \ell)$, since B is independent of $((Y, q), (Y_i, q_i), i = 0, \dots, \ell)$. Therefore \tilde{B} is independent of (\tilde{Y}, \tilde{q}) , because (\tilde{Y}, \tilde{q}) is measurable with respect to $\sigma(Y, q, Y_0, q_0, \dots, Y_t, q_t)$.

Using a similar calculation as (6.33), we see that for $g \in C_b$ (R^k) and $\theta_j \geq \theta \geq t, j = 1, \dots, k$

(6.34)
$$\overset{\mathring{E}}{E}(g(\tilde{Y}(\theta_{j}) - \tilde{Y}(\theta), j = 1, \dots, k/\sigma_{t}(Y, q) \vee \sigma_{\theta-t}(Y_{0}, q_{0}, \dots, Y_{\ell}, q_{\ell}))) \\
= \mathring{E}_{i}(g(Y_{i}(\theta_{j}) - Y_{i}(\theta), j = 1, \dots, k)), \quad \text{if } \Lambda(t, Y, q, \nu) \in M_{i}.$$

Therefore $(\tilde{Y}(s) - \tilde{Y}(\theta), s \ge \theta)$ is a Brownian motion which is independent of $\sigma_{\theta}(\tilde{Y}, \tilde{q})$.

It is clear that \tilde{q} satisfies the conditions (v) and (vi), from the definition of \tilde{q} . This completes the proof of Lemma 3.

Now we prove the inequality (6.35) for Theorem.

(6.35)
$$S(t+s)\phi(\nu) \ge S(t)(S(s)\phi)(\nu).$$

Since $J(s, \pi, \nu, \phi)$ is continuous in π, ν and $\mathscr P$ is compact, $J(s, \pi, \nu, \phi)$ is continuous in ν uniformly in $\pi \in \mathscr P$, namely for $\varepsilon > 0$ there exists $\delta(\varepsilon, \nu) = \delta(\varepsilon, \nu, s, \phi)$ such that, if $\Delta(\nu', \nu) > \delta(\varepsilon, \nu)$ then

$$(6.36) |J(s,\pi,\nu',\phi)-J(s,\pi,\nu,\phi)|<\varepsilon.$$

Hence

$$(6.37) |S(s)\phi(\nu') - S(s)\phi(\nu)| < \varepsilon, \text{if } \Delta(\nu',\nu) < \delta(\varepsilon,\nu).$$

Applying Lemma 2 for $N = \{\nu\}$, given $\varepsilon > 0$ we can take a compact set \tilde{N} as in (6.32). From (6.36) and (6.37) we can take a Borel partition of \tilde{N} , say $\tilde{N} = M_1 \cup \cdots \cup M_{\varepsilon}$, such that, if ν' , $\nu'' \in M_{\varepsilon}$, then

$$(6.38) |J(s,\pi,\nu',\phi) - J(s,\pi,\nu'',\phi)| < \varepsilon$$

and

$$(6.39) |S(s)\phi(\nu') - S(s)\phi(\nu'')| < \varepsilon.$$

Fix $\nu_i \in M_i$, $i = 1, \dots, \ell$, arbitrarily and take $\mathscr{A}_i \in \mathfrak{A}(\nu_i/||\nu_i||)$ such that

(6.40)
$$J(s, \pi_i, \nu_i, \phi) \ge S(s)\phi(\nu_i) - \varepsilon$$

where π_i = probability distribution of $(Y_{\mathscr{A}_i}, q_{\mathscr{A}_i})$. Then, by (6.38) \sim (6.40), we see

(6.41)
$$J(s, \pi_i, \nu', \phi) \ge J(s, \pi_i, \nu_i, \phi) - \varepsilon \ge S(s)\phi(\nu_i) - 2\varepsilon \ge S(s)\phi(\nu') - 3\varepsilon$$

for $\nu' \in M_i$.

Let $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$ and $M_0 = \tilde{N}^c$ and take $\nu_0 \in M_0(R^n)$ and $\mathscr{A}_0 \in \mathfrak{A}(\nu_0/||\nu_0||)$ arbitrarily. Then M_i , $i = 0, \dots, \ell$ is a Borel partition of $M(R^n)$. According to Lemma 3 we have $(\tilde{\Omega}, \tilde{F}, \tilde{P}, \tilde{\xi}, \tilde{B}, \tilde{Y}, \tilde{q}) \in \mathfrak{A}(\nu/||\nu||)$. Then

$$J(t+s, \tilde{\mathscr{A}}, \nu, \phi) = \mathring{E}\phi(\Lambda(t+s, \tilde{Y}, \tilde{q}, \nu))$$

$$= \mathring{E}\phi(\Lambda(s, \tilde{Y}_t^+, \tilde{q}_t^+, \Lambda(t, Y, q, \nu)))$$

$$= \mathring{E}[\mathring{E}(\phi(\Lambda(s, \tilde{Y}_t^+, \tilde{q}_t^+, \Lambda(t, Y, q, \nu))/\sigma_{\iota}(Y, q))].$$

On the other hand, by (6.41) we have

$$\begin{split} \mathring{\tilde{E}}(\phi(\Lambda(s,\tilde{Y}_{t}^{+},\tilde{q}_{t}^{+},\Lambda(t,Y,q,\nu))/\sigma_{t}(Y,q))) \\ &= \sum_{i=0}^{\ell} [\mathring{E}_{i}\phi(\Lambda(s,Y_{i},q_{i},\Lambda(t,Y,q,\nu))]\chi_{M_{i}}(\Lambda(t,Y,q,\nu)) \\ &= \sum_{i=0}^{\ell} J(s,\mathscr{A}_{i},\Lambda(t,Y,q,\nu))\chi_{M_{i}}(\Lambda(t,Y,q,\nu)) \end{split}$$

$$\geq \sum_{i=0}^{\ell} S(s)\phi(\Lambda(t, Y, q, \nu))\chi_{M_{i}}(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\|\chi_{M_{0}}(\Lambda(t, Y, q, \nu))$$

$$= S(s)\phi(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\|\chi_{M_{0}}(\Lambda(t, Y, q, \nu)) .$$

Combining with (6.42) we see

(6.43)
$$J(t+s,\widetilde{\mathscr{A}},\nu,\phi) \geq \mathring{E}(S(s)\phi)(\Lambda(t,Y,q,\nu)) - 3\varepsilon - \|\phi\|\mathring{P}(\Lambda(t,Y,q,\nu)) \in \widetilde{N})$$
$$\geq \mathring{E}(S(s)\phi)(\Lambda(t,Y,q,\nu)) - 3\varepsilon - \|\phi\|\varepsilon.$$

Since $\widetilde{\mathscr{A}} \in \mathfrak{A}(\nu/||\nu||)$ we see

$$(6.44) S(t+s)\phi(\nu) \geq \mathring{E}(S(s)\phi)(\Lambda(t,Y,q,\nu)) - \varepsilon(3+\|\phi\|).$$

Taking the supremum with respect to $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we conclude

$$(6.45) S(t+s)\phi(\nu) \geq S(t)(S(s)\phi)(\nu) - \varepsilon(3+\|\phi\|).$$

Tending $\varepsilon \downarrow 0$, we get our desired inequality (6.35). This completes the proof of Theorem 7.

§ 7. Generator and properties of S(t).

We can easily see:

Proposition 7.1. The following properties hold,

- (i) monotone, $S(t)\phi \leq S(t)\psi$ whenever $\phi \leq \psi$
- (ii) contraction, $||S(t)\phi S(t)\psi|| \le ||\phi \psi||$
- (iii) continuity, $S(\theta)\phi(\nu) \to S(t)\phi(\nu)$ as $\theta \to t$, uniformly on any compact set of $M(R^n)$.

That is, S(t) is a monotone contraction weakly continuous semigroup on C.

Proof. (i) From the definition of J, (7.1) is clear

(7.1)
$$J(t, \pi, \nu, \phi) \leq J(t, \pi, \nu, \psi), \quad \text{if } \phi \leq \psi.$$

Hence taking the supremum with respect to $\pi \in \mathcal{P}$, we have (i).

$$\begin{split} (\mathrm{ii}) \quad |S(t)\phi(\nu) - S(t)\psi(\nu)| \\ \leq \sup_{_{\mathscr{A}} \in \mathbb{R}(\nu/\|\nu\|)} |\mathring{E}\phi(\varLambda(t, Y_{_{\mathscr{A}}}, q_{_{\mathscr{A}}}, \nu)) - \mathring{E}\psi(\varLambda(t, Y_{_{\mathscr{A}}}, q_{_{\mathscr{A}}}, \nu))| \\ \leq \|\phi - \psi\| \; . \end{split}$$

Hence taking the supremum with respect to $\nu \in M(\mathbb{R}^n)$, we have (ii).

(iii) By Proposition 6.1. $J(t, \pi, \nu, \phi)$ is continuous in $(t, \pi, \nu) \in [0 \ T] \times \mathscr{P} \times M(\mathbb{R}^n)$. Since \mathscr{P} is compact, $S(t)\phi(\nu)$ is continuous in (t, ν) . Hence it is uniformly continuous on $[0 \ T] \times F$ where F is compact in $M(\mathbb{R}^n)$. This implies (iii).

Now we calculate the generator of S(t), according to [6]. We introduce the following set \mathcal{D} of functions ϕ which depend on finitely many scalar products. Fix $H_N \in C^{\infty}([0 \infty) \to [0, 1])$ such that $H_N(x) = 1$ on [0 N], = 0 on $[N+1, \infty)$ and decreasing in x.

(7.2)
$$\mathscr{D} = \{ \phi; M(\mathbb{R}^n) \longrightarrow \mathbb{R}^1; \ \phi(\nu) = F(\langle f_1, \nu \rangle, \cdots, \langle f_\ell, \nu \rangle) H_N(\langle 1, \nu \rangle)$$
 with $F \in C_n^{\infty}(\mathbb{R}^\ell), \ f_1, \cdots, f_\ell \in C_n^{\infty}(\mathbb{R}^n), \ \ell = 1, 2, \cdots, N = 1, 2, \cdots \}$

where C_0^{∞} denotes the space of C^{∞} functions with compact supports and C_b^{∞} the space of C^{∞} functions with any bounded derivative. Clearly $\mathscr{D} \subset C$. Moreover we have

PROPOSITION 7.2. For $\phi \in C$ there exists $\Phi_k \in \mathscr{D}$ such that $\Phi_k(\nu) \underset{k \to \infty}{\longrightarrow} \phi(\nu)$ for any $\nu \in M(\mathbb{R}^n)$.

Proof. We can apply the same method as [6]. Let $v(x_i, 2^{-N})$ (= open ball with center x_i , radius 2^{-N}) $i = 1, 2, \cdots$ be a covering of R^n with $\bigcup_{i=1}^{k_N} v(x_i, 2^{-N}) \supset [-N, N]^n$ (say I_N). Let g_i^N , $\ell = 1, 2, \cdots$ be a C^{∞} -partition of unity such that

(7.3)
$$\operatorname{supp} g_i^N \subset v(x_i, 2^{-N}) \text{ for some } i$$

(7.4)
$$\sum_{\ell=1}^{P_N} g_\ell = 1 \quad \text{on} \quad I_N.$$

Take $y_{\ell}^{N} \in \operatorname{supp} g_{\ell}^{N} \cap I_{N}$ arbitrarily. Putting $c_{\ell}^{N}(\nu) = \langle g_{\ell}^{N}, \nu \rangle$, we define ν_{N} by

(7.5)
$$\nu_N = \sum_{\ell=1}^{P_N} c_\ell^N(\nu) \delta_{\nu_\ell^N}.$$

Then $\|\nu\| \ge \|\nu_N\| \ge \nu(I_N)$ and for $g \in C_b(R^n)$

$$(7.6) \langle g, \nu_N \rangle \to \langle g, \nu \rangle, \text{ as } N \to \infty.$$

Hence

(7.7)
$$\Delta(\nu_N, \nu) \to 0$$
, as $N \to \infty$.

Denote $F_N(z_1, \dots, z_{p_N}; \phi) = \phi(\sum_{\ell=1}^{p_N} z_\ell \delta_{u^N})$. That is,

(7.8)
$$\phi(\nu_N) = F_N(\langle g_1^N, \nu \rangle, \cdots, \langle g_{\nu_N}^N, \nu \rangle; \phi)$$

Therefore, by (7.6), we have

(7.9)
$$\phi(\nu_N) \to \phi(\nu) \text{ as } N \to \infty.$$

From the definition of H_N , $\lim_{N\to\infty} H_N(\langle 1,\nu\rangle) = 1$ for any $\nu \in M(\mathbb{R}^n)$. Hence

(7.9) gives

$$(7.10) F_{N}(\langle g_{1}^{N}, \nu \rangle, \cdots, g_{n}^{N}, \nu \rangle; \phi) H_{N}(\langle 1, \nu \rangle) \to \phi(\nu), \text{ as } N \to \infty.$$

Take $\tilde{F}_N \in C_h^{\infty}(R^{p_N})$ such that

$$\|\tilde{F}_N - F_N\|_{L_{\infty}(I_{N+1})} < 2^{-N}.$$

Then we have

$$egin{aligned} | ilde{F}_{\scriptscriptstyle N}(\langle g_{\scriptscriptstyle 1}^{\scriptscriptstyle N},
u
angle,\, \cdots,\langle g_{\scriptscriptstyle p_{\scriptscriptstyle N}}^{\scriptscriptstyle N},
u
angle) H_{\scriptscriptstyle N}(\langle 1,
u
angle) \ &-F_{\scriptscriptstyle N}(\langle g_{\scriptscriptstyle 1}^{\scriptscriptstyle N},
u
angle,\, \cdots,\langle g_{\scriptscriptstyle p_{\scriptscriptstyle N}}^{\scriptscriptstyle N},
u
angle : \phi) H_{\scriptscriptstyle N}(\langle 1,
u
angle) |< 2^{\scriptscriptstyle -N}\,. \end{aligned}$$

Combining with (7.10), we complete the proof.

We calculate the generator of S(t), recalling (6.7). For an admissible switching system $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we have the following Zakai equation for $\Lambda(t) = \Lambda(t, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu)$, (see Theorem 5.2 in [8]),

(7.12)
$$\begin{cases} d\langle f, \Lambda(t) \rangle = \langle A(U(t))f, \Lambda(t) \rangle dt + \langle hf, \Lambda(t) \rangle dY(t) \\ \langle f, \Lambda(0) \rangle = \langle f, \nu \rangle & \text{for } f \in C_b^2(R^n), \end{cases}$$

where

$$Y = Y_{s'}$$
, $A(u) = \sum_{i,j} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_i \gamma_i(x, y) \frac{\partial}{\partial x_i}$

and U(t) is a $\sigma_t(q)$ -progressively measurable process for q (see Theorem 4). Therefore using a routine method we have

$$(7.13) \qquad \qquad \mathring{E}|\langle f, \varLambda(t)\rangle - \langle f, \nu\rangle|^2 \leq K_3(t+1)\int_0^t \mathring{E}\langle 1, \varLambda(\theta)\rangle^2 d\theta$$

(7.14)
$$\mathring{E}\langle 1, \Lambda(t)\rangle = \langle 1, \nu \rangle = \|\nu\|$$

and

(7.15)
$$\mathring{E} \| \Lambda(t) \|^2 \le \| \nu \|^2 e^{K_4 t}$$

where K_3 and K_4 are independent of \mathscr{A} . Combining these evaluations, we have

(7.16)
$$\mathring{E}|\langle f, \Lambda(t)\rangle, -\langle f, \nu\rangle|^2 \leq K_2 \|\nu\|^2 (t+1) t e^{K_4 t}.$$

Let $\Phi \in \mathcal{D}$, say $\Phi(\nu) = F(\langle f_1, \nu \rangle, \dots, \langle f_\ell, \nu \rangle) H_N(\langle 1, \nu \rangle)$. For simplicity we put $f_0 = 1$, and $\tilde{F}(z_0, z_1, \dots, z_\ell) = F(z_1, \dots, z_\ell) H_N(z_0)$. Appealing to Ito's formula, we see

$$d\Phi(\Lambda(t)) = \sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle A(U(t)) f_{i}, \Lambda(t) \rangle dt$$

$$+ \frac{1}{2} \sum_{i,j=0}^{\ell} \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle h f_{i}, \Lambda(t) \rangle \langle h f_{j}, \Lambda(t) \rangle dt$$

$$+ \sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle h f_{i}, \Lambda(t) \rangle dY(t) .$$

Using (7.16) we have, for $s \leq 1$,

(7.18)
$$\int_{0}^{s} \mathring{E} \left| \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, A(t) \rangle, \dots, \langle f_{\ell}, A(t) \rangle) \langle A(U(t)) f_{i}, A(t) \rangle \right. \\ \left. \left. \left. - \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(U(t)) f_{i}, \nu \rangle \right| dt \leq K_{5} \|\nu\| s^{3/2} \right.$$

and

(7.19)
$$\int_{0}^{s} \mathring{E} \left| \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, A(t) \rangle, \cdots, \langle f_{\ell}, A(t) \rangle) \langle hf_{i}, A(t) \rangle \langle hf_{j}, (t) \rangle \right. \\ \left. \left. \left. - \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle hf_{i}, \nu \rangle \langle hf_{j}, \nu \rangle \right| dt \leq K_{5} \|\nu\| s^{3/2}$$

with K_5 which is independent of \mathscr{A} and ν .

Define $G\Phi$ as follows

(7.20)
$$G\Phi(\nu) = \sup_{u \in \Gamma} \left(\sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle A(u) f_{i}, \nu \rangle \right) \\ + \frac{1}{2} \sum_{i,j=0}^{\ell} \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle h f_{i}, \nu \rangle \langle h f_{j}, \nu \rangle.$$

Since \tilde{F} is smooth and $\langle A(u)f_i, \nu \rangle$ continuous in u and ν , $G\Phi(\nu)$ is continuous in ν . Moreover $G\Phi(\nu) = 0$ whenever $\|\nu\| \geq N + 1$. Therefore $G\Phi$ is bounded. This implies that $G\Phi \in C$ for $\Phi \in \mathcal{D}$.

We remark that

$$\sum_{i} \int_{0}^{s} \tilde{E} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(U(t)f_{i}, \nu \rangle dt
\leq \int_{0}^{s} \sup_{u \in \Gamma} \left(\sum_{i=0}^{s} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(u)f_{i}, \nu \rangle \right) dt
= s, \sup_{u \in \Gamma} \left(\sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(u)f_{i}, \nu \rangle \right)
= \sup_{u \in \Gamma} \sum_{i=0}^{\ell} \int_{0}^{s} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(u)f_{i}, \nu \rangle dt
\leq \sup_{U; \text{ usual control for switch relaxed syst.} \sum_{i=0}^{\ell} \int_{0}^{s} \tilde{E} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \dots, \langle f_{\ell}, \nu \rangle) \langle A(U(t))f_{i}, \nu \rangle dt.$$

Taking the supremum of left side of (7.21) with respect to U(t) for switching admissible systems, we have

$$(7.22) \quad \frac{1}{s} \sup_{U; \text{ switch syst.}} \sum_{i=0}^{\ell} \int_{0}^{s} \mathring{E} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle A(U(t)) f_{i}, \nu \rangle dt = G \Phi(\nu).$$

On the other hand $(7.17) \sim (7.19)$ tell us that

$$|\mathring{E}\Phi(A(s, Y_{s'}, q_{s'}, \nu)) - \Phi(\nu) - \int_{0}^{s} \sum_{i=0}^{\ell} \mathring{E}\frac{\partial \tilde{F}}{\partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle A(U(t))f_{i}, \nu \rangle$$

$$+ \frac{1}{2} \sum_{i,j=0}^{\ell} \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle hf_{i}, \nu \rangle \langle hf_{j}, \nu \rangle dt \Big|$$

$$\leq 2K_{5}(n+1)^{2} \|\nu\| s^{3/2}.$$

Appealing to (7.22) we have

$$\left|\frac{1}{s}(S(s)\varPhi(\nu)-\varPhi(\nu))-G\varPhi(\nu)\right|\leq 2K_{5}(n+1)^{2}\|\nu\|s^{1/2}$$

Recalling (5.16) we have

$$(7.25) \quad \|\varLambda(s,\,Y_{_{\mathcal{S}\!f}},\,q_{_{\mathcal{S}\!f}},\,\nu)\| \geq \|\nu\|\,e^{-K_1(a+1)^2(s+1)} \qquad \text{whenever } \sup_{t\leq s}|\,Y_{_{\mathcal{S}\!f}}(t)| \leq a\,.$$

Since Y_{\star} is a Brownian motion, a martingale inequality implies

Putting $a=1/\sqrt{\varepsilon}$ and $\tilde{N}(\varepsilon)=(N+1)e^{K_1(a+1)^2(s+1)}$, we see, from (7.25) and (7.26)

$$(7.27) \qquad \mathring{P}(\|\varLambda(s,\,Y_{_{\mathscr{A}}},\,q_{_{\mathscr{A}}},\,\nu)\| \leq N+1) \leq \mathring{P}\Big(\sup_{t\leq s}|Y_{_{\mathscr{A}}}(t)|>\frac{1}{\sqrt{|\varepsilon|}}\Big) < \varepsilon s$$

$$\text{whenever } \|\nu\| \geq \widetilde{N}(\varepsilon) \ .$$

Therefore, if $\|\nu\| \geq \tilde{N}(\varepsilon)$, then

$$(7.28) E|\Phi(\Lambda(s, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu))| \leq \|\Phi\| \varepsilon s.$$

This implies, by virtue of " $\Phi(\nu) = G\Phi(\nu) = 0$ for $\|\nu\| \geq \tilde{N}(\varepsilon)$ ",

$$(7.29) \quad \frac{1}{s}(S(s)\Phi(\nu)-\Phi(\nu))-G\Phi(\nu)|\leq \|\Phi\|\varepsilon\,, \quad \text{whenever } \|\nu\|\geq \tilde{N}(\varepsilon)\,.$$

Appealing to (7.24), we have

(7.30)
$$\left|\frac{1}{s}(S(s)\Phi(\nu)-\Phi(\nu))-G\Phi(\nu)\right| \leq (1+\|\Phi\|)\varepsilon\,,$$
 whenever $s<\varepsilon/(2K_{5}(n+1)^{2}\widetilde{N}(\varepsilon))^{2}$.

This implies that $1/s(S(s)\Phi(\nu) - \Phi(\nu))$ converges to $G\Phi(\nu)$ uniformly on $M(\mathbb{R}^n)$, as $s \downarrow 0$.

Theorem 8. $\mathscr{D}(\mathfrak{G}) \supset \mathscr{D}$ and

that is, the generator is an extension of G.

§ 8. Time discrete approximation

First we recall an approximation theorem of Proposition 4.1 and Theorem 4, namely, for $\mathscr{A} = (\Omega, F, \dot{P}, \xi, B, T, q)$ there exists an approximate usual control U_n , such that

(8.1) U_n is an $\sigma_t(q)$ -progressively measurable Γ -valued process

(8.2)
$$q_n(t, A) = \int_0^t \delta_{U_n(s)}(A) ds$$
 is a switching relaxed control of $\mathcal{A}_n = (\Omega, F, \dot{P}, \xi, B, Y, q_n)$ and

(8.3)
$$J(t, \mathcal{A}, \nu, \phi) = \lim_{n \to \infty} J(t, \mathcal{A}_n, \nu, \phi)$$
 for $\forall \phi \in C$.

Now we define a usual admissible system $\tilde{\mathscr{A}} = (\Omega, F, \mathring{P}, \xi, B, Y, U)$ as follows: $(\Omega, F, \mathring{P}, \xi, B, Y)$ satisfies the same conditions as an admissible (relaxed) system, U is a Γ -valued process, ξ , B and (Y, U) are independent and Y is a $\sigma_t(Y, U)$ -Brownian motion.

 \mathfrak{A} denotes the totality of usual admissible systems, and we apply similar notations as for the relaxed case. Putting $\tilde{q}_v(t,A) = \int_0^t \delta_{U(s,\omega)}(A) ds$, we see $\mathscr{A}_v = (\Omega, F, P, \xi, B, Y, \tilde{q}_v) \in \mathfrak{A}$. Thus a usual admissible system can be regarded as an admissible (relaxed) system. Moreover a unique solution \tilde{X} of the SDE,

(8.4)
$$\begin{cases} d\tilde{X}(t) = \alpha(\tilde{X}(t))dB(t) + \gamma(t), U(t)dt \\ \tilde{X}(0) = \xi \end{cases}$$

gives a unique solution $X_{\mathscr{A}_n} (= \hat{X})$.

Since (ξ, B) and (Y, U) are independent, we can calculate

$$\mathring{E}(f(\hat{X}(\theta))L(\theta,\tilde{\mathscr{A}})/\sigma_t(Y,U))$$

in the same way as (5.8), and get

(8.5)
$$\mathring{E}(f(\hat{X}(\theta))L(\theta, \tilde{\mathcal{A}})/Y = y, U(t) = v(t) \text{ a.a. } t)$$

$$= \mathring{E}f(\eta_v(\theta)\mathcal{L}(\theta, \xi, B, y, q_v)$$

$$= \mathring{E}(f(X_{\mathscr{A}_U}(\theta))L(\theta, \mathscr{A}_U)/Y = y, q_U = \lambda_v)$$

where $\lambda_v(t,A) = \int_0^t \delta_{v(s)}(A) ds$. We remark that, if $v(t) = v^*(t)$, a.a. t, then $\lambda_v = \lambda_{v^*}$. The unnormalized conditional distribution $\tilde{\Lambda}(t, \tilde{\mathcal{A}}, v)$ is defined by

$$(8.6) \qquad \langle f, \tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v) \rangle = \mathring{E}_{\nu} \langle f(\hat{X}(\theta)) L(\theta, \tilde{\mathscr{A}}) / \sigma_{t}(Y, U) \rangle \qquad \text{for } f \in C_{b}(\mathbb{R}^{n}).$$

Hence (8.5) implies

(8.7)
$$\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v) = \Lambda(\theta, Y, q_v, v)$$
, \mathring{P} -almost surely. We sometimes put $\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v) = \tilde{\Lambda}(\theta, Y, U, v)$ and $\tilde{J}(\theta, \tilde{\mathscr{A}}, v, \phi) = \mathring{E}\phi(\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v)) = \tilde{J}(\theta, Y, U, v, \phi)$.

We approximate U_n of (8.1) (say W for simplicity) by a switching usual control, by a routine method, i.e. \tilde{U}_k and $\tilde{U}_{k,p}$ are defined as follows

$$(8.7) \tilde{U}_k(t) = 2^k \int_{t-2^{-k}}^t W(s) ds \quad \text{and} \quad \tilde{U}_{k,p}(t) = \tilde{U}_k\left(\frac{[2^p t]}{2^p}\right).$$

Then $\lim_{k\to\infty}\lim_{p\to\infty}\tilde{U}_{k,p}(t)=W$ in $L^2([0\ T]\times\Omega)$. This fact implies that there exists an approximate switching usual control W_k , which is $\sigma_t(U)$ -progressively measurable and satisfies

(8.8)
$$\mathring{E} \int_{a}^{T} |W_{k}(s) - W(s)|^{2} ds \to 0, \text{ as } k \to \infty$$

and

(8.9)
$$\tilde{J}(t, Y, W, \nu, \phi) = \lim_{k \to \infty} \tilde{J}(t, Y, W_k, \nu, \phi) .$$

By (8.8) some subsequence of W_k converges to W a.e. in $[0\ T] \times \Omega$, we assume " $W_k \to W$ a.e." for simplicity. Therefore, for a.a. $\omega(\mathring{P})$,

$$\int_{\Gamma} g(u)\tilde{q}_{W_k}(t, du) = \int_{0}^{t} \int_{\Gamma} g(u)\delta_{W_k}(du)ds$$

$$= \int_{0}^{t} g(W_k(s))ds \xrightarrow[k\to\infty]{0} \int_{0}^{t} g(W(s))ds = \int_{\Gamma} g(u)\tilde{q}_{W}(t, du)$$
for any t and $g \in C_b(\Gamma)$.

This implies, as $k \to \infty$.

(8.11)
$$\hat{d}_{\tau}(\tilde{q}_{W_k}, \tilde{q}_{W}) \rightarrow 0$$
, \mathring{P} -almost surely.

Hence by Propositions 2.2 and the Corollary of Proposition 3.1 we see

(8.12)
$$\mathscr{A}_{W_k} \to \mathscr{A}_W$$
 and $(X_{W_k}, \mathscr{A}_{W_k}) \to (X_W, \mathscr{A}_W)$ in D_T .

Therefore Theorem 6 implies that, for $\forall \theta$,

(8.13)
$$\tilde{\Lambda}(\theta, Y, W_k, \nu) \rightarrow \tilde{\Lambda}(\theta, Y, W, \nu)$$
 in metric δ .

So we have

Proposition 8.1. For $\mathscr{A} = (\Omega, F, P, \xi, B, Y, q)$ there exists a switching usual control W_k , $k = 1, 2, \dots$, which is $\sigma_l(q)$ -progressively measurable and for any θ

$$\tilde{\Lambda}(\theta, Y, W_k, \nu) \to \Lambda(\theta, Y, q, \nu)$$
 in metric δ , as $k \to \infty$.

This means that switching usual controls are rich enough in the class of relaxed controls.

Put $\widetilde{\mathfrak{A}}_N=$ totality of usual admissible systems whose usual controls are switching with time interval 2^{-N} , i.e. $\widetilde{\mathscr{A}}=(\varOmega,F,\mathring{P},\xi,B,Y,U)\in\widetilde{\mathfrak{A}}_N$, iff $U(t)=U([2^Nt]/2^N)$. We denote $\widetilde{\mathscr{A}}\in\widetilde{\mathfrak{A}}_0$, if U is constant control. So $\widetilde{\mathfrak{A}}_0\subset\widetilde{\mathfrak{A}}_N$. When $P_{\xi}=\nu/||\nu||$, we say $\widetilde{\mathscr{A}}\in\widetilde{\mathfrak{A}}_N(\nu/||\nu||)$. Put $\widetilde{\mathfrak{A}}=\bigcup_{N=0}^\infty\widetilde{\mathfrak{A}}_N$.

From Proposition 8.1 we see

$$(8.14) \begin{split} S(t)\phi(\nu) &= \sup_{\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)} \widetilde{J}(t, \mathscr{\widetilde{A}}, \nu, \phi) \\ &= \lim_{N \to \infty} \sup_{\mathscr{A} \in \mathfrak{A}_N(\nu/\|\nu\|)} \widetilde{J}(t, \mathscr{\widetilde{A}}, \nu, \phi) \,. \end{split}$$

Define $Q = Q_N$ by

$$Q\phi(\nu) = \sup_{\vec{x} \in \P_{\mathcal{N}(\alpha/[0,1])}} J(2^{-N}, \tilde{\mathscr{A}}, \nu, \phi) .$$

We remark that

(8.16)
$$J(2^{-N}, \tilde{\mathcal{A}}, \nu, \phi) = \mathring{E}\phi(\tilde{\Lambda}(2^{-N}, Y, U(0), \nu)) \\ = \int_{\Gamma} \mathring{E}(\phi(\tilde{\Lambda}(2^{-N}, Y, U(0), \nu))/U(0) = u) P_{U_0}(du) .$$

Since $(Y(\theta), \theta \ge 0)$ is independent of U(0),

(8.17)
$$\mathring{E}(\phi(\tilde{\Lambda}(2^{-N}, Y, U(0), \nu/U(0) = u))) = \tilde{J}(2^{-N}, Y, u, \nu, \phi).$$

Moreover the value of the left side depends only on N, u, ν , ϕ , since Y is a Brownian motion with respect to $\mathring{P}(\cdot/U(0)=u)$. We put

(8.18)
$$\tilde{J}(2^{-N}, Y, u, \nu, \phi) = \Phi_N(u, \nu; \phi)$$

and

(8.19)
$$\tilde{Q}\phi(\nu) = \sup_{u \in \tilde{\Gamma}} \Phi_{N}(u, \nu, \phi).$$

Then $\Phi_N(u, \nu, \phi)$ is continuous in $(u, \nu) \in \Gamma \times (M(\mathbb{R}^n), \Delta)$ and $\tilde{J}(2^{-N}, Y, u, \nu, \phi) \leq \tilde{Q}\phi(\nu)$. Combining with (8.12), we see

Hence we have

$$(8.21) Q_N = \tilde{Q}.$$

Since Γ is compact, using a measurable selection theorem, we can take a Borel measurable mapping, $v = v_{\phi} \colon M(\mathbb{R}^n) \to \Gamma$ such that

(8.22)
$$\Phi_{\scriptscriptstyle N}(v_{\scriptscriptstyle \phi}(\nu),\nu,\phi)) = \sup_{\scriptscriptstyle u\in \Gamma} \Phi_{\scriptscriptstyle N}(u,\nu,\phi) .$$

This gives

(8.23)
$$Q\phi(\nu) = \tilde{J}(2^{-N}, Y, v_{\phi}(\nu), \nu, \phi)$$

We have, for $\widetilde{\mathscr{A}} \in \widetilde{\mathfrak{A}}_{N}(\nu/\|\nu\|)$

(8.24)
$$J(2^{-N+1}, \tilde{\mathcal{A}}, \nu, \phi) = \mathring{E}\phi(\tilde{\Lambda}(2^{-N+1}, Y, U, \nu))$$

$$= \mathring{E}\phi(\tilde{\Lambda}(2^{-N}, Y_{2^{-N}}, U_{2^{-N}}, \tilde{\Lambda}(2^{-N}, Y, U, \nu)))$$

$$\leq (Q\phi)(\tilde{\Lambda}(2^{-N}, Y, U, \nu)) \leq Q(Q\phi)(\nu)$$

$$= Q^{2}\phi(\nu).$$

Define $U_2 = U_{2,\phi,\nu}$ by

$$(8.25) \hspace{1cm} U_{\scriptscriptstyle 2}(t) = \begin{cases} v_{\scriptscriptstyle Q\phi}(\nu), \ 0 \leq t \leq 2^{\scriptscriptstyle -N} \\ v_{\scriptscriptstyle \phi}(\tilde{\varLambda}(2^{\scriptscriptstyle -N}, \ Y, \ v_{\scriptscriptstyle Q\phi}(\nu), \ \nu)), \ 2^{\scriptscriptstyle -N} < t \, . \end{cases}$$

Then $\mathscr{A}^* = (\Omega, F, \mathring{P}, \xi, B, Y, U_2) \in \widetilde{\mathfrak{A}}_N(\nu/||\nu||)$ and

$$J(2^{-N+1}, \mathcal{A}^*, \nu, \phi) = \mathring{E}\phi(\tilde{\Lambda}(2^{-N+1}, Y, U_2, \nu))$$

$$= \mathring{E}\mathring{E}(\phi(\tilde{\Lambda}(2^{-N}, Y_{2^{-N}}, v_{\phi}(\tilde{\Lambda}(2^{-N}, Y, v_{Q\phi}(\nu), \nu)), \tilde{\Lambda}(2^{-N}, Y, v_{Q\phi}(\nu), \nu))/\sigma_{2^{-N}}(Y)))$$

$$= \mathring{E}(Q\phi)(\tilde{\Lambda}(2^{-N}, Y, v_{Q\phi}(\nu), \nu))$$

$$= Q(Q\phi)(\nu) = Q^2\phi(\nu).$$

Combining with (8.24), we have

$$\begin{array}{ll} Q^2\phi(\nu) = \sup_{\mathscr{I}\in \mathfrak{A}_{\mathcal{N}}(\nu/\|\nu\|)} \tilde{J}(2^{-N+1},\,\widetilde{\mathscr{A}},\,\nu,\,\phi) \\ = \tilde{J}(2^{-N+1},\,\mathscr{A}^*,\,\nu,\,\phi) \;. \end{array}$$

Repeating a similar calculation we see

$$(8.28) Q^{k+1}\phi(\nu) = \sup_{\mathscr{J} \in \mathfrak{A}_N(\nu/\|\nu\|)} \tilde{J}((k+1)2^{-N}, \tilde{\mathscr{A}}, \nu, \phi)$$

and an optimal one $U_{k+1} = U_{k+1,\nu,\phi}$ is given successively by

$$U_{{}^{k+1}}\!(t) = egin{cases} U_{{}^{k,
u,\,Q^k\!\phi}}\!(t)\;, & 0 \leq t \leq k2^{-N} \ v_\phi(ilde{A}(k2^{-N},\,Y,\,U_{{}^{k,
u,\,Q^k\!\phi}},
u)\;, & k2^{-N} < t\;. \end{cases}$$

Recalling (8.14) we see, for binary t (say $j2^{-p}$)

$$\lim_{N o\infty}\sup_{\mathscr{J}\in\mathfrak{A}_N(
u/\|
u\|)} ilde{\mathcal{J}}(t,\mathscr{ar{A}},
u,\phi)=S(t)\phi(
u)=\lim_{N o\infty}Q_N^{[2^Nt]}\phi(
u)$$

and an approximate optimal usual switching control is given by $U_{k,\nu,\phi}$.

REFERENCES

- A. Bensoussan and J. L. Lions, Application des inéquations variationnelles en contrôle stochastique, Dunod, Paris 1978.
- [2] P. Billingsley, Convergence of Probability Measures, John Wiley 1968.
- [3] J. M. Bismut, Partially observed diffusions and their control, SIAM. J. Control Optim., 20 (1982), 302-309.
- [4] M. H. A. Davis and M. Kohlmann, On the nonlinear semigroup of stochastic control under partial observations, preprint.
- [5] W. H. Fleming, Generalized solutions in optimal stochastic control, Differential games and control theory II, Lect. Notes in pure and Appl. math., 30, Dekker.
- [6] —, Nonlinear semigroup for controlled partially observed diffusions, SIAM. J. Control Optim., 20 (1982), 286-301.
- [7] and M. Nisio, On the existence of optimal stochastic controls, J. Math. Mech., 15 (1966), 777-794.
- [8] and E. Pardoux, Optimal control for partially observed diffusions, SIAM. J. Control Optim., 20 (1982), 258-285.
- [9] U. G. Haussman, On the existence of optimal controls for partially observed diffusions, SIAM. J. Control Optim., 20 (1982), 385-407.
- [10] M. Nisio, Stochastic Control Theory, ISI Lect. Note 9, McMillan India, 1981.
- [11] K. R. Parthasarathy, Probability Measures on Metric Spaces, Acad. Press, 1967.
- [12] A. V. Skorobod, Studies in the Theory of Random Processes, Addism-Wesly, 1965 (orig. Russian).

W. H. Fleming
Division of Applied Mathematics
Brown University
Prividence R. I.
USA

M. Nisio
Department of Mathematics
Kobe University
Rokko, Kobe 657
Japan