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1. Introduction

The iterated equation of generalized axially symmetric potential theory
(GASPT) [1] is defined by the relations

(1) LM) = 0, » = 1. 2, • • -,

where

(2) L (f) - *f + 82f 4- k df

and
mi) = zfc[Lrx(/)]. » = 2,3, • •..

Particular cases of this equation occur in many physical problems. In
classical hydrodynamics, for example, the case n = 1 appears in the study
of the irrotational motion of an incompressible fluid where, in two-dimen-
sional flow, both the velocity potential <£ and the stream function xp satisfy
Laplace's equation, L0(f) = 0; and, in axially symmetric flow, <f> and %p
satisfy the equations L^) = 0, L_x{ip) = 0. The case n = 2 occurs in the
study of the Stokes flow of a viscous fluid where the stream function satis-
fies the equation L\(xp) = 0 with k = 0 in two-dimensional flow and
k = — 1 in axially symmetric flow.

Equation (1) has been discussed by Weinstein [2] and Payne [3] who
have obtained general solutions and by Weinacht [4] who has considered
fundamental solutions.

In this series of papers, the properties of equation (1) will be inves-
tigated from a number of points of view. In this first paper, a variety of
solutions of (1) are given in terms of solutions of the equation

(3) Lk(f) = 0.

Thus solutions of (1) are found of the forms x'd'fddx*, r'd'f^Br*. y*ft where,
for any k, fk(x, y) or fk(r, 8) are arbitrary solutions of equation (3). (r, 0 are
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polar coordinates in the x—y plane). Solutions of (1) are also derived by
changes of variable: for example, a solution is found of the form

2n-2-*-»n

drm

From the discussion of solutions of the form y"ft there emerges a generali-
zation for equation (1) of Weinstein's correspondence principle [1] which
holds for equation (3).

The results given in this paper (which include some familiar results
for completeness) have been selected partly with a view to their usefulness
in subsequent papers. It is intended in these to present a more complete
theory of general solutions of (1) of the type considered by Weinstein and
Payne; a generalization of the familiar general solution of the biharmonic
equation (in the present notation L\[j) = 0) in terms of two analytic func-
tions of the complex variable z = x-\-iy; circle theorems which have as
their prototype (and include as a special case) Milne-Thomson's theorem
[5], well known in classical hydrodynamics; and applications of these results
to problems of physical interest, particularly in the Stokes flow of a viscous
fluid.

Because this investigation was suggested by the hydrodynamical ap-
plications already mentioned, and for the sake of definiteness, the whole of
this work is expressed in terms of the elliptic differential operator Lk

defined in (2). As Weinstein [2] has observed, the important part of the
operator is the pair of terms dildy2-\-ky~x 8/dy and the remainder of the
operator can be altered considerably without affecting many of the results.
Indeed, Lk as given by (2) can be replaced by any operator of the form
X+dz/dyZ+kly djdy, where l i s a linear operator such that d\dyX{f) =
X(dfj8y) (see [6], [3]). It will usually be clear from the context, and is in
any case easily checked, when the operator Lk may be generalized in this
way and in the interests of brevity no further reference will be made to
such a possibility.

Functions of x, y, or of the polar coordinates r, 6, usually denoted by
/ = f(x,y) or / = f(r, 6) will be assumed always to belong to the class of
C2" functions and the notation fk will be used to denote a solution of (3)
so that Lk(Jk) = 0.

that

2. Solutions of L£(/) = 0 of the form

2.1 For any function / and any integers m 2| 0, n 2̂  0, it is obvious
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2.2 For any function / and any integer n 2g 1,

(5) L^xf) = xLn
k{f)+2ndldxLr1{f).

The case n — 1 is easily verified and the theorem is proved by induction,
making use of 2.1.

2.3 THEOREM. For any function f and any integers m, n such that
n ^ m ^ 1,

where SCnk = xLk+2nd/dz.
This is proved by induction on m, the case m = 1 being given by 2.2.
In particular, for m = n—1 and n ^ 2,

(6) Ln
k{x^f) = Sen^n_1>le • • • J?2,kLk(f).

2.4 Equation (6) shows that for any function fk and any integer t
such that 0 ^ t <L n—l, L^x*^) = 0.

Thus, if / M are a set of arbitrarily chosen solutions of (3), then

(7) Ln
kUk,o+*hi+**h2+ • • • +xn-1h«-J = °-

The solution of the equation Lk{f) = 0 given by (7) is in fact a general
solution of the equation (see, for example, [3]).

2.5 Equation (4) shows that for any function fk, 8mfkl8xm is also a
solution of (3). Combining this with (7) gives a theorem which includes all
the results in 2.4 and gives a large class of solutions of (1) consisting of
terms of the form x*dtfk\dxt.

THEOREM. For any integers m{ ^ 0 and any solutions fk t of the equation
Lk(f) = 0,

fo

3. Solutions of ££(/) = 0 of the form

In polar coordinates r, 6 such that x = r cos 0,y = r sin 6,

(8) Lk(f) = _ + _ _ + _ _ ^ _ _ ,

where n = cos 0.

3.1 A necessary preliminary result is a relation between L^{trdmf\?ir'm)
and Lk(J). It is shown first that for any function / and any integer n ^ 0,

(9) L
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The case n = 0 is trivial and the case n = 1 is proved by direct substitu-
tion in the expression (8) for Lk(f). The result is then proved by mathema-
tical induction. This is the case m = 1 of a more general theorem which is
also proved by induction.

3.2 THEOREM. For any function f and any integers m ^ 1, n ^ 0,

L2(f3»//3r«) = En,mEn^ • • • EnAL«k(f),
where

The particular case n = 0 is familiar:

rmdmfldrm = (0—m+l)(d—m+2)

where #(/) = rdfjdr. (See, for example, [7].).
Of more interest in the present context is another special case obtained

by taking / = fk which gives, for any integers m ^ 0, n }£ 1,

(10) Ll{rmdmfkjdrm) = 0.

3.3 Another preliminary result follows from direct substitution in (8).
For any function /, and any m,

(11) L^f) = rmLk(f)+2mrm-1dfldr+m(m+k)rm-2f.

Equation (11) can be simplified considerably in two ways, each of which
gives rise to a chain of theorems. Taking m = 2 gives, for any function /,

(12) L*(t*f) = r*Lk(f)+±r dfldr+2(2+k)f;

while keeping m general and taking f = fk gives, for any function fk and
any m.

(13) Lk{r™fk)

3.4 Consider first the results which follow from (12). It can be proved
that, for any function / and any integer n 22 1,

(14) mr*f) = r*mj)+±nr dldrLk
l-1(f)+2n(2n+k)Lr1(f).

The case n = 1 is given by (12) and the proof by induction makes use of
(9). (14) is the case m = 1 of a more general theorem which is also proved
by induction.

3.5 THEOREM. For any function f and any integers m, n such that
n 7>m ^ 1,

where JKn>k = r*Lk+4nr d/dr+2n(2n+k).
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In particular, for m = n—1 and n ^ 2,

(15) W 1 - 2 / ) = urB,fcurn_lifc • • • Ji^Ltif).

3.6 Equation (15) shows that for any fk and any integer t such that
o <;* ^ « — i ,

(16) W / * ) - 0.

Thus, if fki are a set of arbitrarily chosen solutions of (3), then

(17) Ln
k\jk>o+r*fK1+r*fkt2+ • • • +r*-*/*,B_1] = 0.

The solution of the equation Lk{f) = 0 given by (17) is in fact a general
solution of the equation ([3]).

3.7 Equation (10) (with n = 1) shows that for any function fk,
rmdmfk\drm is also a solution of (3). Combining this with (17) gives a
theorem which includes all the results in 3.6 and gives a large class of
solutions of (1) consisting of terms of the form

THEOREM. For any integers ntf ^ 0 and any solutions fk f of the equation

Lk(f) = 0,

3.8 Equation (16) which leads to theorem 3.7 is also obtained as a
special case of a theorem which follows from equation (13).

THEOREM. / / R,{m, k) is defined by the relations R0(m, k) = 1,
R,(m, k) = (m+k)(m+k—2) • • • (m+k—2s+2) for s = 1, 2, 3, • • •, then,
for any function fk, any m and any integer n 2; 0,

R,(m, k)r»- %^.
or

Equation (13) gives the result when n = 1 and the theorem is proved
by induction. If

then equation (10) (with n = 1) shows that Lk(U) = 0. From equation
(13), with m replaced by w—2n, it now follows that if the theorem is as-
sumed to be true for Lk(r

mfk), then

= Rn{™, 0){m-2n)rm-*n-2[2rdUldr+(m-2n+k)U].

These are the essential steps in the proof and when the differentiation on
the right hand side is carried out and the resulting terms rearranged, the
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required expression for Lp'1(rmfk) is found so that the inductive proof can
be completed.

It will be noted that since

Rn(m, 0) = m{m—2) • • • (m—2n+2),

equation (16) is an immediate corollary of theorem 3.8.

4. Solutions of Lk{f) = 0 of the form ysft

It is convenient to introduce an operator 3) defined by the relation

and to obtain a number of relations between the operators Lk and S>.

4.1 At first the function / can be kept general. By direct calculation,
it can be shown that, for any function /,

(18) Lh9(f) = ®Lk_,(f)

This is the case m = 1 of a theorem easily proved by induction: for any
function / and any integer m ^ 0,

(19) Lk®
m(f) = S>mLk_2m(f).

This, in turn, is the case n = 1 of a more general theorem also proved by
induction:

THEOREM. For any function f and any integers m ^ 0, n ̂  0,

4.2 A second set of relations is concerned with the operation of Lk

and Si on functions /,. By direct calculation, it is shown (Weinstein [2])
that for any function /„

(20) Lk(ft) = (k-l)®^).

This is the case n = 1 of the following theorem which is proved by induction,
using (18):

THEOREM. For any function /„

It is immediately deduced that /, is a solution of the equation

(21) LkLkt • • • Lkn{ft) = 0

provided / = kt—2(»—i) for some integer i in the range 1 ^ i 5S n. Wein-
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stein [2] has shown that a linear combination of these n solutions of (21)
forms a general solution of this equation, provided that kt^ ki—2(i—j)
for / < * = 2, 3, • • •, n.

Taking all the k{ equal to k gives

(22) LHfx) = (k-l-2) • • • [A_/_2(»-l)]^-( / I )

and a family of n solutions of the equation Lk(J) = 0 given by fk_2fi where
0 ^ /? 2s M—1. Weinstein's general solution of (21) shows that a linear
combination of these solutions of Lk{f) = 0 forms a general solution of the
equation.

Finally, it may be noted that theorem 4.1 and equation (22) can be
combined to give

(23) Ll9m(fl) = {k-2m-l)(k-2m-l-2) • • • [k-2m-l-2(n-l)]®m+n(fl).

4.3 With the results of sections 4.1, 4.2 available, it is possible to
derive results which lead to the family of solutions of the equation
Lk(f) = 0 of the form y*/t. (A set of n of these solutions with s = 0 and
t = k-20 for 0 ̂  /S ̂  M - 1 was found in 4.2).

A preliminary result, obtained by direct calculation, is that, for any
function /, and any s,

(24) Lk(y'f) = y>Lk+2,(f)+s(s-l+k)y>-*f.

Equation (24) can be simplified considerably in two ways, each of which
gives rise to valuable theorems. Taking / = ft and keeping s general gives

(25) Lk{y>ft) = (k+2s-t)y>®{ft)+s(s-l+k)y>-*ft,

which is obtained by the use of (20). Taking s = 1—k and keeping / general
gives

(26) Lk(yi-*f)

4.4 The results which follow from equation (25) are considered first.
It will be useful to have, as well, a more general form of (25) which is obtained
from (24) by using (19) and (20): for any function ft, any s, and any integer
n ̂ 0 ,

(27) Lk[y>@»(ft)] = (k+2s-t-2n)y>&»+i(ft)+s(s-l-k)y>-*2)»(ft).

The main theorem provides an explicit expression for Lk(y'ft).

THEOREM. / / , for integers u and v, Pu „ and Quv are defined by the rela-
tions

pu.v = AuA^+\ • • • Av for u ^ v, Puv = 1 for u > v,
Qu.v = BUBU+1 • • • Bv for u ^ v, Quv = 1 for u > v,
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where Aa = k+2s—t—2a and Bfi = (s—2/3)(£—1+s—2/3); then, for any
function ft, any s and any t, and any integer n 22 0,

yft) = i (I) ^,n-i<?o,»-i2/'-2u^n-u(/t)-
u=0 \**/

The theorem is proved by induction, the case n = 1 being given by
equation (25). If the theorem is assumed to be true for Ll{y'ft), then
operating with Lh produces

Ll+x{y'U) = i (*) Pu,n-iQo,«-i[An+uy*-2u®n+1-u(ft)+Buy>-*<-*$"-«(ft)i

where the right hand side is obtained by the use of (27). After lengthy but
elementary calculations, the right hand side can be rearranged to produce
the required form for Ll+1{y'ft) so that the inductive argument can be
completed.

4.5 Theorem 4.4 can be used to find all solutions of the equation
££(/) = 0 of the form y'ft.

THEOREM. L^{y'ft) = 0 for all functions ft if, and only if, s = 2a,
t = ft+2a—2,5 or s = 1—&+2/S, t = 2—&+2/S—2a, where a, /3 are non-
negative integers such that 0 5S a+/3 5g «—1.

Theorem 4.4 shows that for all integers v such that 0 ^ v < n—1,

(28)

From the definitions of Puv and Quv it can be seen that the highest common
factor of the coefficients Pun-iQo,u~i m ^n e ^rs^ a n ( i second sums on the
right hand side of (28) are respectively Pv>n-X and QOv. Hence Ll{y*ft) = 0
for all functions ft if, and only if, s and t are such that Pe>n_1 = 0 and
QOv = 0 for some v in 0 ^ v ^ w—1.

LEMMA. 77a: criterion (A) Pe>B_x = ^0>« = ° / o r s o w e v^w 0 ^ w < « — 1
is equivalent to the criterion (B) Pr>n_x = Bv = 0 /or sowe ww O ^ r ^ w — 1 .

The proof depends on two results which follow immediately from the
definitions of Pu,„,(?„,„:

If (̂ 4) holds, it follows from (ii) that PWjB_! = 0 for all w in 0 ^ w ^ v
and from (i) that Bw = 0 for some te» in 0 ^ t» ^ v. Hence (B) holds. The
converse is obvious from (i). (This concise form of proof is due to Dr. M.
F. Newman.)
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The lemma leads to the statement that L£(y'ft) = 0 for all functions
ff if, and only if, s and t are such that, for some v in 0 ^ v 5S n—1, P,jB_x = 0
and Bv = 0, i.e.

(s—2v)(s+k-l—2v) = 0 and I J (k+2s—t-2y) = 0.
7=0

This requires that s — 2v and t = k+4v—2y or s = 1—k-\-2v and
t = 2—k-\-4tV—2y, where v and y are integers such that 0 ^ v ^ y 5S «—1.
Rearrangement of this last statement with appropriate changes of notation
gives the result of the theorem.

The theorem shows that all solutions of the equation ££(/) = 0 of the
form y*ft fall into two families, each containing ^n(n-\-l) members:

These solutions will be considered in detail in a later paper where the main
aim will be to construct general solutions of the equation in the form of
linear combinations of n terms chosen from these two families.

4.6 The consequences of equation (26) are now considered. Taking /
to be any f2-k in (26) gives

which shows that, for any f2_]c, y
1~kf2-k can be expressed in the form fk,

a result which will be denoted by

(29) t^k-^h-

Writing 2—k for k in (29) shows that, for any function fk,

(30) h -> y*-*/M

The symbol <->• is now introduced to express (29) and (30) in the single
statement:

(31) h<^-y1-kf2-k-

(Two functions related as in (31) will be said to be equivalent.)
Equation (31) is well-known as Weinstein's correspondence principle

Among other deductions from (26) is one that will be useful; for any
function /,

(32) Lk{yx~kf) = y1~k[L_k(f)+23>(f)].

4.7 Equation (26) is the case « = 1 of a more general result which
can be proved by induction:
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THEOREM. For any function f, and any integer » <£ 1,

(33) LlW-*f) = y^LUU)-

This theorem leads to generalized forms of (31) and (32) which have
previously been given by Weinacht [4].

4.8 Denote an arbitrary solution of the equation Lk(f) = 0 by /£"'.
(It will, however, be convenient to continue to denote solutions of Lk(f) = 0
by /*•)

THEOREM. Generalized Weinstein correspondence principle.

(34) fir)++vi-*?&.
This result is derived from (33) exactly as (31) was derived from (26).

This generalization of Weinstein's correspondence principle can be
used to solve problems in the Stokes flow of a viscous fluid in very much
the same way that the simpler principle (31) can be used in inviscid flow
[1]. This, and other applications of the principle, will be discussed in later
papers.

Another result which will be useful later is a generalization of (32)
and is easily proved by induction: for any function / and any integer n ^ 1,

(35) Ll{y^f) = yi-*{L

5. Solutions of L"(f) = 0 obtained by changes of variable

New solutions of Lk(f) = 0 can be obtained by changes of variable
and the changes of the independent variables to be considered are those
which result from reflection in the axis x = 0 of the x—y plane or inversion
in a circle with centre at the origin.

5.1 Reflection in the j/-axis is easily disposed of as the operator Lk

is even in x. Thus, every solution f(x, y) of the equation Lk(f) = 0 gives
rise to another solution f{—x, y).

5.2 The case of inversion in a circle of radius a is of much more in-
terest. Introduce new coordinates (, r\ related to x, y so that the point
(£, rj) is the inverse in the circle r = a of the point (x, y). Thus, if r, 9 are
polar coordinates in the x^-y plane, then polar coordinates in the f—r\
plane are p, d where pr = a2. Let the operator in the f—r\ plane which cor-
responds to Lk in the x—y plane be Ak i.e.

__ a2 82 k 8
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If f(r, 0) is any function, define f(p, 6) such that f(p, 0) = /(a2//>, 0);
thus /(/>, 0) and f(r, 0) have the same value at corresponding points.

It is easily proved that, for any function f(r, 6) and the corresponding
function/(p, 0),

5.3 Combining (36) and (11) shows that for any function f(r, 0) and
the corresponding function f(p, 0),

Equation (37) can be simplified either by taking m = k to give

(38) A,

or by taking f = fh (with corresponding function /fc) to give

Each of these equations (38) and (39) gives rise to new results.

5.4 Equation (38) is the simplest case of the theorem:

THEOREM. For any function f(r, 0) and the corresponding function
f{p, 0), and for any integer n 2> 0,

. -fc—2+2 nK p\-fc-2+2n -i /r\fc+2+2n

T) '] - (7) «<"•Equation (38) gives the case n = 1 and the theorem is proved by in-
duction. Equation (37) is used to show that

„ -ft+2n -|

If the theorem as stated is assumed to be true, so that

fc+2-2n -• ,r\k+2+2n

) ] ( )K y\fc+2-2n -• ,r\k

i) '] - (7)
for any function /, then (40) becomes
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,„
The right hand side of (41) is evaluated with the help of equations (14) and
(9) and gives the required expression so that the induction can be completed.

5.5 Theorem 5.4 can be used to deduce new solutions of the equation
LIU) = 0.

THEOREM. / / fk
n)(r, d) is a solution of Lk(f) = 0, then so is

,f\ -fc-2+2n /<j2 \

[a] h \r'°)'
From theorem 5.4, it is clear that since Z,£[/j.n)(r, 0)] = 0,

. -&-2+2n

7)
Replacing p by r thoughout equation (42) gives the required result.

In particular, if fk{r, 0) is any solution of Lk(f) = 0, then

7)
(See (8]).

5.6 THEOREM. For any function fk(r, 6), and any integer m S: 0,

Equation (43) (with n = 1) gives the case m = 0 and the theorem is
proved by induction using equation (10) with m = n = 1 and the identity

r —

dmf /a2 \ dm+1f /a2 \
v ' drm\r } drm+* \r J

This theorem produces a whole family of new solutions of the equation
Lk(f) = 0 when one solution fk(r, d) is known.

5.7 Taken in conjunction with equation (16), theorem 5.6 gives a
large class of solutions of the equation Lk(f) = 0 which may be compared
with those given by theorem 3.7.
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THEOREM. For any integers mt^0 and any solutions fk>i(r, 8) of the
equation Lk(f) = 0,

5.8 Equation (39) with m replaced by k—m and r and p interchanged
everywhere gives

U\\-
(44)

Equation (44) closely resembles equation (13) and this suggests the pos-
sibility of obtaining an expression for Lk[(rja)m~kfk(a

2lr, 0)] similar to that
obtained in theorem 3.8 for L£[rmfk(r, 0)]. Indeed, since from theorem 5.5
it is known that (rja)~kfk(a

2lr, 8) is a solution of Lk(f) = 0, it should be
possible to replace fk(r, 8) in theorem 3.8 by {rja)-hfk{a2jr, 8) and so derive
the required expression. However, it appears to be easier to prove the result
directly.

THEOREM. / / Ss(m, k, n) is defined by the relations S0(m, k, n) = 1
S,(m,k,n) = (m — k — 2n + 2s)(m—k — 2n+2s — 2) • • • (m — k — 2n + 2)a
for s = 1, 2, 3, • • • then, for any function fk(r, 8) and any integer n ^ 0,

~s

Equation (44) gives the result when n = 1 and the theorem is proved
by induction. If

then theorem 5.6 shows that Lk(V) = 0. From equation (13), with m
replaced by m—2n, it follows that if the theorem is assumed to be true for
the operator Lk, then

= Sn(m, 0, n) (J

https://doi.org/10.1017/S1446788700004110 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004110


276 J. C. Burns [14]

These are the essential steps in the proof and when the differentiation on
the right hand side is carried out and the resulting terms rearranged, the
required expression for L^+1[(rla)m~kfk{a2jr, 0)] is found so that the in-
ductive proof can be completed.

It will be noted that since

Sn{m, 0, n) = m{m—2) • • • (m—2n+2)a-n,

it follows that, for any integer t such that 0 ^ t ^ n—1,

m(rla)«^fk(a*lr, d)] = 0,

a result which is included in theorem 5.7 and can be used to provide an
alternative proof of that theorem.

5.9 Particular cases of several of the theorems of section 5 have been
given by Butler [9], Collins [10] and other authors in establishing circle
theorems for particular equations of the type L%(f) = 0. The general
results found here will be used in a later paper to obtain general circle
theorems.
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