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TOWARDS A PROBLEM IN DEFORMATIONS OF

POLARIZED ALGEBRAIC KS SURFACES

D. COMENETZ

§0.

(0.1) Introductory

A nonsingular algebraic surface V is called a K3 surface if i) 1 =
pg = l(Kv) = dim. H\V, Ω2

V), i.e. a canonical divisor Kv on V is linearly
equivalent to zero and ii) ψ(V) — dim. H\V, OF) = 0. When the char-
acteristic is zero, condition ii) is equivalent to ii)7 q = dimension of the
Albanese variety of V = 0, and always ii) implies ii)7 as in fact ψ(V) > q
> 0, but in non-zero characteristic it can happen that ψ(V) > q ([6],
[15]). When ii)7 is true, the algebraic and linear equivalences of divisors
coincide on V, because of the duality between Picard and Albanese
varieties of V, [8]. When i) and ii) are true, the Riemann-Roch theorem
for divisors D on V reads

(R) ί(D) - ψ(D) + ί(-D) = D^/2 + 2

because in general ί(D) - ψ(D) + Ϊ(KV - D) = Z)(2) - Iφ,D + Kv)/2 + 1
+ Pa(V) (cf. [25], ch. 4,app.) and on a KB surface we have that Kv — 0,
Pg = 1, Pa = Pg — Ψ(V) = 1. —Here we use a standard notation: Ϊ(D) —
dim. H\V, OV(D)), ψ(D) = dim. H\V, OV{D)), and " - " denotes linear
equivalence of divisors.

Let F be a Z3 surface. Notice that any self-inter section number
D{2) is even, so exceptional divisors X of first kind cannot exist since,
for such divisors, the fundamental cycle Z of X satisfies Z(2) = - 1 by
the contractibility criterion of Castelnuovo and M. Artin, [1]; cf. [9].
On the other hand, when a surface W is ruled, pg(W) = 0 so a KS
surface is not ruled. Then a KS surface is always a minimal model of
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80 D. COMENETZ

its birational class, [271. This shows that birational maps between KS
surfaces must be everywhere biregular.

Suppose that V is a polarized KS surface and X is a basic polar
divisor on the underlying surface V. This means ([10]) that there is a
set X of F-divisors with XeX; 3£ contains a hyperplane section Z of V
in some protective embedding; Ye36 if and only if Y is numerically
equivalent to a multiple of X; and when ZeX is a hyperplane section,
Z is numerically equivalent to a positive multiple of X. Since the under-
lying KS surface V is regular, i.e. q — 0, when Y and Z are numerically
equivalent divisors on V, there is a positive integer m such that m Y
is linearly equivalent to m Z, [11]. Therefore when X is a basic polar
divisor, a positive multiple of X determines a projective embedding.
The notation (F, X) will be used for a polarized surface F and basic
polar divisor X.

A common example of a polarized KS surface is one where the under-
lying surface is a general quartic Q in P3 and on which a plane section
is a basic polar divisor—denoted (Q, CQ). Let (F,Z) be a polarized J£3
surface such that the rank Z ( 2 ) = 4 = the rank of (Q,CQ). Suppose that
(F,Z) is an algebraic deformation of (Q,C0) as polarized surfaces, i.e.
CQ deforms to X as Q deforms to V. By a theorem of Matsusaka-
Mumford, [12], the set of algebraic deformations (F,Z) is represented
up to isomorphism by members of an algebraic family of nonsingular
surfaces in a projective space.

In this paper we try to study a particular specie of polarized KS
surfaces (F,X), of rank 4. These "special" surfaces have the character-
istic feature that V is KS and that a basic polar divisor X is linearly
equivalent to a sum: X ~ SE + F, where E, F are irreducible nonsingular
curves on V of respective genera 1,0, and X{2) = (32? + F)(2) = 4 (whence
I{E,F) = 1). In § 1 we show that, if there exists a deformation (F,X)
of (β,CQ) with Z reducible, then 7 must be one of our special KS's.
The rest of the paper is concerned with seeing whether polarized special
KS surfaces do exist, and then with setting up a correspondence in
which such a surface is associated with a homogeneous form of a certain
type. The question, whether a general, special KS (V,SE + F), is really
a specialization of (Q, CQ) is not considered at all.

The main results and assumptions are as follows. A variety V is,
by convention here, absolutely irreducible: if V is defined over a field
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k and P is a generic point of V over k, then k(P) is by assumption a
regular extension of the field fc. A curve, resp. a surface, is a variety
of dim. 1, resp. of dim. 2. Let P be a point of an r-dimensional variety
V, let V be embedded, locally at P, in an affine space Sn, and let {Ft(x)
— 0} be a set of local defining equations. P is simple on V if the rank
of the Jacobian matrix \\dFi/dXj\\ is π — r. V is nonsingular if every
point P is simple on F. These are conventions in Weil's book, [22],
and by and large we shall adhere to the conventions therein.

It is always assumed that the characteristic p Φ 2. There is no other
assumption made about p except in § 1 where p > 3 is needed for the
argument given.

In § 2 the existence of special KS surfaces (not necessarily polarized
rank 4) is considered. Referring to the lead paragraph, we show the
existence of a nonsingular surface V possessed of properties i) pg = 1,
ϋ)/ q = 0 (but ii) pa = 1 is not proved. Thus for V as constructed, the
particular Riemann-Roch formula (R) is valid when the characteristic =
0 but might not be valid when the characteristic Φ 0. To establish (R)
one could for instance produce—without using (R)!—a curve D on V
with ψ(D) = 0 and ί(£>) = DmJ2 + 2.

For the rest we have first to discuss a "branched-cover" representa-
tion of special KS surfaces. In § 3 we see—assuming that V is a special
KS surface, so that (R) is valid—that the complete linear system A con-
taining the divisor 4E + 2F determines a morphism λ of degree 2 from
V to a rational cone C in P5, so that λ(F) is the vertex and λ(E) is a
generator. (The complete linear system (Ey containing E is a linear
pencil, by (R).) The cone C is the same up to protective equivalence
for all special V, and we fix a particular model C in P5. The branch
locus of λ is a principal divisor Γ on C, defined there by a form Ψ =
W(X0, - , Xδ) of degree 3 (which we might suppose to "represent" V).
Conversely, given such a form Ψ which is sufficiently general that Γ is
nonsingular, we can reverse the procedure (§ 2), except that the V we
obtain, as already said, is such that pg = 1 and q = 0 for it but pa may
be less than 1.

In § 4 we show that a special KS surface V represented as a "double
cone" branched over Γ on C, as just described, is polarized by X =
SE + F if and only if Γ is nonsingular. In § 5 we see that the corre-
spondence between polarized K3 surfaces V and forms Ψ = ¥(X0, , Z5)
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is 1-1 in a reasonable sense.

Although the branch curve Γ must be nonsingular to correspond to

a suitably polarized 7, and thus that is the case of main interest (cf.

also Prop. 4), there is also some discussion of what occurs when Γ

acquires singularities, cf. (2.3), (3.3) for instance.

(0.2)

Here, for purpose of reference, we prove some lemmas which are

more or less familiar assertions about K2> surfaces (cf. [13], [17]).

First we define:

Special KS Surfaces. The following particular KS surfaces are discussed

in this paper. (V,E,F) is called a special KS surface if 7 is a KS

surface carrying irreducible nonsingular curves E and F such that E

has genus one, F is rational, and I(E,F) = 1, E™ = 0, F (2) = - 2 .

LEMMA 1. Let X be an irreducible curve lying on a KS surface V.

Then V(X) = φ(V,Qv(X)) = 0.

Proof. There is the exact sequence: 0 —• Gv(—X) —• ζ)v —» £>x —» 0

so there is (® €)V(X)): 0 -> €)v -> €)V(X) -> €)z ® OF(Z) -* 0, whence: 0 ->
k -> L(X) -> fl^GOjr ® £)F(X)). Since KF - 0, ψ(Ωx ® OF(Z)) = ^(D T ) , by

duality (cf. [15], p. 79), so ί(X) - 1 < Λ1®*). By (R), ί(Z) - 1 = X(2)/2

+ 1 + ^ ( 7 , OF(Z)). But TO*) - Pα(^0 = ^ ( 2 ) /2 + 1, (cf. [19]), so

COROLLARY. When X is an irreducible curve on 7, Ϊ(X) = X(2)/2

+ 2 = pa(X) + 1.

LEMMA 2. Lei Λ be a complete linear system without fixed component

on a KS surface 7, and let λ be the mapping of V determined by A.

Suppose that λ(V) is a curve. Then there is an irreducible linear pencil

<7?> of curves E such that A is composite with <£Γ>. Furthermore E{2)

= 0.

Proof. There is an algebraic pencil P = P(J) whose general member

Δ is irreducible, with which A is composite, by ([27],1.4.3.b). The com-

plete linear system A(A) determined by a general member Δ of P is

contained in P (as sets of divisors) because A is linear, complete and is

composite with P. On the other hand, since 7 is a regular surface, all

the curves Δ in P are linearly equivalent on 7. Therefore P coincides
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with Λ(A) so P is by definition a linear system. Write P = <Z?>. l(E)
= 2 as Λ is complete and composite with <£7>, and Λ(7) is a curve.
Consequently 2£(2) = 0 by (R) and the corollary to Lemma 1.

COROLLARY. // D{2) > 0 when D is in A then λ(V) is a surface.

Linear systems. Let Z be a divisor on a normal variety V. The
notation A(X) means the complete linear system of positive divisors on
V determined by Z, as in [22]. £(Z) = ©F(Z) = the invertible sheaf
determined by X\L(X) = H%V,2(X)).

Let Y be an irreducible curve on a complete nonsingular surface V.
Let Z' be a divisor on V and let A = A(X') be the complete determined
by X'. Let Z be a general member of A and assume that Z and Y
meet properly and that points common to X and Y are simple on Y.
Let D — XY (considered on Y). There are two linear series on Y con-
taining D which we mention, viz., the "complete" linear series AY(D)
determined by D and Y c V, and the subseries "trace" consisting of
the set of divisors {X' Y} when we take for Xf all members of A meeting
Y properly, and delete multiple points of Y from X'Ύ (by convention,
"divisors" have support at simple sub varieties). The vector spaces of
functions associated with the two systems are related as follows. The
restriction of S(Z) to Y determines a sheaf S(Z) \γ and there is an exact
sequence 0 -» fi(Z - Y) -> β(Z) -> S(Z)|F -» 0. When we take for y the
functions in H°(Y,2(X)\Y),ΛY(D) is the set {D + div (y)}. When we take
for x all the functions in image [H\V,2(X)) -* #°(Y,£(Z)|F)], the trace
{-3Γ7-Y} is the set {Z> + div (#)}. If the trace and AY(D) coincide one says
"the trace is complete". In any case there is the long exact sequence

> H\V, £(Z)) -> HXY, HX)\γ) - mv, S(Z - Y)) ->.-..

LEMMA 3. Let E be an irreducible nonsingular curve of genus one
on a K3 surface V. When n is a positive integer, ΐ(nE) = n + 1.

Proof. Consider the trace of A(nE) on E: there is the exact sequence
0 -> fi((n - ΐ)E) -> β(ra#) -> fi(wί7)U -> 0. Since the genus of E is 1 and
E{2) = 0,β(wS)U i s J u s t ©2? and we have a surjection L(nE) -> H°(E9GE)
-> 0. By Lemma 1 and (R), ((#) = 2. Then ί(nE) = n + 1 by induction
on n.

C O R O L L A R Y . Let X e A(nE),n > 1. Tftew l i s a swm Z = Eλ +

En,Et — E.
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Proof. We have Ϊ(X) = l(nE) = n + 1. The complete linear system

ί̂(X) contains the linear subsystem consisting of sums E1 + + En,

which has arithmetic dimension n + 1. Therefore Λ(X) coincides with

its subsystem.

In the next lemma we need to refer to the theorem of Bertini on

reducible linear systems ([22], ch. 9, or [27]). For the purpose of reference

we state it now. Let A be a complete linear system on a KS surface

V. Suppose that

i) A has no fixed part, i.e. when G is an irreducible curve on V there

is D e A, D y- G

ii) A is not composed of a pencil, i.e. (using Lemma 2) we do not have

an irreducible curve H with ί(H) = 2 and for any D e A, D = Hι +

+ HryHi ~ H;

iii) A is separable, i.e. letting p be the characteristic, we do not have

a complete linear system A! such that A is the set of divisors p-D'

where D' e A'.

Then A is irreducible, i.e. a general member of A is irreducible.

Let (Y,E,F) be a special K3 surface. Recall: Ϊ(E) = 2,F(2) = - 2 .

LEMMA 4. a) When n is a positive integer, the complete linear

system A(nE + F) has a fixed component which is the curve F further-

more ψ(V,2(nE + F)) = 0.

Assume now that m, n are integers such that m > 2 and n > 2m, and

that not both of m, n are divisible by the characteristic. Let A =

A(nE + mF). Then

b) A is irreducible and φ(V, &(nE + mF)) = 0.

c) A has no base points, and when D e A then D{2) > 0. Consequently:

d) The mapping λ of V determined by A is a morphism to a projective

surface.

Proof. Consider the complete linear system A(nE + F). We claim

that F is its fixed part. Let Ex ~E,EXΦ E. Then nE1 + F and nE +

F are two members of A(nE + F) whose sole common component is F.

Hence any fixed component of A(nE + F) must be alone.

F is not a fixed component if and only if l(nE + F) > l(nE).

Evaluate each side: l(nE + F) = n + 1 + φ(nE + F), l(nE) = n + 1. Thus

ί(nE + F) = ί(nE) + ψ(nE + F), so F is not a fixed component if and

only if ψ(nE + F) > 0.
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Now, on the other hand we know by a preceding lemma that
+ F) == 0 if ΛinE + F) is irreducible. If we assume that Λ(nE + F)

has no fixed part and prove ii), iii), in Bertini's theorem, then ΛinE + F)
would be irreducible, so ψ(nE + F) = 0 and the assumption leads to a
contradiction. Then let us prove ii), iii). As in ii), suppose nE + F ~
kH as above, and evaluate 1 = I(nE + F,E) = likH, E) = kI(H, E): thus
k = 1, nE + F ~ H. By our assumption l(nE + F) > ϊ(nE) > 2; and
ί(H) — 2, so nE + F ~ kH is impossible. As to iii), F occurs in nE + F
with coefficient 1, so nE + F — pDf is impossible. This proves a).

Fix n,m with m > 1, n > 2m and let A = A(nE + mi1). We want
to prove that A is irreducible. Let us verify the conditions in Bertini's
theorem. First we prove ii): suppose that nE + mF ~ kH, then m =
liyiE + mF, E) = I(kH, E) = kI(H, E) so m > k. Now the arithmetic di-
mension of the linear system in which a general member is H1 +
+ Hky is equal to k + 1 if A coincides with that system then l(nE + mF)
= k + l<m + l. But here (R) says that l(nE + mF) > m(n — m) + 2
> m + 1. So yl is not composite with a pencil, iii) follows from p \ n
or p \ m. Lastly we prove that A is free of fixed components, by in-
duction on m > 2. We just saw that fy(nE + F) — 0 suppose that
ψ(nE + (m - 1)F) = 0. In that case I(nί? + mF) > l(nE + (m - 1)F),
using (R). As in a), any fixed part of A must have F as a component.
Thus the inequality just stated says that there is no fixed part when
ψ(nE + (m — 1)F) = 0. Hence by Bertini, A is irreducible, so ψ(nE +
mF) — 0 and the induction can proceed. This proves b).

Next we assert that A = A(nE + mF) has no base points when m
> 2 and n > 2m. Clearly a base point must lie on F. However, we
have that I(nE + mF, F) — n — 2m > 0, that F is a nonsingular rational
curve, and further that the trace of A on F is complete because of the
exact sequence 0 -> Z(nE + (m - 1)F) -»Ά(nE + mF) -> 2(^ί7 + mF)\F -> 0,
and the vanishing of ψ's according to a), b). It follows that there is
no base point on F.

D(2) = (nE + mF)(2) = 2^m - 2m2 > 2m2 > 0. Thus c) is proved,
d) follows from c) and the corollary of Lemma 2. This proves the

lemma.

LEMMA 5. Let V be a i?3 surface and let B' be a divisor on V,
such that a positive integer multiple m B; determines a protective

https://doi.org/10.1017/S0027763000024612 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024612


86 D. COMENETZ

embedding of V. Then there is a positive divisor linearly equivalent to
B', i.e. IGBO > 0.

Proof. By assumption there is a positive divisor C with m>Bf ~ G
and 7(ra 5',C) > 0. As m > 0, /(£', C) > 0. We want to show that
Γ(—B') = 0. If not, there is a positive divisor D with — Bf ~ D. Since
7) >- 0, D-O 0. But now 7(7),C)>0 so I(-B', C) > 0. This and
7(B',C) > 0 cannot both be true, hence l(-B') = 0. Now C(2) > 0, so
J5'(2) > 0. Then the inequality derived from (R): l(Z) > Z(2)/2 + 2 - ί (-Z)
gives that ί(β') > 0.

§ 1. The result in this part implies that, if the polarized quartic
surface (Q, CQ) (cf. (0.1)) deforms to (V,B), a polarized KZ surface of
rank 7?(2) = 4 with basic polar divisor B a generally reducible divisor,
then B is of a certain type. In this section and only here, we suppose
that the characteristic >3 (otherwise >2).

PROPOSITION 1. Let V be a KS surface and let Bf be a divisor on
V, such that a positive integer multiple m-B' determines a protective
embedding. From the complete linear system A(B') {which exists, by
Lemma 5) select a general member B. Suppose that Bi2) = 4 and that
B is reducible. Then B = E1 + E2 + E3 + F, where Eί9F are nonsingular
curves of respective genera 1,0 and I(E,F) — 1.

Proof. By assumption, m-B — C = a section of a protective em-
bedding of V by a general hyperplane. C is a connected curve. By the
Degeneration principle of Enriques-Zariski, [24], m-B is connected;
therefore B is connected. Similarly, 7(C, X) > 0 for a positive divisor
X on V, hence 7(5, X) > 0 for such X. Also, if 7(£, Z) = 1 then Z is
irreducible.

By Bertini's theorem (0.2) the assumption that B is reducible im-
plies that Λ(B) either is composed of a pencil or has a fixed component.
Suppose that there is no fixed component and that A(B) is composed of
an irreducible pencil <G>, so that B = Gx + G2 + + Gm with m > 1.
Now 7?(2) — 4 and G*(2) is even: but these facts and the expression for
B are incompatible. Hence there must be a fixed component in Λ(B).

A fixed component, i.e. an irreducible curve F with ί(F) = 1, must
be a nonsingular rational curve as pa(F) = I(F) — 1 (Lemma 1, cor.).
Let F t be one fixed curve of Λ(7?), let W be the sum of all the others
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so that f\ + W is the entire fixed part of A(B), and let Z be such that
B ~ Fx + W + Z. Fλ + W is a sum of nonsingular rational curves, and
we may assume that no component of Z is a curve of that sort.

Now Z must be reducible. To prove that it is enough to show that
φ(Z) Φ 0. Since Z is a member of the variable part of Λ(B), Ϊ(B) = \{Z)
by the Riemann-Roch theorem (R) and the fact that B(2) — 4 we have
that l(B) ^ 4 hence \{Z) ̂ > 4 and by the same theorem it is enough to
show that Z(2) ^ 2, to conclude that s{Z) φ 0. We have that I(B, Fx + W)

> 0, as observed at the start of the proof, and also that I(Z, Fλ + W)
> 0 because B is connected, B is the sum Z + (Fι + W), and there is
no component common to Z and to Fx + W. Taking the intersection of
the expression for B with (Fx + W), it follows that (F, + W)i2) + I(Z,FX

+ W) ^ 1, hence that (Fλ + WY2) + 2I{Z,FX + W) ^ 2. As 4 = B(2) =

(Z + W + F,y2) we see that Z(2) <; 2 as required. Therefore Z is reduc-
ible.

Z was an arbitrary member of the variable part of Λ(B). Conse-
quently the reduced linear system Λ{Z) is reducible, hence composed of
a linear pencil, by Bertini's theorem. Let E be a general member of
that pencil, then for some integer m > 1, we have that Z ~ mE. Since
E moves in a linear system, E(2) ^ 0 since Z(2) ^ 2 by the argument
above, and self-intersection numbers on a K2> surface are even, Z?(2) = 0.
Hence va(E) = 1. Furthermore if X is an irreducible curve I(Z,X) Φ 1.

There remains to prove three facts: that W = 0, that m = 3, and
that E is nonsingular. As to the first, assume that W Φ 0 then we
must have that B ~F, + W + Z, hence that B{2) = KB^F,) + I(B, W) +
I(B,Z). The first two numbers are each at least one, the last is at
least two, and the sum is four, so I(B, Fλ) = I(B, W) = 1, I(B, Z) = 2.
B is ample so from I(B, W) = 1 it follows that W is irreducible. Next,
we can write 1 = I(B, Fλ) = F/^ + I(FU W) + I(F19 Z). Fλ is a nonsingular
rational curve so F,(2) = - 2 ; hence 3 = 7(2 ,̂ IF) + I(FlfZ). Finally,
writing out 4 = B(2) = (Fx + W + ZY2) = F/2) + TF(2) + Z(2) + 2((7(F1, W)
+ I(F19Z)) + I(W,Z)) = (-2) + (-2) + (0) + 2(3 + I(W,Z)), we see that
I(W,Z) = 1. But ΐ^ is irreducible so I(W,Z) Φ 1 as we noticed. This
is impossible hence W = 0.

Hereafter we shall write F for F l β

Therefore 3 = 7(F,Z) = m I(F,E). Since m > 1, then m = 3 and F
meets each member of the pencil (Ey in a single point with multiplicity
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one. Thus the intersection-product of E and F must be a simple point

of either curve.

Finally we show that a general member of ζEy is nonsingular. It

is here that char. > 3 is used.

The pencil <Z?> corresponds to a map δ: V —• D of V to the pro-

jective line D. Assume that k is a field of rationality for V, F, and

the graph of δ. Let (v) be generic on V over fc. Let id) = δiv) then

(d) is generic on D over /c and k(v) Z) fc(d). Let J57d = δ'Kd) it is a

general divisor in <2?>, so it is an irreducible curve defined over k(d),

[22]. (d) has dimension one over k so (v) is generic on Ed over k{d),

and fcO) is a regular extension of k(d). Let (u) — Ed-F. According to

intersection theory, (u) is rational over fc(d). Then Ed has a simple

point rational over a field of definition.

Now we need a lemma. Let k0 be a field—not necessarily perfect:

here, k(d)—and let K —~k0 be an algebraic closure of fc0.

LEMMA 6. Let E be a curve lying on a nonsίngular surface S, both

E and S being defined over the field k0. Let K = k0 and let

pa = arithmetic genus of E = iI(E, E + Ks) + 1

p = genus of the field extension ko(E)/ko

q = "effective" genus of E — genus of K(E)/K.

Then, Pa>P>Ql furthermore, pa = p if and only if E is kQ-normaL

Proof, p > q is contained in Theorem 5, [3], ch. 5. For the rest

it is only necessary to rearrange a little the results in ch. IV, nos. 6,7

of Serre, [19].

E is a fco-variety with a &0-topology; let Ox be the sheaf on E of

&o-rational functions. E is also a K-variety and O2 = €)γ ®kQ K is its

sheaf of ^-rational functions (Weil [22], ch. 9; [16], ch. 2). By [19],

^ H\E, O2) = pa. By the Kunneth formula (quoted in [15] ch. 11),

,, H\E, O2) - dim*0 H\E, O2).

Let v\Ef -+E be the ^-normalization of E (see [22], app. 1) and let

©3 be the structure sheaf of fc0-rational functions on E'. Let £>4 be the

sheaf on E whose stalks at fc0-closed points are the normalizations of

stalks of Oi in fco(£7). Stalks of Dx and £)4 coincide on a nonempty ko~

open set of E, ([22]). When places P of Er lie over a Vclosed point

Q of E, G4Q == Γ\P_Q O3 P. By Lemma 1 in [19] ch. IV, no. 6 (which does

not depend on using an algebraically closed ground field), H\E', £>3) =
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£P(E\O4). By the "Example" in the same reference p = dim.Λo R/(R(O)

+ kJJE)) = άim.u H\E' >&^ (β being the algebra of repartitions in kQ(E),

[3].

Thus pa depends on E lying on S only, and p is determined by the

/^-normalization.

Now there is the exact sequence of sheaves of fc0-rational functions

on the curve E: 0 —> Ox —> £)4 -> D4/Oχ —> 0. The field of constants in

fco(#) is fc0 so k0 = H 0 ^ ) = #°(©4), and 0 -> HXGJGJ -> ff1^) ~> iF(O4)

—> 0 is exact. Combining this and previous statements it follows that

pa = p + HKΩJCiO > v and pα = p if and only if HXΩJΩJ - 0. The

quotient sheaf is supported at finitely many points as we noted so

HXΩJΩJ - 0 if and only if QJQ - 0, i.e. E is Abnormal.

In our case—E = Ed, k0 = k(d), etc.—the arithmetic genus pa =

Ed

i2) /2 + 1 = 1 so p and q are bounded between 0 and 1. p = 0 is ruled

out because in that case F would be a ruled surface (recall that Ed has

a rational simple point Ed-F). Suppose now that Ed has a multiple

point. Then q < pα by a familiar formula, [19] ch. IV, so g = 0 in that

case. Thus we must have: q — 0, p = 1, so when the field fc(c£) is extended

to Jc(d), there is a genus drop of 1 if Ed has a multiple point. By a

result of Tate, [21], when such genus change occurs, the change is at

least | ( r — 1) (here r = char.). So if r > 3, change cannot happen, and

therefore Ed has no multiple point.

Remark 1.1. We could also apply Bertini's theorem about variable

singularities, [23], to have that Ed is &(<i)-normal, thus simplifying mat-

ters so far as €)1~£)3 = €)i: Serre's "Example" then gives p =
dim. kQHι(Edy€)1) which = pa ( = 1) as before. Then if Ed has a multiple
point the field genus is forced to drop by 1 as before.

§2. In this part we shall construct "special" Z3 surfaces V. It
will appear later that whenever such a V exists it must be a branched
cover of a certain cone; here, we first present that cone and then pre-
scribe a branch locus and erect a surface V. We fix an algebraically
closed ground field k of characteristic Φ2. To start with we discuss

the base curve of the cone.

(2.0). Let us call a projective variety U in Pn, projectively normal

in Pn if each linear system cut by hypersurfaces of a given degree is
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complete. By a well-known theorem of Zariski, Z7 is thus projectively
normal if and only if the homogeneous coordinate ring is absolutely
integrally closed thus a projectively normal curve is nonsingular. When
U is projectively normal a reembedding of U determined by a complete
linear system of hypersurface sections is also projectively normal, as
follows from the definition.

LEMMA 7. Let B be an irreducible curve spanning a projective
space Pn. Then a) B is a curve of degree n, if and only if b) B is a
projectively normal rational curve.

Proof. Suppose a) is true. Let Bo be a nonsingular model of B.
The rational mapping B0—>B into a projective space determines a reduced
linear system A of degree n on Bo; since B spans Pn the geometric
dimension of A is n. This means that Bo is rational: if the genus of
Bo is g we have that n < n — g + Ϊ(K — D) whenever D e A as Ϊ(K — D)
< l(K) = g always, then ΐ(K — D) = g; since the canonical series is
without fixed point, g = 0. Consequently the degree of the linear system
A satisfies n > 2g + 1, so the map determined by A is a birational iso-
morphism. Therefore B is nonsingular.

Let D be the projective line. There is a birational isomorphism
D->B over a field k of definition for D, B such that k(B)/k is purely
transcendental. This amounts to a rational mapping of D into a pro-
jective space. This map is determined by a linear series of degree n,
geometric dimension n, on Z>, which is then the complete system of that
degree and dimension. Now D is obviously projectively normal in itself.
Thus B is a reembedding by hyperplane sections of a projectively normal
variety Z>, so, as above, B is projectively normal.

The converse proof is not given as we don't use the result.

Now let t, u be indeterminates over k and let B be the locus of
(tn, tn~ιu, , un) over k in Pn. B is evidently an irreducible curve of
degree w spanning Pn. Next consider the nC2 equations (*) obtained by

setting equal to zero the 2 x 2 minors of the matrix: Λ-o
where

(3£0, * >3U are homogeneous coordinates in Pn. Clearly B is included
among the zeros of (*). If we take one more equation, for instance
3£0 == 36n, there are at most the finite number n solutions to it and (*).
This shows that the equations (*) define B in Pn.
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A curve B of our type is a reembedding of D as above so two such

f>'s are protectively equivalent in Pn; thus, whenever B is an irreducible

curve of degree n spanning Pn, it is defined by equations (*) in a suit-

able coordinate system.

Let C be the cone in P 5 projecting an irreducible curve of degree 4

spanning P 4 ; C is normal and in an appropriately chosen coordinate

system is defined by the vanishing of 2 x 2 minors of the matrix:

y1 y2 ^ 3 1 4 . Let d , C5 be the open affine subsets of C where respectively
X 2 <&3 Λ4 Λ5

#! =£ 0, 3E5 Φ 0. Every point of C except the vertex (1 : 0: . . . : 0) lies in

Cλ or in C5, because if either 3^ or 3£5 vanish at a point of C then 3£2,

3£3,3£4 do also. The complement C — Cλ is the line 3^ = 3£2 = 3£3 = 3£4 = 0

on C. It is immediate that Cι is defined by equations X3 = Z2

2, Z 4 = X2\

X5 = Z2

4 in affine coordinates (Z1 ? , Z5) = (3eo/3£i, 3E2/3£i, , 3£e/3£i) in S5.

Let »! = go/Si? ̂ 2 = S2/S1 be regarded as functions induced on CΊ A general

point of Cί has the coordinates (x19 x29 x2

2, x2

3, x2

4). Then clearly the pro-

jection: (x19 x2, - - -, x2) -> (xl9 x2) is a biregular isomorphism between Cλ

and the affine plane *S2. Thus klCJ = fc[flJi, OJ2]. We sometimes designate

the inverse by t: (x19 x2) -> (x19 x2, , x2

4).

Let <L> be the pencil of generators of C and let U be a general

member of ζU) over fe. Let |J?| denote support of a cycle B.

LEMMA 7.1. Let G be an irreducible curve on C, defined over k,

such that \G\ Π \U\ contains no simple point of C. Then G is a member

of the pencil <X>.

Proof. Let φ: C -»P 1 be the rational map corresponding to <L>.

Select a generic point g of G over k. g is simple on C so ^ is defined

at g. Let Lα = φ~λφ(g) e <L>. L^ is irreducible, defined over fc, and

passes through g hence Lg = locus of # over k = G.

(2.1). Let ?Γ = ?T(36O, , 3£β) be a homogeneous form of degree three

with coefficients in k. Assume that the hypersurface defined in P 5 by

the equation Ψ = 0 meets properly with the cone C and does not meet

the vertex of C, also that almost every generator of the cone meets the

hypersurface in three transversal intersections. Let Γ be the curve cut

on C by the hypersurface: Ψ — 0.

Let XQ, , Z 5 be the homogeneous coordinate functions of a general
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point of C over k. Set (xί9 , xb) = (X0/XuX2/X19 ,Z5/X1) and

(yl9 ...,1/5) = (Zj/Zo, ,Zβ/Zβ). By (2.0) the vertex of C is at (y) =

(0) and fc(C)—the field of fc-rational functions on C, isomorphic to k(Q)

for Q a generic point of C over k— = k(xlfx2). Write ψ(x) = W(X)/X1

3,

φ(y) == Ψ(X)/X0\ Then the relation ψW/xf = 2/̂ (2/) is valid.

By (2.0) we may write ψ(#) — ψ1(Xι,x2) since the functions xz,xifx6

are powers of x2; in other words -ψ̂  is the pull-back of ψ by the iso-

morphism c: (x19 x2) —> (a?!,#2,#3,#4, #6) = (x19x2,x2

2,#2

3>χι)\ that is, ψx =

The isomorphism projection (inverse to c) of CΊ to S2 induces an

isomorphism from Γ Π Cx to an image F t c S2. The equation ψ x = 0

defines /\ because of the relation div(ψo^) = r^divψ), (cf. [22], ch. 9).

As a polynomial in k[XlfX2], ψλ can have no multiple factors. For, if

it did so, Γx would have multiple components, so that Γ would too;

since by assumption Γ meets almost every generator of C transversally

at each intersection a multiple component must be a generator (Lemma

7.1), hence must go through the vertex—but that is ruled out. Then

certainly:

The equation Z2 = ψι(Xl9X2) defines a field of functions K of degree

two over k(C). (k is algebraically closed and of characteristic Φ2.)

Recall that C is normal, (2.0). Let V be the normalization of C in

K, ([22]). Then V is a projective irreducible normal surface and there

is a normalization map λ': V -* C, of degree 2.

We shall see that F ' has (isolated) multiple points of two types:

one over the vertex and some others over multiple points γ of Γ. We

begin by analyzing the first, which in no way depends on Γ.

(2.2). To study V over the vertex of C we proceed as follows.

The vertex has homogeneous coordinates ( 1 : 0 : . . . : 0) according to (2.0).

Let Co be the affine open subset of C where 3£0 Φ 0. Co is defined by

equations expressing the vanishing of the 2 x 2 minors of the matrix:
V V V V

γ1 γ2 γ3 γ< , as in (2.0).

Next, from the relation ψ(aθ/#i4 = Vi'φiy)* (2.1), it follows that we

can write K = k(CXy6) where yβ is a function defined by the equation

Recall that Γ does not pass through the vertex of C, hence φ(0) Φ 0
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or φ = φ(y) is invertible in the local ring o of C at the vertex.
Now consider the Zariski-closed set $ in Ss defined by

Y6 Y7 = Y2. 0( Y)

Since there are only six equations a component of g has dimension >2.

All components are rational over k — ϊc. There exists a component Wo

passing through the solution (0) of the equations as ^((0)) Φ 0, WQ is

not contained in the hypersurface defined by the equation φ(Y) — 0. Let

(2/0 be a point of Wo, other than (0), such that φ{yf) Φ 0. Computation

shows that the Jacobi matrix formed from the equations (#) has rank

6 at (τ/0. Therefore dim. Wo — 2 and such points (yf) are simple for Wo.

Now when (#0 is any point of WQ such that φ(y') Φ 0, (y\, - ,2/'5)

lies on Co. Let (?/) be a generic point of Wo over k. Since fc(2/i, , yd

contains y7, y8 and y6

2 = ^Q/i, , y5), (yu , yd is a generic point of

CQ over A:.

If U is another component of g n ° t contained in the hypersurface

φ(Y) — 0, and (u) is a generic point of U over fc, (ulf ,^5) is a generic

point of Co over /c for the same reasons. Then there is a generic point

(u) of U over fc such that (u19 ,%) = (y19 -1/5). Then ^6

2 = ?/6

2 so (^),

(y) are generic specializations of one another over k(yu ,y5), hence

over k.

This shows that there is a unique component Wo of g containing

(0) and that the quotient ring of fe[Y]/(#) with respect to the complement

of (Y) is the local ring O" of TF0 at (0). On account of the relation

y6

2 — yX'φ{y)y WQ is birationally equivalent to V' and we identify k(WQ)

with K = fc(70.

The functions y6,y7,ys are integral over the domain fc[i/1? -,yδ] and

consequently ©" is integral over 0 = k[yu -,y&]m. We shall show that

©" is integrally closed.

For this (and other purposes) we compute the cone tangent to Wo

at (0): we claim that it is isomorphic to the "ordinary cone" defined

by XZ = Y2 in S3. Since the latter is normal (2.0) it will follow that

Q" is also. We need to know the ideal A* of leading forms of poly-

nomials in the ideal A generated in k[Y] by (#). Certainly A* contains

the set [Y19 , Y5, Y,YS - Y7

2} (assuming that 0(0) = 1). Since (#) are
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local defining equations any element of A* is of the form γ^ί=ι

+ </6(Γ)(Γ6Y8 - Y7

2). Therefore k[Ylf , Γ8]/A* ^ k[X, Y, Z]/(XZ - Y2)

as claimed. Now the tangent cone is the spectrum of the associated

graded G(©"), so by local algebra, ([26], vol. 2), ©" is normal since

G(O") is so.

Now Wo is an affine surface and is normal in the vicinity of (0).

To be quite definite, put Coo = Co — (φ = 0), and then let F'o, TF00 be

respectively the affine open subsets of V, WQ over Coo (cf. [22], app. 1;

[16], ch. 3). Both of F'o, Woo are normal, and they are birationally

equivalent. Then by the uniqueness of normal covers of a variety (here,

Coo) in a function field (K), cf. [22], F'o and Wm are fc-isomorphic. This

shows that whenever v is a point of V lying over the vertex of C, and

C is the local ring of v on V, then v is the only point over the vertex,

and C = β". Hereafter we use the letter v for this (multiple) point

of V.

Now apply a quadratic transformation p*: F* —» V' of V' centered

at v. To study the effect of p* we may use the local affine model Wo

in S8. We shall apply a quadratic transformation <7*: w* —> TF0 centered

at (0) and transfer what is learned to V*. We shall use the same letters

F,E*, etc. to denote certain similar curves to be defined on W* and on

F* this should not cause confusion.

Let B be the result of blowing up the origin in S8—specifically, the

closure of the graph of the canonical morphism p: S8 — (0) —> P7. Let

q: B —> S8 be the natural projection. B lies on S 8 x P 7 ; is nonsingular;

and carries a divisor E, isomorphic to P7, projecting to the origin in

S8 (cf. [16], ch. 3). The quadratic transform W* is then the proper

transform of Wo via q~\ i.e. the fc-closure of q~\(y)) where (y) is a

generic point of Wo over ft. Clearly W* and E meet properly on B.

Consider the intersection product: (W*-E)B. It is a cycle on W* and

also on E. Now it is shown in [16], p. 319, that W*Έ is defined on

E (identifying E = P7) by the homogeneous ideal of leading forms of

defining equations for Wo in S8, viz. {Zx — = Z5 = 0, Z6Z8 = Z7

2}.

These equations define a nonsingular rational curve.

This shows, first, that W*Έ is a nonsingular variety. Therefore

W* and Z? are transversal at every point of intersection, [22], ch. 6, so

W* is nonsingular at every such point. Since E is locally defined on

B by equations Yt = 0 (cf. [16] the Y/s are induced by the coordinate
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functions in S8), W*Έ is locally defined on PF* by equations yt = 0

(cf. [22], ch. 9;yt is the restriction of Yt to W*). Call F - W* E: F

is a nonsingular rational curve defined over k; every point of F is

simple for W* and F is locally defined on W* by equations #< = 0.

Thus the singularity at (0) e TF* is quite eliminated by a single quadratic

transformation.

Furthermore: let m" be the maximal ideal of the local ring ©" of

T70 at (0) and let λ(m"n) denote the length of the ©"-module O"/m"n.

Then from the explicit form of the associated graded: G(O") =

®n>om"n/m"n+1 ^ k[X,Y,Z]/(XZ - Y2), it follows easily that : λ(m"n) =

Σ^o1 f( 4 2 2 ) ~ (2)] = n 2 ( c f * [ 9 ] ' § 2 3 ) * Consequently, ©"—and also ©',

therefore—is a two-dimensional ([16], p. 85) normal local ring such that

λ(m"n) = n2 and whose singularity is eliminated by a quadratic trans-

formation. Then by the criterion: Prop. (23.5) of Lipman, [9], we have

that (0) (resp. v) is a rational double point of Wo (resp. V): in particular

we have that F ( 2 ) = - 2 .

Therefore, F* carries a curve F (using the same letter) which is

the exceptional curve of p* each point of F is simple for F* F is a

nonsingular rational curve, defined over k; and F(2) = — 2.

Let Λ* : 7* —> C be the composite rational mapping F* > Yf > C

of 7* to the cone C embedded in P 5. We are interested now in the

pull-back via A* of a section / of C by a hyperplane through the vertex.

As to C we shall for now restrict attention to the affine part Co in S5.

Then we may continue to use W*, Wo, etc.

Let (©"jϊti") denote as above the local ring of Wo at (0). According

to the relations (#),m" is generated by y6,y7,y8> Let h = h(y) = α ^ +

• + cιby5 = 0 be the defining equation on Co for a hyperplane section

through the vertex. Call b the unit l/φ= b in ©"; then we have by

(#) that h(y) = b-(axy£ + α2?/62/7 + α3τ/7

2 + α4τ/7̂ /8 + α5^/8

2). That is, fe is a

unit times a homogeneous form of degree 2 in the generators of m".

Write accordingly: /&(#) = b-H2(y6,y7,y8) (H2—coefficients in jfc(α) = Λίαj,

• ,α5)). Now let V/ denote the one-dimensional valuation of K = &CF0

with center F on TF* (or on V*). The center of vF on Wo is the single

point (0) and vF(yt) > 0 for i — 1, , 8. Since #β, ̂ /7, % generate m",

min. vF(^) = min. {vF(y6)9 vF(y7), vF(ys)}. Set min {vF(yά} = ^ F ( ^ ), / = 6,7,

or 8. Then generic points of F are at a finite distance with respect to
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the standard affine open subset W*j of W* corresponding to yό. We
have that vF{y3) = 1 since the equation ys = 0 locally defines F on W*j
(cf. above). For suitable (α) (for instance: αw_U ) = 1, others = 0),
vF(h(y)) = 2. As vF\yt) > 1, i = 6, 7, 8, and deg. # 2 = 2, MW > 2 in
any case, hence the value in 2 for general (α).

So far this shows that F appears with multiplicity two in a pull-
back of a general section J as above.

Next let J be a section of C by a general hyperplane through the
vertex, let D' = λ'~\J) be the F'-divisor lying over /, and let D* on F*
be the proper transform of D' via p*"1: D* is by definition the k(a)-
closure of the set U t i i ° * " W where points (x^) range over generic
points of irreducible components of Df over fc(α). F cannot ever be a
component of D* (as / varies). We want to consider the intersections
of F with -D* (recall that F* is simple at each point of F). Again we
use W*,W0, etc. As before with W* E, we have that (D* E)B is de-
fined on E = P7 by homogeneous equations: {Zx = = Zδ = 0, Z6Z8 =
ZΊ\ H2(Z6,Z7,Z8) = 0}. For a general choice of (A)—even H2(Z) = Z6

2 -
Z8

2 will do—the cycle D*-E is the sum of four distinct points each
counted once. Therefore D* and E are transversal at each common
point also D* Ω F consists of simple points of D* and of F. Since F
= (W* E)B we have that: φ* F)w* = ( D * - ^ * - ^ ) ^ = {D*.E)B (cf. [22],
p. 233). Consequently, D* F consists of a sum of four distinct points,
each counted once.

Thus for general J, the pull-back λ*-\J) = 2F + D* D* and F meet
properly and I(D*,F) = 4; and the intersections are generally transversal
at four points. A little later (2.4) it will appear that F is never a
component of λ*~ι(J) — 2F, even for a special J.

Next we take apart D*. Let L be a general generator of C and let
£"' = λ'~\L) be the F'-divisor lying over L, and let £7* on F* be the
proper transform of Er via p*"1. A general section J as above is a sum,
J = ΣLi9 of four distinct lines Lt so Z)7 = 2 Z?̂  is a similar sum and
likewise D* is the sum of four 2£*£. Let Lx, L2 be distinct generic
generators (not necessarily independent) over k on C, and let E*lf E*2

be the corresponding F*-divisors. By what was just shown, namely,
that Λ*"ι(/) = 2F + D* with F not a component of D*, for general J,
the divisors E*lfE*2 are linearly equivalent on the normal surface F*.
Applying this to a general D* = Σί=i#*<> w e &et t h a t I(D*,F) =
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AΊ(E*i9F); as I(D*,F) = 4, we get that I(E*i9F) = 1. Since the inter-

sections of D* and F are generally transversal, at four points, E*λ and

E*2 meet with F at different points.

Finally we consider the rationality of the divisors E* and of the

points E*'F. Let u be a variable quantity over fc. The equations:

Y2 = u Y1,Yz = u Y2,Yi = u- Γ3, Γ5 = w Γ4 define a line through the origin

of S5 and lying on Co, so they define a generator of Co; which we call Lw.

Let E*u on 7* correspond to this Lu. £7*̂  is rational over k(u). Now F*

and F are also rational over k(u), hence Pw = E*u-F is too (cf. [22], ch. 8).

Thus, E*u has a simple point E*u-F, rational over a field of definition

of E*u.

So far we have shown:

LEMMA 8. Let C, Γ be as above. There exists a surface F* and

a map λ* : F* —> C satisfying

(1) T* is normal, protective, irreducible.

(2) λ* is a proper morphism of degree 2, finite except over the vertex

and ramifying over Γ.

(3) There is an irreducible nonsingular rational curve F on V*, whose

support is the set-theoretic inverse image of the vertex; F has co-

efficient 2 as a component of the pull-back of a general section of

C by a hyperplane through its vertex every point F is simple for

7 * ; and F ( 2 ) = - 2 .

(4) When E* lies over a general generator L of C (as above: E* is the

proper p*~ι-transform of λ'~\L)), then I(E*,F) = 1; and when E*19

E*2 lie over two different generators L19L2, then E*ι~E*2 and

E*rF Φ E*2-F.

(5) When (u) is a point of F, there is a generator Lu and E*u lying

over it such that E*u-F = (u); and E*u is defined over k(u).

(2.3). The next step is to deal with multiple points of V lying

over simple points of C (Since 7* — F and V — v are biregularly

isomorphic the following results can apply at once to V*.)

Recall that the complement of the vertex on C is covered by two

affine surfaces which we called C19C5, which are each set-theoretically

the complement of a generator, cf. (2.0). Let V\, V5 be the open sub-

sets of our normalization V lying respectively over Cl9 C6. Each Vt is

isomorphic to an affine surface by a basic property of normalizations
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and it will be convenient to have explicit models available. These two

models are very similar and are much simpler than Wo previously

examined. Recall that a surface in S3, defined by an equation Z2 =

f(X, Y) with / a square-free polynomial over a field of characteristic

Φ% is automatically a normal surface ([26], vol. 1). (More generally an

irreducible affine hypersurface is normal if it is nonsingular in codi-

mension 1, cf. [16].) In the notations of (2.1), by definition ψ(x) =

Ψ(X)/X1

3

9 and we can write ψ(x) = ψλ(xl9x2) since xZ9xi9xδ are powers of

x2. The polynomial ψί(X1,X2) was shown to be square-free in (2.1).

When z is a function defined by the equation z2 = ψx(xl9 x2) then the

field of fc-rational functions K = fc(7') = k(x19 x2, z). Then the domain

k[x19 x2, z] is automatically the integral closure of k[x19 x2] in the field of

functions K. Therefore the surface Wλ in S3 defined by Z2 = ψι(X1,X2)

is a normal aifine model of K. Wλ can be regarded as lying over Cλ

via the isomorphism r.S2-+C1 in (2.0). By the uniqueness of normal

covers up to isomorphisms ([22], app. 1) Wx and V\ are isomorphic.

Similarly there is an explicit model Wδ for VB. Incidentally we now

have a covering of Yf by affine open subsets Y\9 V\9 V\ lying respectively

over C09C19Cδ; each V\ is explicitly represented by an affine model Wi9i

= 0,1 and 5.

Let P be a generic point of Wλ over k. We are regarding xl9x29z

as fc-rational functions on Wλ set x\ = Xι(P), etc. Then K ^

k(x\, x\, zf). Now clearly k(x\, x\, zf) is separable over k(x\, x'2), so X19 X2

are uniformizing linear forms in S3 for Wλ at P (cf. [22], ch. 4). More

particularly, computing the Jacobian matrix for our equation Z2 = ψλ(X19 X2)

shows that every point of W1 is simple except for those points lying

over multiple points of Γλ (cf. (2.1)), which are indeed multiple points

on Wλ. Repeating this for W5 we get: Yr is nonsingular at points ly-

ing over simple points of C, except over (finitely many) points of Γ

where V is singular.

Now we show

LEMMA 9. Let g be a point of Yf lying over a multiple point γ of

Γ. Then g is a multiple point of Yf and is the only point of Yf lying

over γ.

Proof. We must use that deg. λ' = 2 and that γ is simple on C.

One can employ "conservation of number", [22]. Let P be an ambient
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projective space for V7. Let A be the graph of λ\ and let c be a generic
point of C over fc. Since γ is not the vertex it is simple on C; then
every point of \A\ Π P x γ is simple on the ambient space P x C. There-
fore A-V/ x γ is the unique specialization of A F x c extending the
specialization c—>f, furthermore if A-V'xγ has 2 components (#1,7)
and (g29γ) then A V x γ = l-(glfγ) + I (g2,γ), a s d e ^ ^ = 2 Conse-
quently A and V x γ are transversal at each point of intersection on
P x C, if gλ Φ g2. Hence the points of intersection are simple points on
V x C, therefore gx and g2 are simple on V. But we saw that this
could not happen.

At this point we shall digress slightly to consider divisors on V
over generators on C. Let L be a general generator and set Ef = λ'~\L).
Then E' is an irreducible nonsingular curve of genus one—this is clear
from the explicit affine models Wί9W6. Indeed, L Π Cλ corresponds to a
line X2 = const. = α, say. E; Π V\ is isomorphic to a plane cubic curve
Z2 = ψ^X^a), lying on Wγ and defined there with multiplicity one by
X2 = a as X2 is a uniformizing linear form for Wλ at generic points.
Moreover for general a — X^ψ^X^a) has distinct roots. More partic-
ularly, since Γ L = 3 distinct points counted once, and Γ does not go
through the vertex, according to assumption, the polynomial ψ1(Z1,Z2)
always has degree 3 in X1 for any value of X2 and, for a general value
X2 = a, has distinct roots. Consequently, for any generator Ln\E"' =
λ'~ι(L") is irreducible and, for general L,E' = λ'~ι(L) is a nonsingular
curve of genus one. Clearly every point of a general Ef is simple for

V (excepting v of course) as L does not meet Γ at its multiple points,
cf. previous lemma.

If we are going to find a KS surface V with field of functions K
over k, it will surely be necessary to place some restrictions on allow-
able types of singularities γ on Γ. Indeed, regarding V, we must have
in particular that a canonical divisor Kv on V is linearly equivalent to
zero, from which it follows that an irreducible curve G on V which is
a component of a divisor collapsing to a multiple point g of V, must
be a nonsingular rational curve—G(2) < 0 by [14], the arithmetic genus
pa(G) = (1/2)(G(2) + I(KV,G)) + 1 is non-negative, [19], therefore pa(G)
= 0 and also G(2) = — 2. But it is easy to find examples of Γ where,
when the singularity at g is resolved, curves G of arithmetic genus
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VaiG) > 0 occur (for instance let Ψ(X) — XJ + X3

3 (char ΦS); this induces

Xι + x2 — 0 as local equation for Γ at γ = origin in affine coordinates

(Z/Zx); then an elliptic curve is seen to occur in a resolution of

z2 -f xx

z + x2

6 = 0.—Here, we shall give a sufficient condition on the

singularities γ of Γ to insure Kv ~ 0 is possible.

First of all: let a multiple point g of Vr lie over γ, as above. Then

(*): // γ is restricted to be at most a triple point with at most a

double point in its first neighborhood then there exists a sequence
γ> <_ yo) <_ y/(2> < <_ γnn) oj quadratic transformations resolving the

singularity at g.

Proof. We know, by well known work of Zariski and Abhyankar,

that a finite sequence of, alternately, quadratic transformations and

normalizations will resolve g. The claim is that with the restriction on

γ no normalizations are needed.

The given multiple point g lies either on V\ or on V6, say on the

former. The corresponding point on Wλ has Z-coordinate zero, so we

can assume that it is at the origin in S\ Recall that, as noted earlier,

a surface in S3 defined by an equation Z2 = f(X, Y) with / square-free

is automatically normal.

We work with W1 and shall show that, after a quadratic transform-

ation centered at the origin, the transformed surface is again a double

plane Z2 = f(X19X2) branched over a plane curve / without multiple com-

ponents and satisfying the condition in (*), that a multiple point of / is

at most a triple point with at most a double point in its first neigh-

borhood. Such a branch curve will be called "admissible".

Given: Z2 — f(X19X2). Let us review the effect of a quadratic

transformation centered at the origin 0. Suppose that / has an r-fold

point at 0. Write out f(Xϊ,X2) = J]k^Lr+k(XuX2) as a sum of forms.

Suppose that X2 does not divide Lr, so that the line X2 = 0 is not among

the tangents at O. After the transformation X\ = XxjX2,X
f

2 — X2, of

the plane, / becomes / 7 = f'(X\,X'2) = Σk^Xf

2

k.LrJrk{X\yl). This as

usual shows that there is a 1-1 correspondence, preserving multiplicities,

between the set of tangents at O, and the intersections of the trans-

formed curve / ' with the fundamental line X'2 = 0: for the former set

is equivalent to the set of roots (a:b) of the leading form Lr(Xl9X2)
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((1: 0) is not present just now) and the latter set to the set of roots
a/b of Lr(X\, 1). Furthermore, under the transformation X\ = Xι/X29

X>2 = χ29 Z' = Z/X2, Z2 - f(X19 X2) becomes Z'2 - Σ^o X'2^
k'2) Lr+k(X\, 1).

This shows that the transformed surface is a double plane branched
over a curve in which the fundamental line X\ = 0 appears with mul-
tiplicity exactly r — 2 as a component.

Now we show that the transform of a double plane with admissible
branch curve is again a double plane with admissible branch curve.
With our notation above, r < 3. If r = 1 there is nothing to do. If
r = 2 the new branch curve after a quadratic transformation of the
surface is the transform / ' of the old curve /, so is still admissible.
Next suppose that r = 3. The transform of Z2 - f(Xu X2) is Z'2 -
Σιk>QX/

2

(k+1)'Lk+3(X/

19 1) and the fundamental line X\ — 0 appears just
once as a component of the new branch curve. / ' denoting still the
transform of /, the new branch curve is defined by X'2f = 0.

We shall proceed to consider cases according to the number of
distinct tangential directions at the triple point O o n / . If there are
three tangents, each is counted once and so, by what we observed above
regarding the correspondence between tangents and intersections with
the fundamental line, the new branch curve will have three double points
arising from 0 and will so be admissible. If there are two tangential
directions at O,f will intersect the fundamental line at two places,
transversally at one and, at the other, with multiplicity two. Then at
worst the new branch curve X/

2f
/ will have again a triple point with

two distinct tangential directions, which is clearly admissible.

There remains to deal with the case in which the branch curve /
has a single, 3-fold intersection with the fundamental line. / being ad-
missible, / ' cannot have a triple point, so either this intersection con-
sists of a curve with a simple flex meeting with the tangent there,
which is an admissible circumstance, or else / ' has a double point and
the fundamental line is a tangent there. We may assume, in the latter
case, that the fundamental line is the tangent at a cusp, as the pos-
sibility of two tangents has been considered already. Therefore we have:
the new branch curve X'2f has a triple point with one tangential
direction, and the number of intersections of the tangent line X'2 — 0
with / ; is three. A little more generally, suppose now that a plane
curve g(XlfX2) = 0 has an r-fold point P and that there is just one
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tangent there, which has (r + s)-fold contact with g. Then it is readily
seen that, after a quadratic transformation of g centered at P, the
transform gf has one point Pr corresponding to P, and that P' is at
most an s-fold point for gf. In our case, r = 2 and (the "class") s = 1
so the new branch curve X\ff is admissible.

It should be remarked that the passage from / to / ' does not in-
troduce multiple components as the two curves are in biregular cor-
respondence almost everywhere. Thus it is shown that the transform
of a double plane Z1 — f(X19X2) with admissible branch curve/, is again
of the same type, so that a sequence of quadratic transformations is
sufficient to resolve the singularities.

This finishes what we have to say about multiple points on V7,
except for stating that from now on the choice of the form Ψ is to be
limited so that multiple points on V can be eliminated by a sequence
of quadratic transformations only. (We already know that this is the
case for v eV over the vertex of C.) Such multiple points are called
"rational double points" sometimes (cf. [9]. . .)

(2.4). The limitation just stated being now in force, there exists a
unique minimal desίngularization μ: V —• V (i.e. every desingularization
of V factors through μ), and μ is a product of quadratic transformations,
by Lipman's results ([9], (23.4), (23.5), (4.1)). Order this product so that
p* comes first (cf. (2.2)) and μ factors thus:

y μ > y>

A, A*
y*

Now we may regard F as lying on F* or on V according to convenience.
We have that p* induces a biregular correspondence between F* — F
and V — v, and that μ* is biregular except wherever F* has a multiple
point g.

Let λ: V -> C be the proper morphism λ — λfoμ.

We wish to discuss divisors on V situated over generators of the
cone C. Concerning this subject there is preliminary matter in Lemma
8 and in "digression" in (2.3). Let L be a general generator and, as
before, set Ef = λ'~ι(L). We saw in (2.3) that every point of Ef is simple
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for V except v. Let E on V be the proper transform of E', via μ~\
Recall that £7* on F* was defined to be the proper ^*~^transform

of E', in (2.2). Of course F* is simple at each point of E*. Now we
may apply Lemma 8 to conclude that, when LUL2 are distinct general
generators, the corresponding divisors E19 E2 on V are linearly equivalent
and meet F transversally and at different points. L19 L2 meet only at
the vertex so E1 and E2 don't meet at all. Incidentally, of the several
divisors on F corresponding to multiple points of V, only F has points
in common with more than one such E.

Suppose that E ~G + F with G > 0. Then 0 = E™ = I(E, G) +
I(E,F) > 1, impossible. Hence F never appears as a component of a
divisor linearly equivalent to E.

Let <7?> denote the linear pencil of divisors including E which lie
over the pencil of generators of C. We have seen that (βy is irreducible
and base-point-free, and that a general member E is a nonsingular
curve of genus one such that E(2) = 0, and I(E, F) is always defined for
all members of <£Γ> and = 1 .

This also applies a posteriori to the pencil <£7*> on F* (with obvious
notation). <7?*> has the additional feature that every member is ir-
reducible (cf. (2.3)).

(Remark 2.1. We shall say a word about reducible members of
<#>. V is biregularly equivalent to F* except wherever the latter has
a multiple point g; since the intersection number I(Γ,L) of Γ and a
generator L is 3, a curve E* e <#*> passes through at most one multiple
point g. Let g be such a multiple point on F*, let E* pass through it,
and let E* e <#> on F lie over the line λ*(E*). Write E* as a sum
E* = Eo + (r1E1 + + rnEn) of irreducible components where 2]?=i ri®i
collapses to g. The multiplicities (rj may be determined as follows.
Let Z = 2]?-i $iEi be the "fundamental cycle" of U Et (cf. [2]) then
Si < ri9 all ΐ, because E* itself is locally at g a plane section and we
have that "m OF = %(Z)" on account of F* having rational singularities
only, cf. [2], th. 4. Now it is easy to check that, because of the fact
that I(Γ, L) = 3, £70 meets only components Et which are in the first
neighborhood of g; that is the vector (I(E0,Ei)) has coordinate zero
except for such E%. If that is so the vector is easy to find; assume it
is known for our g. The multiplicities (r*) are then determined uniquely
as the solution of the system of n equations: Σ5=i

https://doi.org/10.1017/S0027763000024612 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024612


104 D. COMENETZ

i — 1, -,n—the equations express the fact that I(E*, Et) = 0 for i —
l, —,n and the solutions are unique because the matrix 11/(2̂ ,2̂ )11 is
negative definite, cf. [14]. The solutions are in fact rt = st for all i and
they may be found in DuVal [5].)

(2.5). One consequence of our assumption, that multiple points of
V, hence of V*9 are rational double points, is that when K* is a ca-
nonical divisor on V*, then K = μ*~\K*) is defined and is a canonical
divisor on V (Artin [1], [2]). Therefore if we can show that K* ~ 0 on
V* we may conclude that K ~ 0 on V—to work on F* will be a con-
venience as we know that all the curves in <2?*> are irreducible. Re-
call too, that E* is base-point-free and when 2?* is a general member,
every point of E* is simple for F* and 2?* is a nonsingular curve of
genus one.

LEMMA 10. Let K* be a canonical divisor on V*. Then K* ~ 0.

Proof. Assume that K* is fc-rational. Suppose we show that K*
~ mE*, m an integer and E* e <Z?*>. We have seen that intersection
numbers I(F,X) are defined for divisors X. As F is of genus zero,
/(F,F + K*) - - 2 . But I(F,E*) = 1 and F(2) = - 2 so X* ~ m£7* will
imply that Z* - 0.

Now we show K* — mE*. Let E* be a fixed member of <Z?*>,
generic over &. E* is a nonsingular curve of genus one and each point
of £?* is simple for V*. Then there is a function / on E* with div (/)
= E* (E* + # * ) = £;*.Z*. Let ftefc(V*) induce / on £7*. We have
that div(fc).S* = div(/), [22], ch. 9. Consider now div(Λ) - 2f*. It is
fc-rational so E* is not a component let D be an irreducible component
such that I(D,E*) > 0. Let k(t) be a field of definition for E*9t being
variable over k. The intersection product DE* is fc(£)-rational ([22],
ch. 8) if it were rational over the algebraically closed field k the pencil
<£?*> would have some base points as DΈ* would belong to every
specialization of E* over k—but <£7*> is base-point-free. Therefore
when D is an irreducible component of the λ -rational divisor div (h) —
K*, such that I(D,E*) > 0, then D-E* is supported at generic points of
D over k. Consequently two different such components D will meet E*
at disjoint sets of points; in other words, when P is a point in the
support of Δ = (div (h) — K*) E* it is a generic point over k of a unique
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D. So, its coefficient in Δ is the coefficient of D in div (h) — Z* times

i(D,E*\P). But its coefficient in Δ is zero, as div(h)Έ* and K* E*

are, by choice of h, one and the same .E*-divisor. Therefore when D

is an irreducible component of div ill) — K* such that I(D,E*) > 0, the

coefficient of D is zero; consequently, components Dλ with non-zero co-

efficient satisfy I(DUE*) = 0.

Fix such a Dx. Since all the E* are irreducible it follows that, if

Dγ has a point in common with any E*x e (E*y, then Dι = E*λ for other-

wise I(Dl9E*d > 0. But there must exist E*1 meeting Dx. In fact there

is a function / : F* —> Pι on V* corresponding to the linear pencil <(£?*>.

As (E*y is base-point-free, / is actually defined everywhere but in any

event it is defined at some point d of Dι then f~ιf(d) will meet Dλ.

But f-'fid) is a member of <#*>.

Thus i£* — m £ * as desired.

So far we have shown:

PROPOSITION 2. Let Ψ, C and Γ be as defined at the beginning of

(2.1). Γ is to be restricted as to its multiple points by the condition in

(*) in (2.3). Then there is an algebraic surface V and a map λ:V—>C

with the following properties:

a) V is a nonsingular protective surface and λ is a morphίsm of degree

2, ramifying over simple points of Γ {char. Φ2 as always).

b) A canonical divisor on V is linearly equivalent to zero.

c) V carries an irreducible linear pencil (Ey of curves E such that a

general member is a nonsingular curve of genus one) λ(E) is a generator

of C, and the restricted map λ\E ramifies over Γ λ(E) and the vertex,

vjhen E is nonsingular.

d) There is a nonsingular rational curve F on V τvhose support \F\ —

λ~ι(vertex) (as sets).

e) The pull-back of a section of C by a hyperplane passing through the

vertex is linearly equivalent to 4£7 + 2F,Ee(E}; F ( 2 ) = —2,£7(2) = 0,

I(E,F) = 1.

f) Let (u) be a point of F and let Fu e <£/> be the curve through (u)

— EU'F. Then Eu is defined over k(u).

The next proposition shows that the surfaces V constructed here are,

in general, K3 surfaces—at least when the characteristic is zero.
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PROPOSITION 3. Let A be the Albanese variety of V and let q be

the dimension of A. Suppose that every member of the pencil <J?> is

an irreducible curve. Then q = 0.

Proof. Let a: V -> A be the Albanese map. We shall assume that

q > 0 and show that q = 1 in that case. Then we shall see that a

multiple of the curve F is a fibre of the map a, which will be impossible

on account of F(2) Φ 0.

Let K be a field of definition for (F, A, a) which contains k. Let

(x) be a generic point of V over K and let 2£tt be the curve in (Ey

through (x). By the previous proposition, (f), we know that Eu is de-

fined over K(u), where (u) — EUF. Clearly, (u) is a generic point over

K on the fe-rational curve F.

Eu has a rational point (u) so we can assume that Eu is an abelian

variety defined over K(u) with identity element (u) — EU>F. Since F is

a rational curve, α(F) is a point α of A; F and A are both defined over

K so we can take a to be the identity element in A. Thus a induces a

rational homomorphism au: Eu —> A, defined over i£(^). If <xw is a constant

mapping then au(Eu) = αrtt(w) — α. This would mean A = a because (F, α)

generates A. Therefore if we assume that q > 0, au is not constant and

au(Eu) is a curve defined over K(u). By a theorem of Chow, ([4]), the

Z-rational Abelian variety A cannot carry a family of abelian subvarieties,

so <xu(Eu) is Z-rational. Then E = au(Eu) is independent of w, and so

A = JJ.

Now we show:

1) au is set-theoretically 1-1.

2) α is a morphism and Z)(2) — 0, where D = orι(y), (y) e E generic over

K.

Indeed, as to 1), this may be shown using Chow's "K(u)/K-image"

of Euy (Chow [4]; cf. remarks on p. 255). Let EQ be the K(u)/K-image

of Eu: then, EQ is an abelian variety defined over K and there is a sur-

jective primary homomorphism λu: Eu -»Eo rational over K(u) and, by

the maximal property of Eo, a commuting triangle (1), φ being rational

over K. Therefore Eo is an elliptic curve (and not a point) and λu is a

purely inseparable isogeny over K(u), i.e. λu is set-theoretically 1-1.

To reverse the direction of φ and show that EQ = E, we note that, on

the other hand, there is a mapping λ: V -*> Eo rational over K, induced
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by λu; hence, by the universal character of the Albanese variety E of

V, a mapping μ\ E —> Eo such that the triangle (2) commutes.

(1)
E

(2)
V

E-

The map μ is rational over K. Now μa = λ, φλ — a, so (φμ)a — a and

φμ is the identity mapping of au(Eu), that is of E. Similarly μφ is the

identity on Eo. Hence the curves E and Eo may be identified. Thus

au — λu is a purely inseparable isogeny, which proves (1).

Call E the curve E = Eo = E = A.

2) a is a morphism because a rational map of a nonsingular variety

into an abelian variety is a morphism, cf. [8], p. 20. Now we have a

morphism of V into a complete nonsingular curve E and we may apply

the results of ([221, eh. 9) to conclude that Z)(2) = 0. This proves 1) and

2).

Let e be the identity element of the elliptic curve E/K. e — a(F)

as we saw. Let G be the if-rational positive cycle a~\e) on V. Let \B\

denote support of a cycle B. We claim that \G\ = \F\.

D

u

X

V E
E

First, F is the sole component of G which meets Eu. In fact, by

1) above, (u) is the only point of Eu lying over (β). The K-locus of (u)

is F and components of G are algebraic over K so only F goes through

(u). Second, let vF(G) = / be the coefficient of F and let G' = G - f F.

Assume that every member of <£/> on V is irreducible. Then any com-

ponent G" of Gf must meet D: in fact, we just saw that no component

of G' meets EU9 so I(G", Eu) = 0 this means that G" is a member of

as in the proof of Lemma 10. Therefore, I(G",D) = I(EU,D) > 0.
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Since G > 0 and I(G,D) = 0, by 2), there can be no Gf except 0. There-
fore \G\ = |F | .

Finally, F (2) < 0 implies G(2) < 0. But G(2) = Z)(2) - 0. So there can
be no such curve E — A. Therefore q = 0.

Remark 2.2. The argument shows that g = 0 in some cases where
<Z?> has reducible members. For instance, suppose that every reducible
member E' is of the form Er = EQ + £Ί, both JEΌ î nonsingular rational
curves with £V2) = E™ = -2,I(E0,EJ = +2 and /(ί7o,F) = l,I(El9F) = 0
—corresponding to ordinary double points on Γ. Then no component
of G' = G — f-F can be a component of any £". Indeed, fix an £" =
Eo + Ex. One can show that (in any case) D is irreducible. Then if
either component of Ef is a component of G', Eo must be so as G is con-
nected and F is a component of G—otherwise Gr would have a component
G" with I(G",Eu)>0, impossible then J φ , £") = /(£>, EJ > 0 and
/(D, G) = 0 together imply that: I(D, Ex) > 0,1(D, Eo) = 0. Then £7X

cannot be a component of G' as 7(D, G) = 0. Now (aF + bE0)
{2) < 0 for

integers α, b not both zero. Applying this to the various reducible E',
we see that no component of Gf is a component of any E\ But in that
case a component G" of G; must satisfy /(G", 2?J > 0, which (again)
cannot be. Thus G' = 0.

§ 3. Next we want to check that our constructions account for all
of the special KS surfaces. That is, starting with a KS surface V
carrying a nonsingular rational curve F and a nonsingular curve E of
genus one with I(E, F) = 1 we want to produce a homogeneous form Ψ of
degree 3 in 6 variables, depending only on V, E, and F, so that the
equation Ψ — 0 defines the branch curve of the map determined by
Λ(4E + 2F).

Since V is a KS surface and E is a curve of (arithmetic) genus one
we have that l(E) = 2. Let <#> denote the pencil of curves containing
E. By assumption a general curve in <i7> is irreducible and nonsingular.
However, reducible curves may occur in the pencil.

(3.1). Let k be an algebraically closed field of definition for V,F
and (Ey, of characteristic Φ2. In order to retrace our steps we start
with the complete linear system A — A(AE + 2F). First we must get
the cone C.
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PROPOSITION 4. Δ is a reduced linear system; let λ be the associated
rational map of V into a protective space. Then λ is a morphism of
degree 2, and the image λ(V) is a cone in P5 which is protectively
equivalent to C. Moreover, λ(E) is a generator line of the cone, and
λ(F) is the vertex.

Proof. By Lemma 4, A is irreducible and base-point free let λ be
the non-degenerate rational morphism associated to A. (Non-degenerate
means that the image is not contained in a hyperplane.) Again by
Lemma 4, λ(V) is a protective surface. Let D be an irreducible curve
in A. ΐ(D) = 6 so the image of V lies in P5, spanning P5. λ(F) is a
point: it is irreducible since F is so, and it is zero-dimensional since
I(F,D) = 0. Thus λ(V) is a protective surface spanning P5.

We shall show next that the protective degree of λ(V) is 4. Since
£>(2) = 8 the degree of λ(V) divides 8, in fact degλ-degλ(V) = 8. Let E
be a nonsingular curve of genus one in (Ey. We have I(D,E) = 2.
The complete linear series on E containing the cycle DE of degree 2
has geometric dimension one and determines a 2-to-l rational map.
The trace of A on E must be this complete series: the alternative can
only be that λ(E) is a point, contradicting I(D,E) > 0. Consequently λ
induces a 2-to-l map on E. Since I(D, E) — 2 the image has degree 1
in P5. It also follows that deg λ > 2 so deg λ{V) < 4.

l(E) — 2 on V so we may select a function x whose polar divisor is
just E. x takes constant values along members of (Ey. Regarding x
as a mapping to the protective line, call x(E) the constant value along
E then x(E) Φ x{E') when E φEr are in <#>. Since L(4£7 + 2F) => L(E),
λ(E) Φ λ{Ef) as lines. Now λ(E) and λ(Ef) are different lines in P5 which
meet at λ(F).

Let P,P' be points of V generic over k. Let E and Ef in (Ey
contain respectively P,Pf. Then E,Ef are generic curves in (Ey over
k and are irreducible. λ(F) is ft-rational and λ(P),λ(Pf) are generic over
k on the respective curves, so λ(P) Φ λ(F) Φ λ(P'). Suppose E Φ E\
Then it follows that λ(P) Φ λ(P') since the two lines λ(E),λ(E') cannot
meet except at λ(F).

Therefore deg λ < 2 so deg λ = 2 and deg λ(V) = 4.
Call C* = λ(V). We have also shown that C* is the union of the

lines λ(E), all of which pass through the point λ(F). In consequence of
this and of the property that λ(V) spans P5, a general section of C* by
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a hyperplane not through λ(F) will be an irreducible curve B of degree
4, spanning a P\ We saw in (2.0) that B is then rational and projec-
tively normal. C* is the cone projecting B from the vertex λ(F).

To see finally that C* = λ(V) is protectively equivalent to C, first
move the cone C* by a protective transformation to a cone C" whose
vertex coincides with the vertex of C. Then cut C + C with a hyper-
plane not through the common vertex. Let B, Bf be the base curves of
C, C" cut that way. They are 4-fold images of the protective line (2.0),
hence are projectively equivalent. This equivalence extends to move C
to C. Thus C and C* are projectively equivalent. This ends the proof.

(3.2). Next we must produce a form Ψ of degree three such that
the hypersurface defined in P5 by the equation: Ψ = 0 cuts out on C the
branch curve Γ of the mapping λ. We shall see that Γ does not pass
through the vertex of C. First, let us prove:

LEMMA 11. Let A be an irreducible curve on C, defined over k,
not passing through the vertex. Then there is a hypersurf ace φ in F5

such that A = C φ.

Proof. It is enough to show that A is linearly equivalent to a
hypersurface section of C. For, we saw that a base curve B of C is
projectively normal, (2.0). Let & be a homogeneous generic point of B
over fc, and let t be variable over fc(δ). Then (t,tb) is a homogeneous
generic point of C over fc. Since b is a generic point over k of an
affine cone (Co), dimfc (6) = dimfc (ί&) hence dimfc (ί, έ&) = 1 + dimfc (6) =
1 + dim*; (t&), so t is variable over k(tb). tb is a homogeneous generic
point over k of the projectively normal curve B, hence the ring k[tb] is
integrally closed. It is an exercise to show that, when a domain R is
integrally closed in its quotient field K and t is variable over K, then
R[t] is integrally closed. From this it follows that k[t, tb] is integrally
closed. Therefore, as k — k, C is projectively normal, so that each
system of hyperplane sections is complete.

Let <L> be the pencil of generators of C and let φ: C —> Pι be the
corresponding rational map. Select a generic point u of P1 over k and
let Lu = ^Γ1^) be a generic member of <L> over fe. Take H to be a
section of C by a fc-rational hyperplane not passing through the vertex
then Lu and H meet properly set P = Lu H. Lu and A meet properly
set a — LUA. There is an integer m and a function /w rational over
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k(u) on Lu, such that: m-P — a = div (/J, since Lw is a straight line.
Let / be a function rational over k on C inducing fu on Lu. The re-
lation: div (f)-Lu = div (/J holds ([22], ch. 9). Let Y = m H - A.
Consider div (/) — Y and let Z be an irreducible component of it with
non-zero coefficient—Z is necessarily fc-rational. We shall show, using
Lemma 7.1, that Ze(U). Indeed, suppose that Q is a simple point of
C common to Z and to Lu. If Q were algebraic over k it would be
common to every generator in <L> distinct generators meet only at the
vertex so Q must be a generic point of Z over fc. This shows that
when Zf is another component of div (/) — Y distinct from Z, Q is not
a point of Z'. Now Lu (div (/) - Y) = div (/J - Lw Y = div (/J -
Lu (m H — A). By choice of fu,m, every component of this 0-cycle on
Lu has zero coefficient. Therefore the point Q above cannot exist. Con-
sequently Z e <L>.

Thus we may write: div (/) - Y = ^ α,L,,L^ e <L>. Let H* be a
generic hyperplane section of C over fc. By choice of / , m, deg (if* Y)
= 0. Also, deg (#*<div (/)) = 0. Therefore Σ ai = ° B u t this means
that X| α̂ L̂  — 0 on the rational cone C. Hence A ~ m H.

According to this lemma, applied to the components of Γ, in order
to produce the form Ψ above we need to show that the branch curve
Γ has degree 12 in P5 (deg. C = 4) and that no component of it passes
through the vertex. For this we shall consider the maps induced by λ
on two kinds of curves on V where knowledge of branching properties
is available, the curves being namely the general members E and D of
the linear systems <£/> and Λ = Λ(4E + 2F) respectively. By basic as-
sumptions E is nonsingular. We shall have to show that D is too.

First we introduce the normalization Yf of C in the field of functions
K = k(V) over the algebraically closed field k.

By (3.1) we have that K contains a rational subfield isomorphic to
k(C) over which K is a quadratic extension; it is a separable extension
as the characteristic is not 2. Identify kiC) with its isomorphic image
in K. Let Xo, , X5 be the induced homogeneous coordinates on C when
it is defined by the equations in (2.0) and set x1 = X0/Xι, x2 = X2/Xi
Then k(C) = k(x19x2) and k[xι,x2] is integrally closed in k(C). By "com-
pleting the square" we can find z e K and ψ1 e k[xu x2] such that z2 =
ΨΊ(#I#2)>ΨΊ i s a square-free polynomial and K = k(x19x2,z). Then {1,2}
is an integral basis in the field K with respect to the domain k[xlf x2]
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and the principal ideal (fj c k[xlf x2] is the discriminant ideal of our
quadratic extension (cf. [26], vol. 1). Thus ψλ is determined up to a
scalar factor.

Now let V be the normalization of C in the field K. Let Cλ be the
affine open subset of C where Xx Φ 0. Let V\ be the affine open subset
of V lying over Cx. Let Wλ be the normal aίϊine surface in S3 defined
by the equation Z2 = ψ^x^ x2). Wλ can be regarded as lying over Cx via
composition of Wx -» S2 with the biregular isomorphism c: S2 —> C19 cf.
(2.0). By uniqueness of normal covers ([22), app. 1), Wx and V\ are
isomorphic.

There is a commuting triangle:

Since F is a i£3 surface, V carries no exceptional curves of 1st kind,
(0.1). Hence μ is biregular at all simple points- of V.

Let Γx be the divisor on Cλ isomorphic to the curve in S2 defined
by setting ^x{xιy x2) = 0. Computing the Jacobi matrix for the equation
Z2 — ψχ(̂ i, x2) shows that V\ is nonsingular over any point of Cx which
is not a multiple point of the curve Γt. Using this and the remark
just above, it then follows that λ, over simple points of Γγ on Cu is
finite and ramifies.

When we make a similar construction using another affine part of
C where X5 Φ 0, for instance, we obtain a curve whose intersection with
Cx is Γι because λ ramifies over it too. Thus we obtain a complete curve
Γ lying on C. —It is not yet proved that Γ does not pass through the
vertex.

Since ψι is square-free Γ has no multiple components, so any multi-
ple points of Γ must be isolated.

Let G be the graph of the mapping λ: V —> C, and let Q be a simple
point of C. When Q e Γ, then G-(V x Q) = P x Q + P' x Q, P Φ P;;
when Q e Γ and not one of the multiple points of Γ, then G (V x Q) =
2 P x Q.

To show that Λ = Λ(4i7 + 2F) contains nonsingular members we
shall need

LEMMA 12. Suppose that H is a hyperplane section of C which does
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not pass through the vertex and which meets Γ transversally at each
intersection point. Let D be the divisor in A corresponding to H. Then
D is a nonsίngular irreducible curve of genus 5.

Proof. The hyperplane cutting H on C is transversal in P5 to each
generator because H does not pass through the vertex. Moreover the
curve H meets a generator at simple points of C. Thus H is transversal
on C to each generator, therefore H is a nonsingular curve. We know
that A is an irreducible system, hence every curve in A is connected
([24]); thus, if D is nonsingular it is irreducible. To show that D is
nonsingular we use the "calculus of cycles", [22], ch. 8.

Let PeD with Q = λ(P)$Γ H. Then Q$Γ so, with G as above,
G'(V X Q) = P X Q + Pf X Q, P ΦP'. This intersection is taken on
V x C. Let us restrict the ambient space, first from V x C to V x H,
then to D x H. Clearly G intersects both V X H and V X Q properly
on V X C. Set GD = (G F x iϊ)F x ί 7 Then we have (cf. [22], ch. 8, Th.
10):

(G y X Q)v*c - ((G y x H W F X Q W = (GD.Vχ Q)VXH

= (GD (V xQ'Dx H)VXH)DXH = (GD-D x Q)DxH .

Also, {G'V x Q)VxC = P x Q + P' X Q. Therefore GD and D x Q are
transversal at P x Q on fl x Jί so P is a simple point of D.

Let PeD with Q = λ(P)eΓ H, so that G (7 X Q) = 2 P x Q. Let
Γ7 be the component of Γ containing Q (Q is simple on Γ) and let Γ"
be the curve on V determined by

2 Γ / / - p r F ( G . ( F x Γ')) .

Then λ(Γ") = Γ7. ^ is finite over all the points of Γ'Ή so Γ" x H and
G intersect properly on V x C. Put T = G-Γ" xH. By Th. 9 in ch. 8,
[22], vrcT = λ(Γ")Ή = Γ'Ή; this is by hypothesis a 0-cycle on C in
which each component has coefficient one; then the same is true of T
on V x C. On the other hand the theorem says that prF T = Γ" λ~\H)
= Γ" D. Consequently Γ" and D are transversal at P on 7 so P is
simple on Zλ

Thus D is nonsingular and irreducible. D has self-intersection num-
ber Z>(2) = 8 so the genus of D is 5 by the formula in (0.2).

The existence of such a nonsingular irreducible D depends on finding
H satisfying the conditions of the lemma. There is such an H because
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Γ has no multiple components and, when Γ' is a component of Γ the
linear series of hyperplane sections of Γr is a separable linear series
([22]), so that a general member of that series is a sum of distinct points
each with multiplicity one. (This argument would not guarantee that
the generators of C cut a separable linear series on Γ'.)

Now let D be a general member of A = A(4E + 2F) and let E be a
general member of ζEy over k. E and D are irreducible nonsingular
curves of genera 1 and 5 respectively. The trace of A on E is the
linear series of degree 2, dimension 1 containing 2E F (proof of Prop. 4).
The trace of A on D is the complete canonical series, by the trace exact
sequence.

The complete linear series on D corresponds to the map induced by
λ from D to H obviously this map is not an isomorphism (H is rational),
hence D is hyperelliptic and, taking k0 to be an algebraically closed field
of definition containing k over which D and H are defined, kQ(H) is the
rational subfield of degree two in ko(D) generated by the ratios of dif-
ferentials of first kind ([31, ch. 4). By the Riemann-Hurwitz relation
2G - 2 = n(2g - 2) + deg. 2) ([3], ch. 6, §2) the degree of the different
2) of ko(D) with respect to kQ(H) is 12. Since the characteristic is not
two it follows ([3], ch. 4, § 8) that the different is a product of distinct
places with exponent one. This shows that λ, restricted to D, ramifies
at 12 distinct places.

There must be ramification of λ/D over any point of H where Γ
meets H. Indeed, as in the proof of Lemma 12, let G be the graph of
λ and let GD — (G-V X H)VxC be the graph of λ/D. D was chosen to
be general in A, so H and Γ meet at simple points of Γ. Therefore
when Q is a point common to H and Γ, G intersects V X Q properly
on V x C. Consequently,

2 P x Q = (G V X Q)vxc = (GD D x Q)DxH .

Therefore λ/D ramifies as claimed. Clearly I(Γ,H) is defined on C as
H does not pass through the vertex. Then certainly /(Γ, H) < 12. Thus
the degree of the 1-cycle Γ in P5 is <12.

The same arguments show that the restriction of λ to E ramifies at
four distinct points, among which are all the points over Γ L, L being
the generator such that E = λ~\L). There is also the ramification of
λ/E over the vertex arising from the presence of 2FE in the trace of
A on E.
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Now a section of C by a general hyperplane through the vertex
consists of four lines, which correspond to four curves Ei in (Ey.
On each line there are four distinct ramifiication points, one of which
is the vertex. Consequently if Γ goes through the vertex it must meet
the hyperplane at more than 12 points. We saw this cannot happen.
Therefore, no component of Γ goes through the vertex and deg. Γ = 12
in P5.

Thus we have shown

PROPOSITION 5. There is a homogeneous form Ψ of degree 3 such
that the hypersurface defined in P5 by the equation ¥ — 0 cuts out on
C the branch curve Γ of the map λ: V —> C.

(3.3). Using A — A(4E + 2F) we can check that when a curve in
(Ey is reducible, the possibilities are the same as in the constructions
in §2.

PROPOSITION 6. Let Ef be a reducible member of the pencil
Then Ef = Eo + Z, where Eo is a nonsingular rational curve with I(E0, F)
== 1, and Z is contractible to a rational double point of the normalization
V.

Proof. F is not a component of Ef because, when E is a general
member of <£7>, I(E', E) = 0 and I(E, F) = 1, and E is irreducible. We
have that I(E', F) — 1. Let Eo be the component of Ef meeting F and
take Z = E' - Eo. Then I(Z,F) = 0 and I(EQ,F) = 1. E is irreducible
and I{E,Er) = 0, so I(E,E0) = 0; therefore I(Z,E0) + Eo

w = 0. Since
Ef is connected and EQ is not a component of Z, Eo

(2) < 0. Hence E0

(2)

= - 2 on the KS surface. This means that Eo is an irreducible curve
with pa(E0) = 0 thus Eo is a nonsingular rational curve.

Let D be an irreducible curve in A. We have that I(D, E') = 2 and
that I(D,E0) = 2-I(F,E0) = 2 also, hence that I(D, Z) = 0. Then the
geometric image λ(Z) is a bunch of points of C. Therefore μ(Z) is a
bunch of points of the normalization V since Vf is finite over C. This
bunch μ(Z) is supported at multiple points of V so Λ(Z) is supported at
points of C which are multiple points of Γ, cf. (3.2). Points of λ(Z)
are all points of the single generator λ(E'). Now I(Γ, λ{E')) = 3, so
there is at most one multiple point of Γ on λ(E'). Therefore λ(Z) con-
sists of one point γ e Γ. Lemma 9 is effective here to show that there
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is a single point g on V lying over γ. Therefore Z is connected, [24].
μ is biregular near μ{Z) — g except over g, (3.2). Hence Z is "con-
traetible": especially, the intersection matrix of its components is negative
definite, [14]. Therefore, for every component X < Z, X(2) < 0, so Z(2)

= - 2 on the KS surface. Therefore μ(Z) is a rational double point, [1].

Using Lemma 12 we show:

LEMMA 13. Suppose that Γ has no multiple points. Let P be a
point of V not lying on F. Then there is an irreducible nonsingular
curve D in A(4E + 2F) passing through P.

Proof. Let Q = λ(P), λ being determined by Λ(4£7 + 2F). Accord-
ing to Lemma 12 we have to find a hyperplane section H of C which
satisfies the conditions of the lemma and also passes through Q. Since
P is not on F, Q is not the vertex.

We must be careful of the fact that, when the char. Φθ, a pro-
jective curve can have the "strange" property that, although it is not
a line, all its tangents have a point in common (cf. [18]). However,
Samuel showed that a nonsingular curve is not strange when the charac-
teristic is not 2; thus Γ is not strange.

Components of Γ are principal on C (Lemma 11), so any two have
to meet. Therefore Γ is irreducible.

Let k be a field of definition for Γ and Q. Since Γ is not strange
the tangent t to Γ at a generic point R over k does not go through the
fe-rational point Q. Then there is a hyperplane H through both Q and
R not containing ί; as Γ is nonsingular H must be transversal to Γ at
R.

Let A be the reduced linear series of section of Γ cut by hyperplanes
passing through Q. If A is not separable, that is, if a general divisor s of
A is not a sum of distinct points each counted once, then the coefficient
of every point in every divisor s' e A is divisible by the characteristic
(Bertini's theorem). But the divisor cut by H is not of this type: the
component R is counted once. Therefore A must be separable so there
are hyperplanes through Q transversal to Γ at each intersection.

§4 Here we see that a special KS surface V represented as a
"double cone" branched over Γ on C, is polarized by the divisor 32? + F
if and only if Γ is nonsingular.
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PROPOSITION 7. Let (V, E, F) be a special KS surface. The follow-

ing assertions about V are equivalent:

(1) The complete linear system Λ(7E + SF) determines a protective

embedding of V.

(2) Every member of the pencil <Έ*> is an irreducible curve.

(3) The branch curve Γ of the mapping λ: V -» C determined by A(4E

+ 2F) is an irreducible nonsingular curve.

Proof. (1) => (2). When E' e <#> is reducible, there is an irreducible

component E" of E' such that I(E", E) = I(E", F) = 0, by Proposition 6.

But if (1) is true, then either I(G9 E) > 0 or 7(G, F) > 0 for any ir-

reducible curve G, since the image of G has positive intersection with

a hyperplane section.

(2) iφ (3). We saw earlier that when Γ has a multiple point γ the

normalization Ύf of C in k(V) has a multiple point P lying over γ (γ is

simple on C). Some divisor G on F collapses to this P. There is a

curve E' through P on V whose proper transform on V is a divisor Z<7

in the pencil <ί7>. When x e Λ(F) is a function whose zero locus on Yf

is £", x has positive order along components Gt of G, since α(P) = 0

and P is the center on V of the several valuations vGi. Hence E is

reducible. Therefore Γ has no multiple point γ.

Components of Γ are principal on C (Lemma 11) so any two have

to meet. Therefore Γ is irreducible if it is nonsingular.

(3) => (1). By Lemma 4, the map λ determined by A(7E + SF) is a

morphism to a projective surface. Under the hypothesis it follows from

Lemma 13 that, when P e V — F, there is an irreducible nonsingular

curve D in A(4E + 2F) passing through P. By Lemma 4 and the trace

exact sequence, the trace of Λ(7E + SF) on F and D respectively, is a

complete linear series of degree 1 and 14 respectively. Therefore λ in-

duces isomorphisms both on F and on D> since in each case the degree

of the induced linear series is at least 2-(genus) + 1, cf. [19].

λ separates points: When P and Q are points of V, we have to find

G e Λ(7E + SF) containing one point and not the other. There are three

cases to consider: ( i ) P g P , Q&F. Take D e Λ(4E + 2F) as above through

P. If Q g D, take G = D + 3£7 + F where Q £ E e <#>. If Q e D there

is G e Λ(7E + SF) containing P and not Q, by what was noted above,

(ii) PeF, QeF. Again there is G a P, G 3 Q by the above, (iii) PeF,

Q e F. If Q e EQ e <#>, then take EQφE'z <#> and let G = 7Ef + 3F.
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λ separates tangential directions: First, the morphism λ is birational
because we have: k(V) z> k(λ(V)) D k(C) [k(V): k(Q] = 2 and character-
istic Φ2\ and λ is set-theoretically 1-1. Call W the image λ(V). There
is the birational morphism λ: V —> W this does not guarantee even that
W is normal, but if we show that W is nonsingular then λ will be
biregular everywhere (since the local ring O of a point P of F will be
integral over the integrally closed local ring of the corresponding λ(P)
on W).

Let P € V and put Q = λ(P). When G is a divisor in Λ(7E + 3F),
G corresponds to a hyperplane section of W, say HG. If we find a
divisor G corresponding to a section HG which, locally at Q, is a non-
singular curve—i.e. there is just one component of HG through Q with
coefficient 1 and Q is simple on it—then Q will be a simple point of the
surface W since HG is principal on W, (cf. (2.2) or [16], p. 384).

Suppose, first, that PeF. The trace of Λ(7E + 3F) on F is a com-
plete linear series of degree 1, as we mentioned, so the image of F is
a line. By Lemma 4 and the trace exact sequence again, there is an
irreducible curve G' e Λ(ΊE + 2F) such that G' 3 P. Then for our G we
can take F + G\ On the other hand, if P e V — F, there is a nonsingular
curve D e Λ(£E + 2F) through P which is mapped isomorphically by λ.
Then take G = D + F + 3£", where # ' 3 P.

Remark 4.1. By the Nakai-Moisezon test, [7], it is easy to see that
a multiple of 3E + F determines a projective embedding of V whenever
(2) is true, and only in that case.

Remark 4.2. We would like to mention here how the necessity of
the conditition (*) in (2.3) on types of multiple points γ on Γ follows
from an assertion of Enriques and Campedella, [5], p. 458. By Prop-
ositions 6 and 7 we see that, when γ is a multiple point of Γ and L is
the generator through γ, the divisor E' in ζE} over L on V is reducible
and has a part Z which collapses to a rational double point g of the
normal V. Therefore the pull-back of a canonical divisor through g on
V is a canonical divisor on V, [1], or "the conditions of adjunction are
not affected by the isolated singularity", [5]. Now according to Enriques
and Campedella, if the condition (*) is violated by γ then "conditions
are imposed on the adjoint curves", i.e. g cannot be a rational double
point. ..
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§ 5. Here we verify that isomorphism classes of special polarized
KS surfaces correspond to projective equivalence classes of branch curves
Γ on C.

LEMMA 14. If f : V -+ V is an isomorphism of special polarized KS
surfaces then f(E) e <£">> f(F) — F' inhere E, Ef etc. have the usual
meanings on V, V).

Proof. Let E e (Ey be a general member and let Ef e (E/s) be ir-
reducible. There is an isomorphism / : V —> V of underlying varieties
such that f(F + SE) is numerically equivalent to F' + SEf:

f{F) + S'f(E) = f' + S E' (mod. ©n) .

Then taking the intersection product with /(£?),

As F', f(E) are distinct irreducible curves, neither intersection number
is negative; therefore in particular I(E',f(E)) = 0. Now / induces an
isomorphism from the nonsingular curve E of genus one to f(E). On
the other hand the only irreducible solutions X to I{Ef,X) = 0 are non-
singular rational curves, according to Proposition 6, or else members of
the pencil <£">. Therefore

f(E) e <E>y .

Consequently f(F) = Ff (mod. @n). This means that r-f(F) ~r F; for
a non-zero integer r ([11]). If f(F)ΦF' then I(F,F')>Q, therefore

r2.Fπ2) > 0 Which cannot be as F/(2) = - 2 . Therefore f(F) = Ff.

This lemma allows the next assertion to apply to polarized surfaces.

PROPOSITION 8. Let V, Yr be special KS surfaces and let Γ, Γ' be
the branch curves on C of rational maps determined respectively by
Λ(AE + 2F), A(4E' + 2F'). Then there is an isomorphism f: V -> V
with f(E) e <£">, f{F) — Ff if and only if Γ and Γ' are protectively
equivalent in P5.

Proof. Suppose f:V—>V' is such an isomorphism. Γ and Γf are
protectively equivalent if, after a change of basis of L(4£7 + 2F) we have
a commuting triangle
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where λ, λ/ are respectively determined by A — A(AE + 2F), and by A*
= A(4E' + 2F'). The assumptions imply that f(A)aΆ; as dim. A =
dim. Λ', we have Λ = A'. Now a basis of L{AEf + 2Ff) on V pulls back
to a basis of L(4E + 2F), [22], so there is such a triangle.

Conversely, if Γ and Γ' are protectively equivalent we may suppose
that Γ ~ Γ' on C; then the normalizations of C in fc(F), fc(Ύ') are iso-
morphic since as we say they depend only on Γ then 7, V are birational,
hence isomorphic since they are K3 surfaces. The isomorphism fits into
a triangle as above because it extends the isomorphism of normalizations,
so f(E) e <#'>, f(F) = F'.
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