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§ 1. Introduction

A stochastic process X(A, ω) is called Brownian motion with an N-

dimensional parameter when it satisfies the following conditions:

1) For any positive integer n and any set of points Au A2, . . . , An in

an iV-dimensional Euclidian space &, the joint variable <X*• = X(Ai) I i = l, 2,

. . . , n> is subject to an ^-dimensional Gaussian distribution having the vector

0 as its mean vector.

2) E(XiXj) = {dis (O, At) -fdis (O, Aj) -dis (Λ, , Λ/)}/2,

where E{X)t O, and dis (A, B) denote the expectation of X, the origin of En,

and the Euclidian distance between A and B respectively.

3) For almost every sample point ω, X(A} ω) is continuous in A and

X(O, ω) = 0. The random variables X(A)-X(B) evidently form Wiener

process if A moves on some demi-straight line with the terminal point B. In

this paper, we study the continuity of Brownian motion process with an N-

dimensional parameter.

Let us begin with the definitions of the concepts of upper class and lower

class with respect to {X(A) A<^EN). Let ψ(t) be a non-negative and non-

decreasing function defined for large tf$.

i) If the set of A satisfying

X(Af ω)>(dis(O, A))112 ψ(άis (O, A))

is bounded (unbounded) for almost all ω, we say that ψ(t) belongs to the upper

(lower) class with respect to {X(A); A^EN} at oo and denote it by ψ(t) G U Ϊ

ii) If the set of A satisfying

X(A, ω)>(dis(O, A))m φ{l/άis (O, A))
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is separated (not separated) from O for almost all ω, we say that ψ(t) belongs

to the upper (lower) class with respect to {X(A) A E £ V > at O and denote it

by φ{t)eιV& (φ(t)e-S&).

According to the theorem of project!ve invarince, ψ(t) belongs to US (2N)

if and only if ψ(t) belongs to UN (2%)- Therefore, we have only to discuss the

behavior of X(A) in the neighborhood of O.

For Wiener process, namely for Brownian motion with 1-dimensional

parameter, we have the following criterion of Kolmogorov [1]: a monotone

non-decreasing function ψ(t) belongs to 11° (2ΐ) if and only if

π ψ(t) e' f*t{t)dt< + <*>(= + oo).

This criterion shows that the function

Φ(t) = {2 log(2)ί + 3 log{3)£ + +2 log(«-i,f+C2 + fl) log(», t)

belongs to U? for δ>0 and belongs to 8? for 5^0, where log(«)/ denotes the

Λ-time iterated logarithm. We shall extend this result to Brownian motion

with an iV-dimensional parameter using Chung-Erdδs' method in §3.

Secondly, we define similar concepts with regard to the uniform continuity

of X(A). Let ψ(t) be a non-negative, continuous, and non-decreasing function

defined in some finite interval (0, T), and /(A) be a function defined on some

region in EN.

If there exists a positive number ε such that dis (A, B)^ε implies

\f(A)-AB)\£ψ(dis(A, B)),

we say that /(A) satisfies Lipschitz's condition relative to ψ(t). We put now

φ(t) =-<f(l/t) t112 and consider the cube UN = {A = (au a2> . . . , aN) max

\ai\ ̂ 1}. If the process X(At ω) with the parameter domain UN satisfies (does

not satisfy) Lipschitz's condition relative to ψ(t) for almost all ω, we say that

<f(t) belongs to the upper (lower) class with regard to the uniform continuity of

{X(A) A e UN), and denote it by <p(t) eUίί (S!v).

P. Levy remarked in his book [2] that the concepts of upper class and

lower class with regard to the uniform continuity of X(A) are meaningful only

for the process with a bounded parameter domain. Accordingly, it is sufficient

to define the concepts for {X{A) A e CJy}.

https://doi.org/10.1017/S0027763000007613 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007613


ON THE CONTINUITY OF BROWNIAN MOTION 137

For Wiener process, P. Levy [3] proved that the function

{2c log t}112

belongs to Uf for c>l and belongs to 2? for c<L Recently K. L, Chung, P.

Erdos, and T. Sirao [4] proved a final form of the criterion which reads: φ(t)

belongs to Uf (2?) if and only if the integral

is convergent (divergent). In virtue of this criterion, we can easily see that

the function

ψ(t) = {2 log f+ 5 1og(2)f+ 2 log(8)ί+ + 2 log(n-i,f+ (2 + 5) log(M)ί}1/2

belongs to Uf for δ > 0 and belongs to Sf for δSO.

Also, for Brownian motion with an iV-dίmεnsional parameter, P. Levy [5]

proved that the function

r/U) ={2Nc log t}1/2

belongs to U" for c>\ and belongs to 2* for c<l. This result was improved

by T. Hida [6] as follows:

ζ(t) = {2 N log t+ c log(2) ί}1/2

belongs to 11" for c > 8 iV + 1 and belongs to S?v for c < 1. In § 2, the author proves

a final form of the criterion, a generalization of Chung-Erdos-Sirao's result, for

Brownian motion with an iV-dimensional parameter. We shall here use the

same method as in the 1-dimensional case [4] with some device Of computation

which will be necessary to overcome the difficulty due to high dimensionality, j

The author is greatly indebted to Prof. K. Ono and Prof. K. Ito for their

useful suggestions and kind encouragement. The author wishes also to express

his gratitude to Mr. T. Hida for his useful remarks and discussions.

§ 2. Uniform continuity of Brownian motion with

an N-dimensional parameter

Concerning the uniform continuity of XiA), we have

THEOREM 1. Let fit) be a non-negative, continuous, and non-decreasing

function defined for large t's. Then <f(t) belongs to II" or 8" according as the
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integral

(1) J Y - V ^ ω e'Tψlιt)dt

is convergent or divergent.

In virtue of this theorem, we obtain easily

COR. 1. The function

(fit) = {2 JNΠog f + ( 4 J V + 1 ) log(2)ί + 2 log ( 8 ) ί +

+ 2 log<«-i>f + (2 + 5) log ( w ) *} 1 / 2

belongs to U" for δ>0 and belongs to 2*/or <5^0.

By log(+«)ί, let us denote log ( Λ )/ so long as it is defined and positive, and

0 elsewhere. Namely,

(n) t for an<t< + °°
(2) log?*) t =

lθ for

where an is defined by log(w) an+i = 1 and a\ - 1. Then we obtain

COR. 2. The function

ψM) = {2 iV log4" ί + (4 iV+ 1) log(+

2) ί + 2 Σ log4*) ί}1/2

belongs to 2".

Proof. By the definition of log4",*) f, we have

(3) > (2 iv) v Σ ( ί π :

So our assertion follows from Theorem 1.

Before going into the proof of Theorem 1, we state

LEMMA 1. Theorem 1 holds, if it holds under the following condition:

(4) (2iV log t - 10 N log(2)t)112 ^ ψ(t) ^ (2 N log t + 10 N \og{2)t)
112.

Proof. If we put

(5) (t(t) = min {max {φ(t), ψΛt)), f2(f)>,
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where

ψiit) = {2 N log t - 10 N log(2, ί}1/2,

?3(*) = {2 iV log ί + 10 N log(2) ί}
1/2,

then ψ(t) satisfies the condition (4).

First, let us consider the case in which the integral (1) for ψ(i) is

convergent. If there exists a monotone increasing sequence {tn} such that

ψ(tn) is less than ψι(tn)f and tn tends to infinity with n, we have

(6)

because <f(t) is monotone non-decreasing, where c is a suitably chosen positive

constant. Since log tn tends to infinity with n, no such {tn} can exist in the

present case. Therefore, ψ(t)>ψi(t) and also φ(t)>φ(t) for sufficiently large

f$. Moreover, the integral (1) for ψ2(t) is convergent, so the integral (1) for

ψ(t) is convergent and (fit) belongs to U" if Theorem 1 holds under the

condition (4). As ψ(t)>φ(t) for sufficiently large fs, fit) belongs to Ϊ&

Secondly, let us consider the case in which the integral (1) for ψ(t) is

divergent. If there is an increasing sequence {tn} such that ψ(tn)<ψi(tn) and

tn tends to infinity with n, we have

(7) =cβφΛtn)

ί«) 7 Λ *" 2

because <f(t) is monotone non-decreasing and φ(tn) = ψΛtn), where c is a

suitably chosen positive constant. On the contrary, if <fx(t) is less than ψ(t)

for large fs, then <p(t)>φ(t) for large fs and hence there exists a positive

constant c such that

(8)
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Now (7) and (8) show that the integral for ψ(t) is divergent in the present case.

Namely, <f(t) belongs to £", if Theorem 1 holds under the condition (4), i.e.

for almost all ω, there exists a sequence {(A», Bn) I An, Bn e Us) in which

dis(Aw, Bn) tends to 0 as n increases to infinity and satisfying the condition

(9) \X(An, ω)~X(Bn, ω)\Xdis (An, Bn))m £(l/dis (An, Bn)).

Moreover, ψ2(t) belongs to U" if Theorem 1 holds under the condition (4).

Hence, for almost all ω, there exists a positive number ε such that dis (A, B)

< ε implies

(10) \X(A, ω)-X(B, ω)|<(dis(A, B))m ?2(l/dis (A, B)).

From (9) and (10), follows the inequality

£(l/dis(AM, B«))<ft(l/dis(A», Bn))

for large ris. By the definition of φ(t), we obtain

(11) fU/dis (An, Bn))^ψ(l/άis(An> Bn)).

Here (9) and (11) show that ψ(i) belongs to £v.

Thus Lemma 1 has been proved.

Proof of Theorem 1

a) The convergent case

First, we remark that it suffices to prove, for almost all ω, the existence

of s' such that dis (A, B) <: e; implies the inequality

(12) X(A, ω)-X(B, ω)<(dis(A, B))m <f(1/dis (A, B)).

In fact, if this assertion holds then, for almost all ω, there exists a positive ε"

such that dis (A, B) ̂  ε" implies

(13) ~{X(A, o))-X(B, ω)}<(dis(A, B))m cr(l/dis(A, J5))

because the process {X(A) A e Us) is symmetric. Taking min ($', ε") for ε

in the definition of H", we have Theorem 1 in the present case. Therefore, we

may consider only the difference of X(A) and X(B) instead of its absolute

value.

By Ep<ku... ,kχ;ilt ...,/Λ-> (shortly E^kuuy )» w e denote the following event:

(14) X(A)~X(B)>(άi$(A, B))m
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where A = <(ki 4- /i)/2/>, . . . , (kN + /ΛO/2^) and 5 = <kj2i>, . . . , W2*> are

points in UN. Then we have for large p's that

1 2 N 2 1/2 *V

(15) P(E<rki,to ) "^ β 2 i-i * /ψ\2 /(jLili) ).
ί =1

Summing up the above probability for p = 1, 2, . . . fe = ± 1, ± 2, . . . , ± 2 ^

( i = l , 2, . . . , JV) and for all lattice points <(fc + /i)/2/>, . . . , (ft.v+ /.v)/2/>>

satisfying p/3 < (Σβ)1/2£p, we obtain

co oo 1 i N

V V V P( IT*, \ Λ / I \ V V V - a" ? ? ! ί 2 P " s 'f)172)
χ> i s i >> i j r vU < ^ , /t> = Ό\χ) 2LΔ JLJ 2Λ if 2 L

 t = i ' .

By the monotony of ψ(t) and Lemma 1, we have

Σ Σ Σ PiE%, ;,->)= od) Σ Σ Σ V

fΛ U φ{2plP)

(16)

± ( | ) ( J ^ P

Now let us take an event E^kt.uy appearing in the summand of (16) and fix it.
( 1 ) ( 1 )

By F<m(1) ... mΦ; Λm ... «(1)> (shortly F/m

{1) n'\ι)y\ we denote the following event:

(17) ' Λ 2 M ?
χ fίώ /(2j*i) ) + iv r> mi j nt = 0, ± 1, r t 2, . . . , - e ,

where A<m^y = <(fe -f /i + mΓ)^~c)/2/), . . . , (ft* + /iV-f nϊ£e~c)l2^ and i3<w«>>

= <(fe + /ίί1)^~c)/2/>, . . . , (^v + ̂ I )^" c)/2 i >> are points in UN and c is a suitably

chosen constant which makes ec an integer. For sufficiently large c and p, it

follows that

(18) Σ P ί F ^ υ , „(!,>) = 0(1) e~ ̂ ^ n ^

P(Ep

<kί,h>).
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(k)
Also we define F <«<*>, „<<»> as follows:

(19) (dis (A <„,<*>> , B<n[v>))lj2{φ(2p/(*Σlϊ)1/2) + — — - - * - Σl/2r},

*wί*\ nί*\ =0, ±1, ±2, . . . , ±ekc,

where A<m^y = <(& + /i + ?n[k)e'kc)l2p

i . . . , (** + /*+ m{

N

k) e~kc)/2p> and

,̂ . . . , (ky+nί?)e'kc)/^>>. Then we have

P( U F<m;*>, «ί*)>)^P( U
(20) ^ U f ! > ^J*-1).^

+ Σ P{( Π

where F ; denotes the complement of F for any event F, FΠG denotes the

event that both F and G hold, and FUG denotes the event that F or G holds,

for any pair of events F and G.

To estimate the second term in the right side of (20), we use the fol-

lowing :

LEMMA 2. Let U and V be two random variables whose joint distribution

is a 2-dimensional Gaussian distribution and each of them is subject to the 1-

dimensional standard Gaussian distribution, and let p denote the correlation

coefficient between U and V. The function

F U b; p)=P(U<a, V>b)

is monotone decreasing as a function of p for fixed a and b (0<a<b).

Proof. Let W be a random variable independent of V and subject to the

1-dimensional standard Gaussian distribution. Since (£/, V) and ((1 - p2)1/2W

+ pVy V) are subject to the same distribution, we have

FXa, b\ p)=P((l-p2)ll2W+pV<a} V>b)

This equality shows Lemma 2, because {a - μv)/(l - p2)1 ;2 is monotone decreas-

ing in p in the present case.

Let us take a pair of points {A<,n\
k~l)y , #<»{*-υ>) satisfying the following
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conditions:

dis (A<IΛ<*-i>>, A<m<v>) ^Nll2e-{k-1)c/2p+\
(A.I)

dis

From the definition of Brownian motion with an iV-dimensional parameter, for

the correlation coefficient p between {X{A<m^-vy - X(B<n

(f-ι)>)) and {X(A<m\k)>)

>>)) holds

P = {dis (A, Bf) + dis (A', B) - dis U , A')

-dis(£, B'

where A = A<m(*)>, £ = S<nJ*>>, A' = A <m}*-υ>, and 5 ' = J5<W{J-D> . Using (A. 1)

and the condition dis (A, B) > 2~pp/3, we have

P>[dis (A, B) - dis (A, A') - dis (B, B')l [dis (A, £ ) {dis (A, £ )

+ dis(A, A')+dis(JB, B'))Ym > p0,

where p0 = 1 - (9 iV1/2)/2 pe{k'1)c.

Now we return to the estimation of the right side of (20). In virtue of
N

Lemma 2, we obtain, using ψ for ψ

P{( Π F<«<fc-D, n(k-ι)y)

-i)>) ^ (d i s (A<OT}fc-i)>f jB<rt|*-i

(21)

β;*)>)>(dis(il<ίΠ;*)>, i5<ra<w>))1/2{f + ^ ~

φ + 2 " ^ - Σ l / 2 r , Y > ^ + -2 ̂ C - Σl/2 r }

<PUI-PW"X< -~Jβτ> Y>Ψ+
 ?4"-Σi/2 r

V ίa W ip f — 0

where X and F are mutually independent random variables subject to the 1-

dimensional standard Gaussian distribution. Combining (20) and (21), we have

(22) P( U F S < * \ „<*>>)<{l + e-c+ • • • +e~kc) Σ P(F^-\ „»)>).
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Let us denote by E%khιty the following event:

(23) max{(XU)-X(£))/(disU, B))1'2}
A,B

where A and B run over the cubes [(Ai +./ι-l)/2*, (ft1 + /i

+ /Lv-l)/2* (ks + l#+l)/2pl and [(Ai - l)/2*, (A, + l)/2*;

(A.v + D/2̂ 11 respectively. Since X(A) is continuous, we have by (18), (22)

inf P( U

(24)

From (16) and (24) it follows that

(25)

«

According to Borel-Cantelli's lemma in the convergent case, (25) shows that

only finitely many events E%kiti{y appearing in (25) can occur for almost all ω.

In other words, for almost all ω, there exists βo such that no E%it /f> can occur

for ^'s larger than p0.

Now, for any pair of points (A, B) of dis (A, B)< (pϋ - N1/2)/2Po, we

choose p such that

(26) (p + 1 - N1I2)/2P+1 < dis (A,B)£(p- Nm)l2p.

Evidently pύ ^p and (p - N1I2)/2<2P (dis (A, S ) ) ^i> - 2V1/2. For A and B, let

us choose from all pairs of lattice points Cp and Dp of the form {kil2p> . . . ,

ky/2p), satisfying dis (Cp,Dp) > d i s (A, JB), a pair (Ap, Bp) which minimizes

dis (A, CP) + dis (B, Dp). The event

(27) X(Ap) - X(Bp) > (dis (Ap, Bp))ll2ψ(1/dis (A/

is identical with some E^k^uy appearing in the summation of (16). Considering

the corresponding E\kuii>> ̂ or almost all ω, we obtain

X(A) - X(B) £ (dis U {

* { ( A . B))

because f (f) +4Nc/φ(t) is monotone non-decreasing for large f's.
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Hence the function ψ(t) +4Nc/φ(t) belongs to II* by its definition. Since this

result is obtained by assumption of the convergence of the integral (1) only, the

same result should also be obtained for φ(t) = φ(t) - 5Nc/ψ(t) because <ρ(t)

is non-decreasing for sufficiently large fs and the integral for φ(t) is convergent.

Moreover, it is easily seen that the inequality

(29) φ{t) + 4Nc/φ(t) < ψ(t)

holds for large fs. Hence by (29), we see that φ(t) belongs to IL*.

Thus Theorem 1 has been proved for the convergent case.

b) The divergent case.

Let Epζkuii> be the event defined by (14). Because φ(t) is monotone non-

decreasing, by Lemma 1, we have

Σ Σ Σ
P-i <*«> </»

= 0(1) Σ Σ Σ(30)

-0(1) ft^φ'^ωe' 2 ̂ dt = + oo,

where Σ and Σ denote the summation for all lattice points <(kι + h)/2p, . . . ,

(kN+lN)/2p> satisfying p/2<(JZl})mSp and for all lattice points <fc/2* . . . ,
i = l

kN/2p> satisfying max | h I ̂  2P, respectively. By the definition of S", ?( ' )

belongs to S" if E*ζkitii> occurs "infinitely often" for almost all ω. To prove

that this is the case, we use the following due to K. L. Chung and P. Erdos [71

LEMMA 3. Let {Eu) be an infinite sequence of events satisfying the follow-

ing conditions:

(i)

(ii) For every pair of positive integers h and n satisfying n>h, there exists

C{h)>Q and H(n, h)>n such that for every m>H(n, h) holds

PiEmlEh Π> ' < Π En) > C(h) P(Em),
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where P{FlE) denote the conditional probability of F on the hypothesis E.

(iii) There exist two absolute constants a and c* with the following pro-

perty: to each Ej there corresponds a set of events Ejιf . . . , Ej3 belonging to

{Ek) such that

(a) ΣPiEjΓλEjiXcyPiEj)
ί = l

and that for any other Ek than Ejiil^i^s) which stands after Ej in the se-

quence (viz. k > j)

(b) P{EjΓ\Ek) <c2P{Ej) P(Ek).

The probability that infinitely many events Ek occur is equal to 1.

Because (30) shows that the sequence {Ep<kituy) satisfies the condition (i)

in Lemma 3, it suffices to prove that the sequence satisfies also (ii) and (iii).

For this purpose, we enumerate the events E\kitii> in the order that E\kituy

stands before E%n\ ivy if and only if one of the following four conditions holds:

(a)

(β)

(r>

(δ)

P<P',
p=p>

P== pf i

P =: P\

N

and Σ
< = 1

" S ^ 7'2 —
/^ ι / t —
i = l

N

^ 1 ̂  j —

2 = 1

N

t = l

2V

i = 1

N

j = k'j(j = l, 2 , i - i )

and ki<ki for some i(^

lj = lj(j=lί2i . . . ii—l)f and h<l\ for some i(SN).

Let {En} be the newly obtained sequence of events. This special ordering is

employed for the convenience of later computations.

Put

C/n = X(Ui + /i)/2/), . . . , (ft* + Ztf)/2*)-Jϊr(fti/2* . . . , kN/2p)

for En- E\ki,iiy> Then a simple computation shows that, for any positive

integer n, we have

(31) lim

If we denote by En(a) the event that Un + a is positive, P(En(a)) tends to 1 as

a increases to infinity. Therefore, for each pair of positive integer h and n

satisfying n > h, we can choose an, n such that
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(32) P
l=h l=h

Then holds

PiEjE'hΓλ- - nEί)=P(EmΓ\EΉΓ\' (ΛE'n)lP{E'hΓ\ ΠEΉ)

,OOΪ ^PiEmrλ(Γ\(EιΓ\Eι(aH,n)))}/2P{f\(EΊr\Eι(ah,n))}

= P{Em/ n(EtΓ\Eι(ah,n))}/2.
l = h

Let {Xlf . . . , Xn> Ym> m ^yft) be a Gaussian system satisfying the

conditions

E(XΪ)=E(Ym)=0, E(X}) = E(Y2

m)=l, i = l , 2, . . . Λ >

For any bounded Borel sets Bu . . . > £«, we define ε(ra, Bm) = e(/°i, m,

P«,mί 5) by

where p, , m = P(JY", , Ym), and 5m denotes a Borel set contained in the interval

C - Pm, Qm~] with 5 < 1, Qm being max (\pi,m\l l^t^n). Bm may vary with

rn. Then we have

LEMMA 4. e(mt Bm)-*0 as pm-+0.

Proof. Let pm(Xi, . . . , X») denote the conditional expectation of y m for

given values of Xlt . . . , XM-i, and Xn. Then the expectation of pm(Xu >

Zrt) is 0 and its variance tends to 0 with pm. Since the Gaussian distribution

with mean vector 0 is determined by its covariance matrix, we have

P(Xi e Bit i = 1, 2, . . . , n and 7 M G W

B, , ί = l,2, . . . , n and (1 - α

2 ) 1 / 2

where a2 - E(pm(Xu . . . , A"«)) and Z denotes the random variable independent

of <Xi, . . . , X/> and subject to the 1-dimensional standard Gaussian distribu-

tion. Denoting by P<^> the probability law of <XΊ, - . . , X?ϊ>, we have

P(Xi e S, , ί = 1, 2, . . . , w and Ym^Bm)

(A.2) = Π ί ( 2 π ( l i α ^ v T ^ ^ ^
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where

(A.3) 0= -{aV-2zpm{xu > Xn)+pm(Xu . . . , Xn)}/2(l-a2).

a and pm(xχt . . . , #«) are at most of the same order as pm. So, by (A.2),

(A.3), and the restriction imposed on Bm, we obtain Lemma 4.

Now we apply Lemma 4 to the estimation of the right side of (33). If

Em^E%k'i,i'i> and £„ = Ep

<kί,ιi>t then max \p(Uι, Um)\ is at most (p'/2p'~p~1).

/iV/2)Hence y<2*7(S/iV/2)< ( max |p(D), Z7W) | ) " 2 / 3 for large m's. On the other hand,
i = 1 h^l^n

for large ra's, we have

(A. 4) I\Em)<2P(Gm),

where Gm denotes the event

12) < Uj{E(U2

m))m<
t = 1

From Lemma 4, it follows that

>P(G m )/2;

we get the last inequality, taking Uι/(E(UJ))112 and Um/(E(U2

m)Ϋί2 for Ai and

Ym in Lemma 4, respectively. By (33), (A. 4), and (A. 5), we can see that

ί •• fΛE'n)
m->oo x \ΪLrtι)

which proves (ii).

To verify (iii), we use the following lemma given in [4].

LEMMA 5. Let U and V be two random variables whose joint distribution

is a 2-dimensional Gaussian distribution and each of them is subject to the

standard 1-dimensional Gaussian distribution.

(i) If p(U> V)<l/ab, there exists a positive constant c such that

P{U>a, V>b)^c P(U>a) P(V>b).

(ii) There exist two positive constant d and δ such that for a>0 holds

P(U>a, V>a)^de~m-"2)Z

lΰhere p denotes p(U, V).

For each Ej = Ep<ku/,•>, we choose a sequence {Ejt = E^, w> \ i = 1, 2, . . . , 5}'
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of all the events satisfying j&j and p(Uj, Uji)^
- N

x <f(2p'/J]ίi2)1/2)}-\ For any event Ek other than Ejt{l^i^s) and standing after
* = 1

Ejy by (i) of Lemma 5 and definition of Ej and Ek, we have

(34) P(Ej ΠEkXc P{Ej) P(&),

where c is an absolute constant. Thus the sequence {En} satisfies the condition

(b) of Uπ) in Lemma 3.

In order to verify the condition (a) of (iii), we divide the sum of

F\EjP\Ejf) according to the magnitude of the correlation coefficient ρ(Uj, Ujt)

into two summations as follows:

(35) ΊlP(EjΓ\Ejt) = Σ ' PiEjfΛEn) + Σ "
4 = 1

where Σ ' expresses the summation over ΐs such that p(Ujf £/,-,•) is larger than

(1-^"1 / 2)1 / 2 and Σ " expresses the summation of the other probabilities. Let

A, B, A', and Bf be the parameter points of random variables employed in

the definition of Ej and Ejt, i.e. Uj - X(A) - X(B) and Uh = XiA1) - A'ίS').

Then, for Ejt summed up in Σ'» we can show that there exists a positive

integer k less than pm and satisfying the following inequality:

(36) {l

where p(Uj, Ujt) can be computed as

p = {dis (A, β') + dis {A\ J5)~dis (A, A')~dis (B, B')}/2{άis (A, B) dis

Now, for given A and B we estimate the number of pairs of points A' and Bf

satisfying the inequality (36). Since the correlation coefficient p{Uj, U^) is less

than [min {dis (A, £), dis (A', B'))l [dis (A, B) dis (A', Bf)Tυ\ it follows from

the definition of the ordering of the sequence {En} that

(37) (I-kip) dis (A, £)^dis(A', β')^dis(A, B).

We can also see that (dis (A, B') - dis (B, B1)) and (dis (A', £)-dis(A, A'))

are less than dis (A, B). Hence, by (36) and (37), the inequalities

(1-2kip) dis (A, S)^dis(A', B) -dis (A, A'),
(38)

(l-2k/p) dis (A, £ ) ^ d i s ( Λ £ ; ) - d i s ( £ , B')

hold for large p's. (37) and (38) show that the corresponding superscript p1
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of Ejt is at most (p+l) and also that for given A and B, the numbers of such

points A' and B' are at most of order kN. Moreover, it follows from Lemma 1

and (ii) of Lemma 5 that for 2?/, = £ < V Λ '> summed up in Σ ' holds

Ai B))ll2ψ(l/dis(A, B)),

£7>t >(disU', B'))

A, B))1/2φ(l/άis(A, B)\

(39) ϋ/,XdisU', B'))ίi2φ(l/dis(Af B))}

where d, δy and d! are absolute constants. Considering the number of Ejiy we see

that there exist two positive constants ci and c2 satisfying

y Π
( 4 0 )

To estimate Σ"» we consider first the magnitude of superscript pf of i?^ =

EPih',h'> summed up in Σ ; ' The restriction imposed on p(Uj, Ujt) implies

that

(41) p'<p + 5 log A

Moreover, simple computation shows that if one of the two distances, dis (4,

AO and dis(B, B'), between the corresponding parameter points employed in

the definitions of Uj and Uk is larger than p2/2p, then Ek is not among J5>,(1

^ i^s). Hence, for given Ej, the number of Ej{ with fixed superscript p' is at

most of order pέN. By Lemma 1 and Lemma 5, we have

nΣlΉEjΓiEji)<'Σ''P{Uj>{dis(A, B)yj2φ(l/άis(A, B))y

(42) Uj

where d and 3 are positive constants. Since the correlation coefficient <?(£//,

Uj.) is less than (1 -β~1/2)1/2 fn the present case, the estimation for the number

of £y/s shows that

j Γ\ Eh) £ dP(Ej)

(43) <dP(Ej)

<c3P(Ej))
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where c3 is a suitably chosen positive constant.

Now (a) of (iii) in Lemma 3 follows from (35), (40), and (43).

Thus we have proved completely the divergent case.

§ 3. Local continuity of Brownian motion with

an ΛΓ-dimensional parameter

In this section, we study the continuity of X(A) at the origin O of EN.

THEOREM 2. Let ψ(t) be a non-negative and monotone non-decreasing func-

tion defined for large fs. Then ψ(t) belongs to U£ or 2s according as the

integral

(44)

is convergent or divergent.

COR. 4. The function

ψ(t) = {2 log(2)ί+(2iV-f 1) log(3,ί+ 2 log(4)ί + *

+ 2 log(n-i>f+(2 + a) log(M)*}1/2

belongs to VLN for δ>0 and belongs to 2% for δ^O.

COR. 5. The function

ψΛt) = {2 logf,,f + (2 N + 1) log(V + 2 Σ log?,,,*}1/2,

belongs to 2N> where log(

+

M) t denotes the function defined in § 2.

Cor. 4 and Cor. 5 follow from Theorem 2 immediately.

As we remarked in the introduction, Theorem 2 assures the following

theorem :

THEOREM 3. Let ψ{t) be a function given in Theorem 2. Then ψ(t)

belongs to UJ or 2N according as the integral (44) is convergent or divergent.

COR. 6. The function ψ(t) defined in Cor. 4 belongs to U? for δ > 0 and

belongs to 2% for δ^O.

COR. 7. The function ψAt) defined in Cor. 5 belongs to &?.

The proof of Theorem 2 can be given in a parallel way to the proof of

Theorem 1.

LEMMA 6. Theorem 2 holds, if it holds under the following condition:

https://doi.org/10.1017/S0027763000007613 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007613


152 TUNERITI SIRAO

(45) (2 \og{2)t)ιl2^φ(t) ^ (3 log(2)ί)
1/2.

Proof. We assume that Theorem 2 holds for ψ(t) satisfying (45) and put

(46) <£(*)= min {max(φ(t), ψΛt)), ψ2(t)},

where
φt(t) = (2 1og(2)ί)1/2,

02(ί) = (31og(2)<01/2.

Evidently, ψ{t) satisfies the condition (45).

If there exists a monotone increasing sequence {tn} such that ψ(tn)<Φi(tn)

and tn tends to infinity with n, we have

(47)

because ψ(t) is monotone non-decreasing, where c is a suitably chosen positive

constant. Also (47) holds for ψ(t), because φ(t) is monotone non-decreasing

and φ(tn) = ψι(tn) Hence the integrals (44) for ψ(t) and ψit) diverge simul-

taneously in the present case. On the contrary, if ψi(t) is less than φ(t) for

large ί's, then ψ(t)^ψ{t) for large ί's, hence there is a positive constant c

such that

(48)

So the integrals (44) for ψ(t) and ψ{t) diverge or converge simultaneously.

First, let us consider the case in which the integral for ψ(t) is con-

vergent. Considering (47) we see that the set of fs where φ(t) is less than

φ(t) is bounded. Therefore, ψ(t) > ψάt) and accordingly φ(t)>ψ{t) for

sufficiently large fs. So φ(t) belongs to Uy because ψ{t) belongs to US- by our

assumption. Secondly, we consider the case in which the integral for ψ(t) is

divergent. By what has been above stated, the integral for ψ(t) is divergent

and so ψ(t) belongs to 25 byour as sumption. Hence there exists a sequence
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{An} such that

(49) '*(A«)|>(dis(O, An))mψ(l!άϊs{Oy An))>

dis (O, An) -> O as n -* £°°.

Moreover, 02(£) belongs to 115 because 02(ί) satisfies the condition (45). So, for

large n's holds

hence

(50) «*(l/dis (O, A«))^0(l/dis (O, AΛ).

Here,(49) and (50) show that ψ(t) belongs to 2,?.

Thus Lemma 6 has been proved.

Proof of Theorem 2,

a) The convergent case.

Let us denote by E%u... ,&AV>( shortly E^y), the following event:

(51) X(k/2P, . . . , ksl2p) >
i = 1 i = 1

Aι= ± 1 , ±2, . . . , ±2* / = 1 , 2, . . . , N.

Summing up PiE^y) for j£> = 1, 2, . . . , and for all lattice points <M\l2p,
N

satisfying (log j>)/3<(Σ*?) ι / 2^ilog ί, we have by Lemma 6 that
i = l

2-1 2LJ JrKlίζkjy ) — VJV-U 2Lι 2 J N β 2

 t ^ i

(52)

= 0(1) Σ^^t^/logί) β"T

By ^»,, ...,A.V> (shortly £<*,->), we denote the following event:

maxX(A)/(dis(O, A))m>ψ(2p/CΣ,k2i)m)+ 4

where A runs over the cube [(fti - 1)2*, (At + 1)/2P; . . . {kN - l)/2*, (fe

•f l )/2 ί ] . For suflficiently large c and i>'s, we have by a similar way as in §2

that

P(Ep

<kiy)=0(l) P(Ep

<kf>).

From (52) it follows that

https://doi.org/10.1017/S0027763000007613 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007613


154 TUNEKITI SIRAO

(53) Σ ΣK^>)< + °°.

According to Borel-Cantelli's lemma in the convergent case, (53) shows that

only finitely many events E%kj> appearing in (53) can occur for almost all ω.

Namely, for almost all ω, there exists p0 such that no £<&,.> can occur for p's

larger than pa.

Now, for any point A of dis (O, A) < (log p0- Nυ2)/2Po, we choose p such

that

(log (p + 1) - Nli2)/2p+1<άis (O, AX (log p- Nlj2)/2P.

By the same way as in § 2, we have

X(A)^(dis(O, A))112 {φ(l/άis(O, A)) + 2c/φ(l/dis(O9 A))}.

Thus φ(t) +2c/φ(t) belongs to U5 and we can prove by the same procedure

as in §2 that ψ(t) belongs to HJ.

b) The divergent case.

Let E^k.y be the same event as in the convergent case. By Lemma 6, we

have

(54) Σ 2
p=l <Λ

where Σ denotes the summation for all lattice points <Jzi!2p

y . . . , kNl2ps>
N

satisfying ( logί)/2< ( Σ ^ ? ) I / 2 ^ l o g p. Hence it suffices to prove that the

sequence {£%•>) satisfies the condition (ii) and (iii) in Lemma 3. To prove

that this is the case, we enumerate the events E^y by the same method as in

§2 and denote the new sequence by {En}. Then it is clear that by a similar

consideration as in §2, (ii) is satisfied in the present case. Next, for each Ej

= £<£.>, we choose a sequence {E^ = E^y i ί = 1, 2, . . . , s} of the events

satisfying ji>j and

(55) p{Uj, Uji) > l/{ψ(2p/φk2i)112) φ(2p'/φkΐ)1!2)}y

where Uj and £//,- denote the random variables X(kj2p

t . . . , kχl2p) and

X(k[l2p\ . . . . k'χl2p>) respectively. For any event Ek other than Ejt(l^i^s)

and standing after Ej, we can apply Lemma 5 and accordingly (b) of (iii)

holds.

To verify (a) of (iii), we employ the same method as in §2. We divid'e
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the sum of P(Ej Π Ejt) by the magnitude of the corresponding correlation

coefficient p(£7), U^) into two summations as follows:

(56) ilPlE, Π Eh) - Σ'P(Ej Π Eh) + Σ

where Σ ' expresses the summation over Γs such that p(Uj, £//<) is larger than

( 1 - (log p)~1/2)1/2, and Σ " expresses the summation of the other probabilities.

Let A and B be the points (kJ2p, . . . , kN/2p) and (*ί/2/>\ . . . , k'sW)

respectively. Then, for Ejf summed up Σ'» w e can show that there exists a

positive integer k less than (log p)112 and satisfying the following inequality:

(57) (1 - ft/log p)ιlt ύ p(Uj, Ujt) < (1 - (* - D/log i>)1/2,

where

Ujt) = {dis (O, A) + dis (O, .B) - dis (A, £)}/2{dis (O, A) dis (O, 5)}1/2.

Since (̂Z7y, ί//z ) is less than {min (dis (O, A)y dis(0, 5))} {dis(O, A) dis(O,

it follows from (57) and the definition of ordering of the sequence {En)

that

(58) (1-k/logp) disίO, A)^dis(O,

From (57) and (58) it follows that for large p's

(59) dis (A, BX2k disίO,

Now (58) shows that the superscript^' of Ej^E^y summed up in Σ ' is at

most p + 1. Also (59) shows that for given £>, the number of suclΓ£)/s

is at most of order kN. Therefore, by Lemma 5, Lemma 6, (57), and (58)

holds

O, A))112 0(l/dis (O, A)),

£/Λ >(dis(O, J3))1/2 ^(1/dislO, A))}

( 6 0 ) ^ c φ k s e-*{l->HVi'vh»*%{llAl^^^

where c\, c2, c3, 5, and δ' are positive constants. On the other hand, if the

superscript p' of En^E%r> is larger than log p 4- 5 log(2) A then μ(Uj, Un) is

less than <0(2*/(Σ*?)1/s) 0(2 ί/(Σ*;>) I / 2)}"1. Hence, by Lemma 5 and Lemma
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6, we have for large p's

Σ"P(Ej Π Ej4) ^Σ"P{Uj> (dis (O, A))1/2

C//,Xdis(O,
(61) ^^-^n e-^-?2iUj,uJi))^aiάίs{of

log(2) i>) 2 * + V

where d, o, and 5' are positive constants. (60) and (61) show that the sequence

{En} satisfies the consition (a) of (iii).

Thus we have proved Theorem 2.
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