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WEAKLY NORMAL VARIETIES: THE MULTICROSS

SINGULARITY AND SOME VANISHING THEOREMS
ON LOCAL COHOMOLOGY

JOHN V. LEAHY AND MARIE A. VITULLI*

§ 1. Introduction

The foundations for this paper were developed in [5], "Seminormal
rings and weakly normal varieties", where the historical framework and
fundamental properties of weakly normal varieties were presented in detail.
Here we devote our attention to the study of the multicross singularity
and the role of local cohomology in the theory of weakly normal varieties.

In our earlier paper we presented an affine version of the multicross.
In general we will say a point x o n a variety X is a multicross if X at x
is analytically isomorphic to X' at xf where X' is an affine multicross (see
[5], Defn. 3.3). We then give a more geometric description in terms of
the normalization of X. Using this characterization we are able to show
that the set Xm of multicrosses on a weakly normal variety is open and
dense. In fact its complement is a closed subvariety of codimension at
least two so that every component of the singular locus (respectively,
nonnormal locus) of codimension one must contain a multicross.

We also present the algebro-geometric analogue of the class of locally
optimal spaces introduced in [1]. We call them the C-weakly normal va-
rieties as they are characterized by the vanishing of the local cohomology
with supports on X\Xm. We apply a Hartogs theorem for weak normality
to show that a C-weakly variety is indeed weakly normal. However, there
are many weakly normal varieties that fail to be C-weakly normal (cf. Ex.
4.5).

A further stratification of the class of C-weakly normal varieties leads
us to the U-weakly normal varieties. Briefly, these are the varieties whose

Received September 11, 1979.
* The author wishes to acknowledge support from the Graduate School of the

University of Oregon.

137

https://doi.org/10.1017/S0027763000019450 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019450


138 JOHN V. LEAHY AND MARIE A. VITULLI

coordinate rings are seminormal in the sense of Endό (see [2] and [5]). In

[5] we showed that E-weak normality is a stronger condition than weak

normality. Here we characterize the JE-weakly normal varieties within the

class of weakly normal varieties.

In section 4 we give a computable criterion for determining the weak

normality of an affine hypersurface and a second application of the Hartogs

theorem. We conclude by giving several examples. In particular, we es-

tablish the distinction between the various classes of weakly normal va-

rieties described above.

§2. Preliminaries and Notation

Let k be a fixed algebraically closed field of characteristic zero. When

we use the term variety we assume that the underlying topological space

is the set of closed points of a reduced, separated scheme of finite type

over k. All rings are assumed to be commutative with identity. We will

say A is an affine ring if A is the coordinate ring of an affine variety

(over k).

If (X, Θx) is an algebraic variety we let Θx denote the sheaf of c-regular

functions on X. Thus for an open subset U of X, Γ(U, Θx) consists of all

continuous k-valued functions on U which are regular at the nόnsingular

points of U. Recall that X is weakly normal at a point x if ΘXtX — Θ%>x

and that X is weakly normal if Θx = Θx. In general, Θx is a coherent

sheaf on X so that the set of weakly normal points of X is open.

Let A be a ring and B denote its normalization. For a ring C let

R(C) denote the Jacobson radical of C. The seminormalization +A oΐ A

is defined by
+ A = {b e B\ bxeAx + R(BX) Vx e Spec (A)}.

A is said to be seminormal if A = +A.

We will now recall some basic facts about seminormal rings and weakly

normal varieties. For more details and proofs of these assertions one

should consult [5],

PROPOSITION 2.1. Let B denote the normalization of a ring A. The

following statements are equivalent.

(1) A is seminormal.

(2) For each b in B, the conductor of A in A[b] is a radical ideal of

A[b].
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WEAKLY NORMAL VARIETIES 139

(3) A contains each element b of B such that bn, bn+ίeA for some

positive integer n.

(4) A contains each element b of B such that b2, b3 e A.

In particular, if A is seminormal then (A: B) is a radical ideal of B.

PROPOSITION 2.2. Let π: X-> X be the normalization of a variety X.

For an open subset U of X, Γ(U, Θc

x) may be identified with all regular func-

tions on π~ι{U) which agree on the fibres of π.

PROPOSITION 2.3. Let A be an afβne ring and let B denote its normali-

zation. Let π: X = Var (B) -> X = Var (A) be the induced morphism of af-

fine varieties. Then

+A = {fe B\f(yd = f(y2) whenever π(y,) = π(y2)}.

Hence X is weakly normal if and only if + A is seminormal.

Since the geometric notion of weak normality and the algebraic notion

of seminormality coincide (for varieties over an algebraically closed field

of characteristic 0) henceforth we will adopt the former terminology. So

for an afline ring A we will call +A the weak normalization of A and we

say that A is weakly normal if A = +A.

For a local ring (R, m) and an .R-module M let M denote the m-adic

completion of M. We will make constant use of the following result.

PROPOSITION 2.4. ([5] Thm. 1.21.) Let X be a variety, xeX and set

•R = Φχ,z Then X is weakly normal at x if and only if R is seminormal.

Let /: Y —> X be a morphism of varieties. We will say / is unramified

at a point y 6 Y if (Ωγ/X)y = 0 where Ωγjx denotes the sheaf of relative differ-

entials. Thus / is unramified at y if and only if the induced map of Zariski

tangent spaces TVfY —> TXtX is injective. We will say / is etale at y if / is

both unramified and flat at y. Thus / is etale at y if and only if the

induced map Ox,x-+βy,γ is an isomorphism. (See [3], Ex. 10.4, p. 275).

For a fuller discussion of unramified and etale morphisms the reader should

consult [4].

Let X be a variety. Throughout this paper S(X) and N(X) will denote

the singular locus and nonnormal locus of X> respectively. W(X) will

denote the set of nonweakly normal points of X. By component we mean

an irreducible component of X.
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140 JOHN V. LEAHY AND MARIE A. VITULLI

§3. Main results

Our first task in this section is to introduce the multicross singularity.

Briefly we will say a point Λ; on a variety X is a multicross if x e X is

analytically isomorphic to x! e X/ where X' is the union of linear subspaces

of affine space meeting transversally along a common linear subspace. We

then give a more geometric description of this singularity and use it to

classify the multicrosses.

DEFINITIONS 3.1. Let # = {Tί9 , Tr] be a non-empty collection of

disjoint subsets of {1, ••-,#} and let z19 , zp be transcendentals over k.

We let R<e denote the complete local ring

k[[z19 . , *J]/(s.*,|α € Ti9 β e Tj9 i Φ j).

We say a point x o n a variety X is a multicross if ΘXtX is isomorphic (as

a β-algebra) to R« for some collection # as above.

We let Xm denote the set of multicrosses for X.

Notice that if # consists of one subset then R« is a formal power series

ring over k. Thus Xm contains the set of nonsingular points of X We

will say a singular point x in Xm is a multicross singularity.

PROPOSITION 3.2. Let π: X -» X be the normalization of a variety X, let

Y = N(X) and set Ϋ = π~\Y). If xeX is a multicross then the following

conditions are valid:

(1) xeπ(S(X))

(2) If xeY then x is a nonsingular point of Yand the restriction π\Ϋ:

Ϋ -+ Y is etale at each point of the fibre π~\x).

(3) 7Γ is unramified at each point of the fibre π~ι(x).

(4) X is weakly normal at x.

Proof Certainly the above conditions are valid at a nonsingular

point x of X. So let us assume that x is a singular point of X.

Let # = {Tu . , Tr) (r ^ 2) be a collection of disjoint subsets of

{1, .,p) such that ΘXtX ^ i^. Let Qt = (za\a e \Jjφi Tj) for 1 < i < r and

set Q — (za\a e IJ5=i Ts); let P* and P denote the corresponding prime ideals

of ΘXtX = R.

Since Qj Π Π Qr = (zazβ\ae Tί9 β e Tj9 i ψ j) is an irredundant repre*

sentation we know that Pl9 - , Pr are the minimal primes of R. Let xt

denote the point in the fibre π'^x) corresponding to P€ for l<i < r.
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WEAKLY NORMAL VARIETIES 141

Since {za\aeTi)aC\jΨiQj we see t h a t P = Pt + ΠjΦtPj for

Thus we have an exact sequence:

(3.3) 0 >R^^RIP1χ- -χRIPr-^rf\RIP >0
1

where a(f) = (f + Pu • • ,f+ Pr) and β(fx + Pu • ..,fτ + Pr) = (/2 - /, +

As each R/Pi is regular we see that R/Px X X R\Pr may be identi-
fied with the normalization S of R. We also claim that R is seminormal.
For suppose that g = (gx + Pu , gr + Pr) is such that g2 and g3 lie in
a (R). Then g\ - g\ and gj - ^3 lie in P for 1 < ί < r. Since P is prime
we must have gi — gi € P for 1 < i < r and hence ^ 6 a(R). Thus i? is
seminormal by the fourth criterion of (2.1) and hence X is weakly normal
at x by (2.4).

Replacing X be an affine open neighborhood of x we may and shall
assume that X = Var (A) is weakly normal and that each component of
Y = N(X) passes through x. We also may assume that X = Var (B) where
B is the normalization of A. Then the conductor (A: B) is a reduced
ideal of B.

Now JBX1 X x BXr^Bx^S^ RIP, X X i?/Pr implies that each
point in the fibre π~ι(x) is a nonsingular point of X. Since

(A: β); = (A,: £ J Λ = (A,:BX) = P by (3.3)

we have (A: B) — p is a prime ideal of A such that pAx = P remains
prime. As i?/P = J^/Q is regular, x is a nonsingular point of Y. We also
see that (3.3) entails

AjpAx = iϊx/P s BJpB*4 (i = 1, , r)

so that τr|?: Ϋ-> Y is etale at each point of the fibre π~\oc).
Finally, AjPi = BXi implies π: X -> X is unramified at each point of

the fibre π"\x).

We wish to see that the converse of (3.2) is also valid. Towards this
end we establish the following equivalence.

LEMMA 3.4. Let X be a variety, x e S(X) and set R = ΘXtX. Let
Pj, , Pr denote the minimal primes of R. Assume that:

(a) R/Pf is regular of dimension st for each ί,

(b) VPi + Ps = P is the same prime ideal of R whenever i ^ j .
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142 JOHN V. LEAHY AND MARIE A. VITULLI

(c) RjP is regular of dimension m.

Then the following statements are equivalent:

(1) x is a multicross for X.

(2) P, + ΓijΦt Pj = P for each i.

(3) X is weakly normal at x.

Proof. We have already seen that (1) implies (3). We will show that

(3)=>(2)φ(l).

Suppose that X is weakly normal at x. Now the normalization S of

R may be identified with RIP, X X R/Pr and we know by (2.4) that

(R: S) is a reduced ideal of R. Let et denote that element of RjPx X X

R\Pr which has a 1 in the ith component and 0 elsewhere. Then (R: S) =

Πί-i (R' *i) = Πϊ-i (Pi + Πj*i Pj) Since (b) entails VP, + Π w PJ = P for

each i we must have Πt-i ( ^ + ΓV* ̂ ) = P. Then P c P { + Q w p , c

P for each i implies P* + Πj** -Pj = P f° r e^ch i and (2) is valid.

Suppose that Pέ + OJΦt P3 = P for each ί. Then

(3.3) 0 >R^-> Π i?/P,-^> Π i?/P >0
i = l 1

is exact as in the proof of (3.2).

Since R/Pi and RjP are regular it is possible to find a regular system

of parameters xiΛ, , xifH for R\Pi such that

R/P, ^ k[[xίtί, , xi>H]] and i?/P s *[[x<flf , x,, J ] for ί = 1, . . . , r.

Set p = m + 2]ϊ-i («i — m), no = m and ̂  = m + 2]}=1 (sy — m) for 1 <

ί < r . L e t 2 ? ! , , z p ; y l t U > - , y l t S 1 ; y 2 t U - y2>S2; y r Λ , , y r > S r ; y » - , y m

be transcendentals over k. For each ί between 1 and r define a β-algebra

map

^ : fefe, , zp] > k[yitί9 , yifH] by

(yitί if 1<£ <m

(0 otherwise

Let Tί = foi.ί + 1, , nt} for ί = 1, , r so that Tu , Tr are dis-

joint subsets of {1, ,p}. Let I = (zazβ\a e Ti9 β e Tj9 iφj) so that

I = Q1 n . Π Qr where Q, = (za\a e \J3Φί T,).

Notice that Qi = ker φt for each i. Since φi is a degree 0 mapping of
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WEAKLY NORMAL VARIETIES 143

graded /^-algebras we know that ker φt is homogeneous. But for a homo-

geneous polynomial / it is clear that fe ker φt if and only if fe Qt.

Thus if we let φ = φ1 X X φr:

k[z» -- ,zP] > Π k[yitί, , y i > S i ]
ί = l

we have I = ker φ.

r r-1

Define ψ: Π k[yttl, -9yitH] > Π k[yu ,y j
i l 1

by tff» •• ,fr) = (U{y, 0) - f^y, 0), , /r(y, 0) - Λ(y, 0)) where ft(y, 0) =

/i(3Ί» , Vm, 0, , 0). Then ker ψ = imφ.

Now we have a commutative diagram:

Π *[[*.„ . Λ..J] - ^ rff *[[y» • • , y J ]
ii l

c xR/Pr -£-• Π -R/^P—• 0
1

where ψ is obtained from ψ by passing to completions and γ2 and γz are

the canonical isomorphisms. Thus

k[[zu , zp]]l(z«ZβW eTi9βe T3, iψj) s ker ψ s ker 0 ^ Jϊ

and since f2 is a ^-algebra map this is an isomorphism of ^-algebras. Thus

x is a multicross for X and (2) implies (1).

We are now ready to state the classification theorem for the multi-

crosses.

THEOREM 3.5. Let π: X —> X be the normalization of a variety X, let

y = N(X) and set Ϋ — π~\Y). Then xeX is a multicross if and only if

the following conditions are valid:

(1) x <£ π(S(X)),

(2) If xeY then x is a nonsingular point of Y and the restriction

π\Ϋ\ Ϋ-+Y is etale at each point of the fibre π~x{x),

(3) π is unramified at each point of the fibre π~\x) and

(4) X is weakly normal at x.

Proof. By (3.2) we only need to show (l)-(4) entail xeX is a multi-

cross. Let us assume x e S(X).
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Replacing X by an aftine open neighborhood of x we may and shall

assume that X = Var (A) and X = Var (B) where B is the normalization

of A, that every component of N(X) passes through x and that the fol-

lowing conditions are valid:

(1)' BXi is a regular local ring for each

xt e π~\x) ,

(4)' A is weakly normal so that (A: B) is a reduced ideal of B.

(2)' A/(A: B) is a regular ring and

AJ(AX: Bx) > BJ(AX: Bx)BXi

is etale for each xteπ~\x)
(3)' ΩB]A = 0

Now (3)' entails that

(3.6) mXfXlml,x > mxullmlttt is

surjective for each xten~\oc).

Let Qί9 - - , Qr denote the minimal primes of S == Bx where Qt cor-

responds to Xi e TΓ'XJC). Letting R = Ax, Pt = Qt Π R (i = 1, , r) we see

that P^ , Pr are the minimal primes of R. If mt and nf denote the unique

maximal ideals of i?/P* and S/Qt respectively then m^S = nt by (3.6). Since

S/Qi is a finite jR/Pί-module and both R/Pi and S/Qt have ^ as their

residue fields we have RlPt ^ SIQt. Hence J2/Pj X XR/Pr ^ S/QtX

xSIQr and JR/P* is a regular local ring for each ί.

Let p = (A: B) so that p is a prime ideal of A. Now Ax/pAx -> BxJpBxι

is etale for each x* in the fibre π~\x) entails that Bx/pBx is flat over

Ax/pAx. Since Bx/pBx is finitely generated over the local ring Ax/pAx it

must be free over AxjpAx and hence faithfully flat over Ax/pAx. Then

BX\AX is flat over Ax\pAx and hence free. Thus Ass4a? (BJAX) = {ί)AΛ} and

Ass^ (S/i?) = AssΛ (i2/ί>i?) = {pi?} (see [6], Thm. 12, p. 58) since R/pR =

4,./^^^ is regular.

Let P = >B. Then P = (B: S) = (B: ΠΣ-i Λ/P*) = ΠΣ-i (ft + Π w ft).

Since Pt + pi^^ίP^ = (R:et) where et has a 1 in the ith component and

zero elsewhere and P is the only associated prime of S/R we must have

Pt + C\jΨiPj = P for each ί. Thus by (3.4) x e X i s a multicross.

For an affine variety X— Var (A) with normalization π: X = Var(J5)

—> X let Ye denote the closed subset of Y = iV(X) defined by the inter-

section of the embedded primes of the A-module B/A. Here we will set
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WEAKLY NORMAL VARIETIES 145

Ye = 0 if B\A has isolated primes only. Recall that W(X) denotes the set

of nonweakly normal points of X. We now offer an alternate description

of the complement of the multicrosses.

LEMMA 3.7. With notation as above, for an affine variety X = Var (A)

we have

X\Xm = π(S(X)) U S(Y) U Supp ΩB/A U Ye U W(X).

(Notice that we are viewing ΩB/A as an A-module.)

Proof. Let Z denote the right hand side and suppose xeX\Z. Then

p = (Ax: Bx) is an analytically irreducible prime of Ax and is the only as-

sociated prime of BxjAx (since x g Ye). Thus P = pAx = (Ax: Bx) is the

only associated prime of BX\AX so that if Pl9 , Pr denote the minimal

primes of Ax we must have Pt + C^jΦi Ps = P for each i and hence x e X

is a multicross by (3.4). Since Xm c X\Z we must have X\Xm = Z.

We now show that for a weakly normal variety the multicross singu-

larity is generic in the sense that each component of the singular locus

of codimension one must contain a multicross for X.

THEOREM 3.8. Suppose X is a weakly normal variety and let Z denote

the complement of the multicrosses. Then Z is a closed subvariety of codi-

mension at least two.

Proof. Since each of the conditions in (3.5) is an open condition we

know that Xm is an open subset of X and hence Z = X\Xm is closed.

To prove the assertion about codimension it suffices to assume that

X = Var (A) is affine. Thus if π: X = Var (B) -> X is the normalization of

X and y = N(X) we know by (3.7) that

Z = π(S(X)) U S(Y) U Supp ΩB/A U Ye

where Ye is defined as in (3.7). Clearly π(S(X))ΌS(Y)(jYe has codimen-

sion at least two. So it suffices to show that for any height one prime

px of A we have (ΩB/A)X = 0.

Let px be a height one prime of A and let us assume that (A: B)dpx

(for otherwise Ax — Bx). Then Ax is its own gluing in Bx over pxAx, i.e.,

pxAx = R(Bτ). Let A(x) = AJpxAx and B(x) = BJpxBx. Then by base

change we have ΩBχ/Aχ®AχA{x)^ΩBix)/Mx) = 0 since B(x) = BX/R(BX) is a

product of finite separable extensions of A(x) (recall that we are assuming

ch k = 0).

https://doi.org/10.1017/S0027763000019450 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019450
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Thus ΩBχ/Aχ = pxΩBχ/Aχ and by Nakayama's lemma, (ΩB/A)x^ΩBχ/Aχ = 0.

In [5] we proved that a reduced Cohen-Macaulay ring A with finite

normalization B is seminormal if and only if (A: B) is a radical ideal of

B ([5], Cor. 1.19). Recall that in this case A is seminormal if and only if

A satisfies condition R[ of Endό, i.e., for any height one prime px of A

we have pxAx = R(BX). (see [5] Lemma 1.17.) We can also characterize

those locally Cohen-Macaulay varieties which are weakly normal in terms

of the multicrosses.

PROPOSITION 3.9. Suppose that a variety X is locally Cohen-Macaulay

and let Z denote the complement of the multicrosses. Then X is weakly

normal if and only if codim (Z, X)>2.

Proof By (3.8) we only need to show that codim (Z, X)>2 implies

that X is weakly normal. Since weak normality is local in nature it suf-

fices to consider the case when X — Var (A) is affine.

Letting W(X) denote the set of nonweakly normal points of X we know

that W(X)aZ by (3.5). Thus codim (Z, X)>2 implies that codim (W(X\ X)

> 2.

Hence if px is a height one prime of A and B denotes the normali-

zation of A we must have Ax is seminormal. So either Ax = Bx or (Ax: Bx)

= pxAx = R(BX) where the latter equality follows viewing (Ax: Bx) as a

reduced ideal in Bx. Thus A satisfies condition R[ of Endό. Since A is

Cohen-Macaulay A satisfies condition S2 of Serre and hence A is weakly

normal (see [5], Lemma 1.17).

One knows that an affine ring A is normal if and only if A satisfies

conditions i?x and S2 of Serre. Thus the normal varieties are characterized,

from the point of view of local cohomology, by the vanishing of H\iZ)

(U, Θx\u) for all open subsets U of X. It is natural to pose the following

questions:

(1) Do there exist conditions analogous to Serre's which characterize

seminormal rings? and

(2) Is there a canonical subspace TdS(X) such that the vanishing

of Hi(U,Θx\u) for all open U characterizes the weakly normal varieties?

We now offer some results along these lines.

Let us say that an affine ring A is ϋJ-weakly normal if A satisfies S2

and condition R[ of Endό. We have seen that the U-weakly normal rings

are weakly normal ([5], Lemma 1.17) but there are weakly normal rings
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WEAKLY NORMAL VARIETIES 147

that are not 2?-weakly normal ([5], Ex. 1.18).

Let Z = X\Xm for a variety X. We will say that X is C-weakly normal

if H%(U, Ox\u) = 0 for every open subset U of X. This is the direct analogue

of the class of locally optimal spaces in the complex space theory (see [1]).

We will show that, just as in the complex space theory, the C-weakly

normal varieties form a proper subclass of the weakly normal varieties.

This follows from a Hartogs-like theorem for weak normality which in

turn is a consequence of the following standard result whose proof we

omit.

PROPOSITION 3.10. Let X be a variety, Y be a closed subvariety and

suppose that SΓ c 5f are coherent Θx-modules. Assume that the following con-

ditions are valid:

(1) S u p p ( ^ / ^ ) C Y,

(2) ΓY(U, Sf\Ό) = 0 for each affine open UaX and

(3) HY(U, y\u) = 0 for each affine open UaX. Then *Γ = if.

COROLLARY 3.11. Suppose that Y is a closed subvariety of a variety X

and that codim(Y, X) > 1. Assume that X\Y is weakly normal and that

Hγ(U, Θx\u) = 0 for every affίne open U a X. Then X is weakly normal.

Proof. Apply 3.10 to Θx c Θx and notice that codim (Y, X) > 1 entails

that ΓY(U, ί̂ lff) = 0 for each affine open U a X. This follows since for

a non-empty affine open J7=Var(A) we have ΓY(U, Θc

x\u) c Γ7(JS) = 0

where B denotes the normalization of A, 7 C A is the ideal defining Y f]

U and Γj{B) = {be B\Γb = 0 for some n>0}.

COROLLARY 3.12. Suppose that Y is a closed subvariety of a variety X

and that X\Y is weakly normal. If d i m d ^ < depth0VtY — 1 for all ye Y

then X is weakly normal.

Proof. By (3.11) it suffices to assume X = Var (A) is affine and show

that if dim 0VtT < depth OVtZ - 1 then codim (Y, X) > 1 and HY(X, Θx) = 0.

Now dim ΘVtY < depth Θy>x — 1 < dim OVtZ — 1 for all y e Y implies that

codim(Y,Z)>2.

Let I c A be the ideal defining Y and choose /i e I which is not a

zero divisor for A. We claim that Γ^A/frA) = 0. If not there exists some

non-zero element a in A\fxA with support on Y. Then ί c V(0:ά) <Ξ P

for some associated prime P of A\fxA. Let my be any maximal ideal of

A containing P. Then
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dim 0VtY = dim AyjIAy > dim Ay/PAy > depth Ay\fxAy

= depth Ay — 1,

a contradiction (see [6], Thm 27, p. 100).

Thus

so that X is weakly normal by (3.11).

We will give some applications of (3.12) in section 4. One immediate

consequence of (3.11) is the following:

COROLLARY 3.13. If a variety X is C-weakly normal then X is weakly

normal.

We will now characterize the C-weakly normal varieties within the

class of weakly normal varieties.

PROPOSITION 3.14. Let X be a weakly normal variety and let π: X—>

X be the normalization of X. Then X is C-weakly normal if and only if

the following conditions are valid:

(1) For each xeX (π*ΘχlΘχ)x has no embedded primes and

(2) Every component of the nonnormal locus contains a multicross.

Proof. Let Z = X\Xm. Since C-weak normality and conditions (1) &

(2) above are local in nature we may and shall assume that X = Var (A)

is affine.

Then IPZ(X9 ΘΣ) = 0 if and only if /-depth A > 2 where 7 is the ideal

of A defining Z (see [3], Exs. 3.3 and 3.4, p. 217) if and only if Exti (A/7, A)

= 0, i = 0, 1 ([6], Thm. 26, p. 95). Since ht I > 2 by (3.8) we have X is

C-weakly normal if and only if Ext^ (A/7, A) — 0.

Let B denote the normalization of A and consider the long exact

sequence:

0 • Hom^ (AH A) • Hom^ (A/7, JB) • Hom^ (A/I, B/A)

> Exti (A/I, A) > Exti (A/1, B) • . .

Since ht I > 2 we have Hom^ (A//, A) = Hom^ (Ajl B) = 0. Since B

satisfies S2 of Serre we have Exft (A/7, B) = 0. Thus Hom^ (A/7, B/A) ^

Exti (A/7, A) and X is C-weakly normal if and only if Hom^ (A/7, BjA) = 0

if and only if 7 is not contained in any associated prime of BjA.
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Recall that in (3.7) we showed that I is contained in each embedded

prime of B/A. Thus X is C-weakly normal if and only if B/A has no

embedded primes and I is not contained in any minimal prime of (A: B)

if and only if BjA has no embedded primes and each component of N(X)

meets Xm.

Remark 3.15. For a weakly normal variety X it is possible for con-

dition (2) above to hold while (1) fails. We provide an example of this

in section 4.

We already observed that an E-weakly normal variety is weakly nor-

mal. We will now use (3.14) to show that J5-weak normality implies C-

weak normality and will describe the class of E-weakly normal varieties

within the class of C-weakly normal varieties. In section 4 we give an

example which shows that these classes are distinct.

COROLLARY 3 .16. A weakly normal variety is E-weakly normal if and

only if it is C-weakly normal and the nonnormal locus is of pure codimen-

sion one.

Proof We may and shall assume that X = Var (A) is affine. Let B

denote the normalization of A. Suppose first that X is 2?-weakly normal.

Since every associated prime px of B\A is such that depth Ax = ί (see [5],

Lemma 1.16) and A satisfies condition S2 of Serre we see that every prime

of B\A is isolated of height one. Thus every component of N(X) is of

codimension one and must contain a multicross by (3.8). Since (1) and

(2) of (3.14) are valid we see that X is C-weakly normal.

Conversely, let us assume that X is C-weakly normal and N(X) is of

pure codimension one. Let pv denote a prime of A of height at least two.

If I defines X\Xm and I ^ py then depth Ay > 2 since /-depth A > 2. If

I is not contained in py then py c: mx for some multicross x of X. Recall

that Ass^ (BJAJ = {PAX} where V(P) is the unique component of N(X)

through x. By assumption ht PAX = 1. Then Ax satisfies condition S2 of

Serre since for every non-zero divisor a of Ax we know that max {ht q|q e

Ass^ (AxlaAx)} < max {ht q| q e Ass^Λ (BJAX)}. ([5] Thm. 1.14). Since Ay is

a localization of Ax we must have depth Ay > 2. Hence A satisfies S2 of

Serre as desired.

§4. Applications and Examples

In this section we will present two applications of the Hartogs theorem
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for weak normality (3.12). The first result is a criterion for determining

the weak normality of a hypersurface in affine space.

PROPOSITION 4.1. Suppose X = V(F) c An+1 is a hypersurface where

F is the product of distinct irreducible polynomials in k[Xu « , Xn+ί], Let

S\X) = ( x e S(X)|rank

Then X is weakly normal if and only if dim S2(X) < n — 2.

Proof. Suppose that dim S2(X) < n — 2. Since X is locally Cohen-

Macaulay we have

dim, S2(X) < depth 09%z - 1 for all x e S2(X) .

So by (3.10) it suffices to show that X — S2(X) is weakly normal.

Letting T denote the union of those components of S2(X) of dimension

less than n — 1 and applying (3.10) to T U S2(X) it suffices to show that

X - (Γ U S2(X)) is weakly normal.

So assume x e S(X) in the origin, that each component of S(X)

through x has codimension one and that x & S2(X). Letting J — rad (F,

dFldXl9 , dFldXn+ί) c k[Xu . , Xn+ί] we have Jx is unmixed of height two.

Let R = k[Xu , Xn+1]IJ so that we have an exact sequence:

Since [ΩR/k(x): k] > dim Rx = n — 1 we have [im δ(x): k] < 2. Since # 6

S2(X) we must have rank ((d2FldXidXj)(x)) = 2. By a homogeneous change

of coordinates we may assume that

1 if i = j = 1, 2

0 otherwise

Thus F = X2 + X | + higher degree terms and όx,z = k[[zlf , 2n+1]]/(21^2)

Therefore x is a multicross for X and X is weakly normal at x.

We have just shown that S(X) - (S2(X) U Γ ) c S(X) n Xm so that S2(X)

U T cz S(X)ΠX\Xm. If X is weakly normal then X\Xm has dimension no

greater than n — 2 by (3.8) so the converse is immediate.

EXAMPLE 4.2. Consider V(F) ci 4̂5 where

JΓ ^ Λ.4 •+• Jj A ~p x^e a n d
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Tp V2Y"8 V V V 2 V V
•̂ 5 — -̂ .2-̂ -3-̂ -4 — Λ1Δ2Δ3Λ5 —

Let X = V(F) and consider

as above. So X is weakly normal if and only if dim S2(X) < 2.

Direct computation shows that

s\x) c v(x,, x2, x4) u w , x3, z5) u v(x> -5,xt + ±x\, x3 + -L

so that dim S2(X) < 2 and X is weakly normal by (4.1). Here it is difficult

to verify any of the other criteria for weak normality (cf (2.1) and (2.3)).

PROPOSITION 4.3. Suppose a projective variety Vc: Pn is weakly normal.

Let X = C(V) c: An+1 denote the cone over V and let v denote the vertex of

the cone. If depth ΘV)X > 2 then X is weakly normal.

Proof. By (3.12) it suffices to see that X — {v} is weakly normal.

Let I c: k[X0> , Xn] be the homogeneous ideal defining V, let S =

k[X0, , XJ/I and let yt denote the image of Xt in S for 0 < ί < n.

Suppose that v Φ x e X. Choose yt so that yt & mX ) I.

Now Γ(VVO Θr) = S(Vi) where Sivt) is the degree 0 part of the graded

β-algebra Syi and Syi = S(yi) [t, t'1] (as graded ^-algebras) where S(yi)[t] is

a polynomial ring over S(y{). Since the product of weakly normal varieties

is weakly normal (see [5], Cor. 2.13) we know that S(yi)[t] is weakly normal

and hence its localization S(yi)[t, t'1] is also weakly normal. Hence 0x%x

being a localization of Syi is seminormal so that X is weakly normal at

x as desired.

Remark 4.4. Just as the affine cone over a normal projective variety

need not be normal, the affine cover over a weakly normal projective

variety needn't be weakly normal. For example, if V £ P1 consists of r

distinct points then C(V) c: A2 is weakly normal if and only if r < 2. One

can apply ([5], Prop. 2.23) to reach this conclusion.

We conclude by giving some additional examples.

EXAMPLE 4.5. (A weakly normal variety needn't be C-weakly normal).

Let X = V(x2 + y2 - z2, u, v, w) U V(u2 + v2 - w2, x, y, z) c A\ Since each
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component Xt of X is normal and IXl + Ix% — (x, y9 z9 u9 v, w) is reduced we

know that X is weakly normal by ([5], Prop. 2.18). However X\Xm — {o}

where o denotes the origin and since o is a nonnormal point of X we must

have depth ΦOfX = 1. Hence if Z = X\Xm we have IPZ(X, Θx) Φ 0 and X is

not C-weakly normal.

EXAMPLE 4.6. (A C-weakly normal variety needn't be ίJ-weakly nor-

mal). Let X = Xx U X2 £ A' where X, = V(xl9 x2) and X2 = V(xZ9 x,). Since

each component is nonsingular and IXl + Iz% = (xί9 x2, xz, #4) is prime X is

weakly normal as above. Now N(X) = V(xl9 x29 xZy #4) is of codimension

two in X and X\Xm is empty so that H\{X9 Θx) = 0. Yet X is not ^-weakly

normal by (3.14).

EXAMPLE 4.7. Let X = Xx U X2 ^ ^ where Xx = V(xzz — w2, u — w),

X2 = V(u, x, y). Now Xi is weakly normal (see [5], Prop. 3.5), X2 is non-

singular and IXl + IX2 = (u, x9 y9 w) is prime so that X is weakly normal

(see [5], Prop. 2.18).

Set A = k[u9 x9 y9 z9 w]/IXl Π IX2 and B = k[x9 y9 w/x] x k[z9 w] so t h a t

B is the normalization of X. Then (A: B) = (x9 ΰ9 w) is a height one prime

ideal of A while (ΰ9 x9 y9 w) = (A: (0,1)) is an embedded prime of B/A. So

condition (1) of (3.12) may fail even though condition (2) is valid.
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