ON THE TRIAD EXCISION THEOREM OF BLAKERS AND MASSEY

SHÔRÔ ARAKI

The purpose of the present paper is to give a new proof to the triad excision theorem of Blakers and Massey [1], in case $m \ge 2$ and $n \ge 2$, by the aid of path spaces and in connection with a recent work of J. P. Serre [2].

1. Preliminary. Let X, A, B be topological spaces such that $X \supset A$, B. By $\mathcal{Q}_{A,B}(X)$ we denote the totality of paths in X which start A and terminate in B; an element $(\sigma, I) \in \mathcal{Q}_{A,B}(X)$ is represented by a continuous map $\sigma: I \rightarrow X$ of the closed unit interval I into X such that $\sigma(0) \in A$ and $\sigma(1) \in B$. Then $\mathcal{Q}_{A,B}(X)$ is topologized by the compact open topology.

Let p_s be the projection of $\mathcal{Q}_{A,B}(X)$ to A such that for $(\sigma, I) \in \mathcal{Q}_{A,B}(X)$ $p_s(\sigma, I) = \sigma(0)$, and let $p_t : \mathcal{Q}_{A,B}(X) \to B$ be the projection such that $p_t(\sigma, I) = \sigma(1)$ for $(\sigma, I) \in \mathcal{Q}_{A,B}(X)$.

In the sequel, it is assumed that for a triad $(X; A, B, x_0)$ and for spaces of paths such as $\mathcal{Q}_{A,B}(X)$, $\mathcal{Q}_{A,x_0}(X)$, and so on, $X, A, B, A \cap B$, and spaces of paths are all arcwise connected, and that a reference point of any spaces of paths used, is taken to be an element represented by a constant map $e: I \to x_0$.

The following relations are obvious:

$(a) \qquad \pi_{i-1}(\Omega_{x_0,x_0}(X), e) \approx \pi_i(X, x_0) \qquad for all i$	$i \geq 1$	1,
---	------------	----

(b)
$$\pi_{i-1}(\mathcal{Q}_{A,x_0}(X), e) \approx \pi_i(X, A, x_0) \qquad \text{for all } i \ge 1,$$

(c) A is a deformation-retract of
$$\Omega_{A,X}(X)$$
,

(d)
$$\pi_{i-1}(\mathcal{Q}_{B,x_0}(X), \mathcal{Q}_{A \circ \mathcal{E}, x_0}(A), e) \approx \pi_i(X; A, B, x_0) \quad \text{for all } i \ge 2$$

where $(X; A, B, x_0)$ is a triad.

The above isomorphisms (a), (b) and (d) are referred to as *canonical isomorphisms*.

Let (X, A) be a pair of topological spaces, i.e., $X \supset A$. Suppose that X is *p*-connected for $p \ge 1$ and (X, A, x_0) is *q*-connected for $q \ge 1$, then $\mathcal{Q}_{A, x_0}(X)$ is (q-1)-connected. $(\mathcal{Q}_{A, X}(X), p_t, X)$ has a fibred structure in the sense of J. P. Serre, the fibre of which is $\mathcal{Q}_{A, x_0}(X)$. Considering this fibre space, we have the following exact homology sequence with respect to integer coefficients, following J. P. Serre, [2] Chap. III. prop. 5 p. 468;

Received March 17, 1953.

SHÔRÔ ARAKI

$$H_{p+q}(\mathcal{Q}_{A,x_{0}}(X)) \xrightarrow{h^{*}} H_{p+q}(\mathcal{Q}_{A,X}(X)) \xrightarrow{p_{t}^{*}} H_{p+q}(X) \xrightarrow{\Sigma^{*}} H_{p+q-1}(\mathcal{Q}_{A,x_{0}}(X)) \longrightarrow \dots$$
$$\dots \longrightarrow H_{1}(\mathcal{Q}_{A,x_{0}}(X)) \longrightarrow H_{1}(\mathcal{Q}_{A,X}(X)) \longrightarrow H_{1}(X) \longrightarrow 0$$

where \sum^* is transgression.

Now, we define homomorphisms

$$c_k^* : H_k(\mathcal{Q}_{A,x_0}(X); G) \longrightarrow H_{k+1}(X, A; G) \quad for \ all \ k \ge 1$$

by constructing chain maps, where G is an arbitrary coefficient group. For this we use singular cubical homology groups as homology groups defined by J. P. Serre, [2] p. 440.

Let (u^k, φ) be a singular cube of $\mathcal{Q}_{A, x_0}(X)$, then φ defines a map

$$\overline{\varphi}: I \times u^k \longrightarrow X,$$

which gives a singular cube $(I \times u^k, \overline{\varphi})$ of X. By the correspondence

$$c_k: (u^k, \varphi) \longrightarrow (I \times u^k, \overline{\varphi})$$

and by linearity we get a chain homomorphism

$$c_k: C_k(\mathcal{Q}_{A,x_0}(X)) \longrightarrow C_{k+1}(X).$$

From the following calculations

$$d \circ c(u^{k}, \varphi) = d(I \times u^{k}, \overline{\varphi})$$

$$= \left(\sum_{i=1}^{k} (-1)^{i+1} I \times (\lambda_{i}^{0} u^{k} - \lambda_{i}^{1} u^{k}) - 0 \times u^{k} + 1 \times u^{k}, \overline{\varphi}\right)$$

$$= -(I \times du^{k}, \overline{\varphi}) - (0 \times u^{k}, \overline{\varphi}) + (1 \times u^{k}, \overline{\varphi})$$

$$= -c \circ d(u^{k}, \varphi) - (0 \times u^{k}, \overline{\varphi})$$

where $(1 \times u^k, \overline{\varphi})$ is a degenerate cube and $\overline{\varphi}(0 \times u^k) \subset A$, and from the fact that if (u^k, φ) is degenerate cube, $(I \times u^k, \overline{\varphi})$ is also degenerated, it is concluded that c_k induces the following homomorphism

$$c_k^*: H_k(\mathcal{Q}_{A,x_0}(X); G) \longrightarrow H_{k+1}(X, A; G).$$

LEMMA 1. Let (X, x_0) be p-connected for $p \ge 1$, and let (X, A, x_0) be q-connected for $q \ge 1$. Then

- i) c_k^* are isomorphisms onto for $k \leq p+q-1$,
- ii) c_{p+q}^* is a homomorphism onto.

Proof. We consider the following diagram

130

Let

$$(u^{i+1}, \varphi) \in C_{i+1}(\mathcal{Q}_{A,X}(X))$$

be given, then we have

.

$$i \circ p_{s}(u^{i+1}, \varphi) = (0 \times u^{i+1}, \overline{\varphi}) \in C_{i+1}(A) \subset C_{i+1}(X),$$

$$p_{t}(u^{i+1}, \varphi) = (1 \times u^{i+1}, \overline{\varphi}) \in C_{i+1}(X),$$

$$d(I \times u^{i+1}, \overline{\varphi}) = -(I \times du^{i+1}, \overline{\varphi}) - (0 \times u^{i+1}, \overline{\varphi}) + (1 \times u^{i+1}, \overline{\varphi}).$$

This proves

$$i^* \circ p_s^* = \iota^* \circ p_t^*. \tag{(\alpha)}$$

Next, given

$$(u^i, \varphi) \in C_i(\Omega_{A, x_0}(X)),$$

then we have

$$\partial \circ c(u^{i}, \varphi) = d(I \times u^{i}, \overline{\varphi})$$

= $-c \circ d(u^{i}, \varphi) - (0 \times u^{i}, \overline{\varphi})$
= $-p_{s} \circ h(u^{i}, \varphi) - c \circ d(u^{i}, \varphi).$

Thus the identity

$$\partial^* \circ c^* = -p_s^* \circ h^* \tag{(\beta)}$$

is established.

By J. P. Serre, [2] p. 469, we get the following equivalent homology seguences:

for $1 \leq i \leq p+q-1$, i.e., we have $\sum_{t=0}^{*} p_t^{t+1}$. We now consider the following diagram:

$$H_{i+1}(\mathcal{Q}_{A,X}(X), \mathcal{Q}_{A,x_0}(X))$$

$$\downarrow p_i^{\prime*} \qquad \searrow^{\mathfrak{d}^*}$$

$$H_{i+1}(X) \qquad \xrightarrow{\Sigma^*} \qquad H_i(\mathcal{Q}_{A,x_0}(X))$$

$$j^* \searrow \qquad \downarrow c_i^*$$

$$H_{i+1}(X, A)$$

131

Let

$$\sum_{j} (u_j^{i+1}, \varphi_j) \in Z_{i+1}(\mathcal{Q}_{A,X}(X), \mathcal{Q}_{A,X_0}(X))$$

be given, then we have

$$p_i^{\prime}(\sum_{j}(u_j^{i+1}, \varphi_j)) = \sum_{j}(1 \times u_j^{i+1}, \overline{\varphi}_j) \in Z_{i+1}(X),$$

$$\partial(\sum_{j}(u_j^{i+1}, \varphi_j)) = \sum_{j}(du_j^{i+1}, \varphi_j) \in Z_i(\mathcal{Q}_{A, x_0}(X)),$$

$$c \circ \partial(\sum_{j}(u_j^{i+1}, \varphi_j)) = \sum_{j}(I \times du_j^{i+1}, \overline{\varphi}_j) \in Z_{i+1}(X, A).$$

Consider the following chain

$$\sum_{j} (I \times u_j^{i+1}, \,\overline{\varphi}_j) \in C_{i+2}(X),$$

we have

$$d(\sum_{j}(I \times u_{j}^{i+1}, \overline{\varphi}_{j})) = -\sum_{j}(I \times du_{j}^{i+1}, \overline{\varphi}_{j}) - \sum_{j}(0 \times u_{j}^{i+1}, \overline{\varphi}_{j}) + \sum_{j}(1 \times u_{j}^{i+1}, \overline{\varphi}_{j})$$
$$= -(c \circ \partial - p_{t}^{i})(\sum_{j}(u_{j}^{i+1}, \varphi_{j})) - \sum_{j}(0 \times u_{j}^{i+1}, \overline{\varphi}_{j}),$$

where $\sum_{j} (0 \times u_{j}^{i+1}, \overline{\varphi}_{j}) \in C_{i+1}(A)$. This proves

$$j^* \circ p_t^{\prime *} = c^* \circ \partial^*, \qquad (\gamma)$$

so that

$$c^* \circ \sum^* = j^* \circ \iota^* \tag{\delta}$$

has been established.

 (α) , (β) and (δ) show that it holds some commutativity or anti-commutativity in each tetragon of the firstly mentioned diagram. As p_s^* is isomorphism onto by (c) and as c^* is isomorphism onto induced by identity map, by using "five lemma," we get the first conclusion of this lemma.

 (α) , (β) and (r) show that the following diagram is commutative or anticommutative:

$$\begin{array}{cccc} H_{p+q+1}(\mathcal{Q}_{A,X}(X), \mathcal{Q}_{A,x_{0}}(X)) \xrightarrow{\partial'^{*}} H_{p+q}(\mathcal{Q}_{A,x_{0}}(X)) \\ & & \downarrow p_{t,p+q+1}^{\prime *} & \downarrow c_{p+q}^{*} \\ H_{p+q+1}(X) & \xrightarrow{j^{*}} & H_{p+q+1}(X, A) \\ \xrightarrow{h^{*}} H_{p+q}(\mathcal{Q}_{A,X}(X)) \xrightarrow{j'^{*}} H_{p+q}(\mathcal{Q}_{A,X}(X), \mathcal{Q}_{A,x_{0}}(X)) \\ & & & & \downarrow p_{s,p+q}^{*} & & & \downarrow p_{t,p+q}^{\prime *} \\ \xrightarrow{\partial^{*}} & H_{p+q}(A) & \xrightarrow{i^{*}} & H_{p+q}(X). \end{array}$$

By J. P. Serre, [2] Chap. III prop. 5 cor. 1 p. 469, we have

(e) $p_{t,p+q}^{\prime*}$ is an isomorphism onto, and $p_{t,p+q+1}^{\prime*}$ is a homomorphism onto.

Then, by using a "partial conclusion of five lemma," we get the second con-

clusion of this lemma.

(g.e.d.)

133

As a collorary of this lemma, we can easily prove the Hurewicz theorem in the relative case.

LEMMA 2. Let (X, A, B, x_0) be a triple, then

$$\pi_i(\mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X), e) \approx \pi_i(A, B, x_0) \quad for \ all \ i \ge 1.$$

Proof. Let us consider the following diagram

$$\cdots \longrightarrow \pi_i(\mathcal{Q}_{A,x_0}(X)) \xrightarrow{f} \pi_i(\mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X)) \xrightarrow{\partial} \pi_{i-1}(\mathcal{Q}_{B,x_0}(X))$$

$$\overset{?}{\underset{k_A}{\longrightarrow}} \overset{?}{\underset{m_i(A,B)}{\longrightarrow}} \overset{?}{\underset{m_i(X,B)}{\longrightarrow}} \overset{?}{\underset{m_i(X,B)}{\longrightarrow}} \overset{?}{\underset{m_i(X,B)}{\longrightarrow}} \overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \cdots$$

$$\overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \overset{?}{\underset{m_i(X,B)}{\longrightarrow}} \overset{?}{\underset{m_i(X,A)}{\longrightarrow}} \overset{?}{\underset{m$$

 $\begin{array}{ccc} \dots \longrightarrow \pi_1(\mathcal{Q}_{A,x_0}(X)) \longrightarrow \pi_1(\mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X)) \longrightarrow \pi_0(\mathcal{Q}_{B,x_0}(X)) \longrightarrow \pi_0(\mathcal{Q}_{A,x_0}(X)), \\ & & & & & \\ & & & & \\ &$

where the upper sequence is a homotopy sequence of the pair $(\mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X))$ and the lower sequence is a homotopy sequence of the triple (X, A, B, x_0) . $k_{.1}$ and k_B are canonical isomorphisms and p_s denotes also the homorphism induced by the projection p_s .

Firstly, we prove that (k_A, p_s, k_B) is a homomorphism of the sequences, i.e., that $\partial \circ k_A = p_s \circ j'$, $i \circ p_s = k_B \circ \partial'$, $j \circ k_B = k_A \circ i'$.

The identity $j \circ k_B = k_A \circ i'$ is obvious.

Let $\alpha \in \pi_i(\mathcal{Q}_{A,x_0}(X))$ be given such that a map $f: (E^i, \dot{E}^i) \longrightarrow (\mathcal{Q}_{A,x_0}(X), e)$ represents α , then

$$k_A \circ f = \overline{f} : (E^i \times I, E^i \times 0, E^i \times 1 \cup \dot{E}^i \times I) \longrightarrow (X, A, x_0)$$

is defined by f canonically. The map

$$\partial \circ k_A \circ f = \overline{f} | (E^i \times 0, \dot{E}^i \times 0) \longrightarrow (A, x_0) \subset (A, B)$$

is identical to the map $p_s \circ j' \circ f$, which proves the identity

$$\partial \circ k_A = p_s \circ j'.$$

Secondly, if $\beta \in \pi_i(\mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X))$ is represented by a map

$$g: (E^{i-1} \times I, E^{i-1} \times 0, E^{i-1} \times 1 \bigcup \dot{E}^{i-1} \times I) \longrightarrow (\mathcal{Q}_{A, x_0}(X), \mathcal{Q}_{B, x_0}(X), e),$$

g defines canonically a map

$$\overline{g} : (E^{i-1} \times I \times I', E^{i-1} \times I \times 0', E^{i-1} \times 0 \times 0', \\ E^{i-1} \times 1 \times I' \cup E^{i-1} \times I \times 1' \cup \dot{E}^{i-1} \times I \times I') \longrightarrow (X, A, B, x_0).$$

SHÔRÔ ARAKI

Then $i \circ p_s \circ g$ and $k_B \circ \partial' \circ g$ are the following restrictions of \overline{g} respectively:

$$i \circ p_{S} \circ g = \overline{g} | (E^{i-1} \times I \times 0', E^{i-1} \times 0 \times 0', E^{i-1} \times 1 \times 0' \bigcup \dot{E}^{i-1} \times I \times 0')$$

$$\longrightarrow (A, B, x_0) \subset (X, B, x_0),$$

$$k_{E} \circ \partial' \circ g = \overline{g} | (E^{i-1} \times 0 \times I', E^{i-1} \times 0 \times 0', E^{i-1} \times 0 \times 1' \bigcup \dot{E}^{i-1} \times 0 \times I')$$

$$\longrightarrow (X, B, x_0).$$

A homotopy between two maps $i \circ p_s \circ g$ and $k_B \circ \partial' \circ g$ will be given in $(E^{i-1} \times I \times I')$ as follows:

$$G_{\theta}(E^{i-1} \times I \times I') = \begin{cases} \overline{g} \mid (E^{i-1} \times t \times 2 \, \theta t) & 0 \leq \theta \leq 1/2, \\ \overline{g} \mid (E^{i-1} \times (2-2 \, \theta) t \times t) & 1/2 \leq \theta \leq 1. \end{cases}$$

This proves the identity

134

 $i \circ p_s = k_B \circ \partial'.$

It follows that (k_A, p_s, k_B) is a homomorphism of the sequences. Since k_A and k_B are isomorphisms and since (k_A, p_s, k_B) is a homomorphism of the sequences it is concluded in virtue of "five lemma" that p_s also is isomorphism. (q.e.d.)

Let $(X; A, B, x_0)$ be a triad, then $(\mathcal{Q}_{X,x_0}(X); \mathcal{Q}_{d,x_0}(X), \mathcal{Q}_{B,x_0}(X), e)$ is also a triad, where $\mathcal{Q}_{A,x_0}(X) \cap \mathcal{Q}_{B,x_0}(X) = \mathcal{Q}_{A \cap B,x_0}(X)$. The following lemma can be proved easily by considering homotopy sequences of each triads and by the above lemma and by "five lemma."

LEMMA 3. Let $(X; A, B, x_0)$ be triad, then $\pi_i(X; A, B, x_0) \approx \pi_i(\Omega_{X, x_0}(X); \Omega_{A, x_0}(X), \Omega_{B, x_0}(X), e)$ for all $i \ge 2$.

LEMMA 4. Let $(X; A, B, x_0)$ be a triad such that

 $X = (Int \ A) \cup (Int \ B)$, and let $(A, A \cap B)$ be n-connected $(n \ge 1)$, then (X, B) is n-connected.

Proof. Let $\alpha \in \pi_m(X, B)$ be represented by a map

$$f: (E^m, E^{m-1}, J^{m-1}) \longrightarrow (X, B, x_0),$$

where $m \leq n$. If we put $U = f^{-1}(Int A)$ and $V = f^{-1}(Int B)$, then $\{U, V\}$ is an open covering of E^m .

We subdivide E^m simplicially such that the mesh of this subdivision is smaller than the Lebesgues number of $\{U, V\}$. Let K and L_1 be maximal subcomplexes contained in U and V respectively. Let us put $L = L_1 + E^{m-1}$ $+ J^{m-1}$ and $M = K \cap L$, then we have $K \cup L = E^m$. Let

$$g: (K, M) \longrightarrow (A, A \cap B)$$

be a restriction of f. As K is *m*-dimensional, $m \leq n$, and as $(A, A \cap B)$ is *n*-connected, g is deformable into $A \cap B$ relative to M. Denoting this deforma-

tion by g_t , we have

$$g_0 = g,$$

$$g_1(K) \subset A \cap B,$$

$$g_t | M = g | M \quad \text{for } 0 \leq t \leq 1.$$

We define a deformation f_t of f as follows:

$$f_t | K = g_t \qquad \text{for } 0 \leq t \leq 1,$$

$$f_t | L = f | L \qquad \text{for } 0 \leq t \leq 1.$$

This gives a deformation of f into B relative to L, which establishes the lemma. (q.e.d.)

2. Proof of the triad excision theorem of Blakers and Massey.

Now we proceed to prove a theorem of A. L. Blakers and W. S. Massey, [1] p. 192, in case $m, n \ge 2$. The theorem is stated as follows.

THEOREM. Let $(X; A, B, x_0)$ be a triad which satisfies the following conditions:

(a)
$$X = (Int \ A) \cup (Int \ B)$$
:

(b) $(A, A \cup B)$ is m-connected, $m \ge 2$, and $(B, A \cap B)$ is n-connected, $n \ge 2$; then the triad (X; A, B) is (m+n)-connected.

A triad with the condition (a) is said to be *proper* by a denomination of S. Eilenberg and N. E. Steenrod, [3] p. 34. From Lemma 4 (X, A) is *n*-connected, $n \ge 2$, and (X, B) is *m*-connected, $m \ge 2$. Therefore $\mathcal{Q}_{X,x_0}(X)$, $\mathcal{Q}_{A,x_0}(X)$, $\mathcal{Q}_{B,x_0}(X)$ and $\mathcal{Q}_{A \cap B,x_0}(X)$ are all arcwise connected. If $(X; A, B, x_0)$ is proper, it is obvious that $(\mathcal{Q}_{X,x_0}(X); \mathcal{Q}_{A,x_0}(X), \mathcal{Q}_{B,x_0}(X), e)$ is also a proper triad. Thus, from Lemma 3 it is sufficient for us to consider the triad $(\mathcal{Q}_{X,x_0}(X); \mathcal{Q}_{A,x_0}(X),$ $\mathcal{Q}_{E,x_0}(X), e)$ instead of the given triad. As $\mathcal{Q}_{X,x_0}(X)$ is contractible, it is sufficient to prove the theorem in a special case where X is contractible.

Proof. As (X, A) is *n*-connected from Lemma 4, and as X is contractible, A is (n-1)-connected. Thus, by Lemma 1 it is seen that

(1)
$$c_{i}^{*}: H_{i}(\mathcal{Q}_{A \cap B, x_{0}}(A) ; Z) \approx H_{i+1}(A, A \cap B ; Z)$$

for $0 < i \leq m+n-2$,
(2) $c_{m+n-1}^{*}: H_{m+n-1}(\mathcal{Q}_{A \cap B, x_{0}}(A) ; Z) \longrightarrow H_{m+n}(A, A \cap B ; Z)$
is a homomorphism onto.

As (X, B) is *m*-connected and X is contractible, we have, from the same Lemma 1,

(3)
$$c_i^{\prime*}: H_i(\mathcal{Q}_{B,x_0}(X); Z) \approx H_{i+1}(X, B; Z)$$
 for all $i \ge 0$.

SHÔRÔ ARAKI

From (1), (3) and from the excision theorem in homology theory we have

(4)
$$l_i^* : H_i(\mathcal{Q}_{A \cap B, x_0}(A) ; Z) \approx H_i(\mathcal{Q}_{B, x_0}(X) ; Z)$$
for $0 < i \le m + n - 2$.

Next, we consider the following diagram. The commutativity of this diagram is easily seen:

Since e_{m+n}^* is an excision isomorphism, and since c_{m+n-1}^{**} is an isomorphism by (3) and since c_{m+n-1}^* is a homomorphism onto by (2), we have

(5)
$$l_{m+n-1}^{*}: H_{m+n-1}(\mathcal{Q}_{A \cap B, x_{0}}(A); Z) \rightarrow H_{m+n-1}(\mathcal{Q}_{B, x_{0}}(X); Z)$$

is a homomorphism onto.

 $B_{\mathcal{J}}$ (4) and (5), and by considering the homology sequence of the pair $(\mathcal{Q}_{B, \tau_0}(X), \mathcal{Q}_{A \cap B, \tau_0}(A))$ we can prove

(6)
$$H_i(\mathcal{Q}_{B,x_0}(X), \mathcal{Q}_{A \cap B,x_0}(A); Z) \approx 0 \quad \text{for } 0 < i \leq m+n-1.$$

From (6) and from the Hurewicz theorem in the relative case where $\pi_{A}(\mathcal{Q}_{B,x_{0}}(X)) \approx 1, \pi_{I}(\mathcal{Q}_{A \cap B,x_{0}}(A)) \approx 1, (\mathcal{Q}_{B,x_{0}}(X), \mathcal{Q}_{A \cap B,x_{0}}(A), e)$ is (m+n-1)-connected. This is equivalent to the fact that $(X; A, B, x_{0})$ is (m+n)-connected. (q.e.d.)

In an analoguous way as above we can also prove the theorem corresponding to the case where $m \ge 2$, n = 1, and $(A, A \cap B)$ is (m+1)-simple. But it is unnecessarily too long for us to put down here the proof, so that it is omitted.

We can also prove quite analogously as above a generalization of the triad excision theorem, which has been announced by J. C. Moore [4].

REFERENCES

- A. L. Blakers and W. S. Massey: The homotopy groups of a triad. II. Ann. of Math., vol. 55 (1952), pp. 192-201.
- [2] J. P. Serre: Homologie singulière des espaces fibres. Ann. of Math., vol. 54 (1951), pp. 425-505.
- [3] S. Eilenberg and N. E. Steenrod: Foundations of Algebraic Topology, Princeton Univ. Press, 1952.
- [4] J. C. Moore: Bull. Amer. Math. Soc., vol. 58 (1952), Abstract; No. 396.

Mathematical Institute, Nagoya University

136