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We sometimes think of medial (that is, infinite Dedekind-finite) sets as being
"small" infinite sets. Medial cardinals can be defined as those cardinals that are
incomparable to Ko; hence we tend to think of them as being spread out on a
plane "just above" the natural numbers, which seems to lend support to the view
expressed above that medial sets are "small".

There are, however, certain results that tend to counteract this intuitive idea.
Let a set x be called "quasi-minimal" if x is infinite and every subset of x is either
finite or cofinite. Then G. Monro (1973) has shown that given any aleph K, it is
consistent with ZF to assume the existence of a quasi-minimal set x such that
| P3(x) J > K. Here P(x) is the power-set of x, P2(x) = P(P(x)), and so on.

A second result in this vein, discovered by the present author, is that given any
aleph K, it is consistent with ZF to assume the existence of a Dedekind-finite set x
such that |* f 2 ] | > K. Here, xm = {y s x; \y\ = 2}. Our main result in this
paper is a generalization of this.

THEOREM: Let (Kn) be an tncreasing co-sequence of alephs, and let 6 be the
statement 3x( |x | ||/co&(n) ( |xc"+ 2 ] | > Kn + 1 &|x [ n + 21| || K B + 2 ) ) . Then if ZF is
consistent, so is ZF + {6}.

In this theorem, we of course define x["] to be {y s x; | y | = «}, n ^ 1: also, the
symbol " | | " denotes cardinal incomparability, that is, if X, n are two cardinals,
~then n j| X if and only if r\ % X and X % n.

The theorem will be proved if we can construct a ZF model Jf such that JT pre-
serves cardinals and J^\ = 0*. Such a model Jf will obviously need to fail AC,
and so it seems likely that JV will need to be constructed by one of the forcing
methods. In fact we use the Boolean technique as outlined by Jech (1972): to save
both space and tiresome repetition, we assume familiarity with the relevant parts
of Jech (1971), and use results contained therein. On the other hand, since in the
author's opinion some of Jech's proofs are highly condensed (to put it mildly),
some of the proofs given in Jech (1971) will be repeated here with a little more
elaboration.
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[2] Finite subsets of a set 39

At this point we note two conventions that will be observed throughout this
paper: (1) Each ordinal is identified with the set of all smaller ordinals; and (2)
Each aleph is identified with the corresponding initial ordinal. (1) is quite un-
exceptionable; (2) is highly dubious, but its convenience outweighs its ques*
tionable character.

Let Ji be a countable transitive model of ZF + {AC}; unless the contrary is
stated explicitly, henceforth all reasoning is assumed to take place within M.
Let the increasing co-sequence («:„) be given, let K = sup(Kn), and for each n put
An = (Kn+1 - Kn) x (w + 2), r n = AB x ( K B + 1 - K J . Put A = u {AB; n < co], and
T = u{FB; n < a>}. We define a poset (Q, ;£) as follows. The elements of Q
(henceforth called "conditions") are those functions p: F x K -> {0,1} for which
dom(p) is finite; we put p ^ q if p => q.

Two conditions p, q are called "incompatible" if there is no condition r such
that r g p and r ^ q. We note that p, q are incompatible if and only if there
exists xedom(p) n dom(q) such that p(x) / q(x), and use this fact to show that
(Q> ^0 satisfies the countable chain condition (c.c.c), that is, that any set of
pairwise incompatible conditions in countable.

Let PFbe a set of pairwise incompatible conditions, and for each n, put

Wn = {peW;\dom(p)\ = „}.

If we can show that each Wn is finite, then it will follow from AC that W is
countable. Thus suppose that some Wm is infinite; it follows from the above
criterion for incompatibility that there exists x0 and an infinite subset Wm,0 of Wm

such that x0 e dom(p) for all p e Wmt0. By the same criterion, there exists x ^ X o
and an infinite subset WmA of Wm,0 such that xlsdom(p) for all P^WmA.
Proceeding in this manner for m + 1 steps, we obtain an infinite subset Wm<m of
Wm such that | dom(p) | > m for all p e Wm<m. This contradiction shows Wm to be
finite; hence W is countable.

We let 28 = RO((Q, g) ) be the complete Boolean algebra that is the canonical
extension of (Q, S) (Jech (1971); page 50); since (2, ^ ) is dense in @, 3S satisfies
the c.c.c. We need to define a group ^ of ^-automorphisms, and do this by defining
a group G of permutations on F; for if g is a F-permutation, then g0 defined by
g°(p) (g(x),a) = p{x,a) is an automorphism on (Q, ^ ) , and thence extends
canonically to a ^-automorphism.

Thus we define a group G of F-permutations as follows, g e G if and only if
(1) g leaves each FB invariant, that is, g"Tn = Fn;
(2) For (a, i,/Q e FB, if g(x, i, )3) = (a', V, p'), then
(a) a = a', and
(b) i' depends only upon i, and not upon /?.

This determines G, which in turn determines <8.

For any subset J of F, we define GJ to be the subgroup of G consisting of those
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40 J. L. Hickman [3]

geG that leave / pointwise fixed, that is, g(x) = x for all xeJ. We let 9J be the
corresponding subgroup of <3. We now define a set & of subgroups of ^ by
^ = {J?^&;3J <=r(\j\ < K0 e &1 ^ •#")}. It is easily verified that & is a
normal filter of subgroups of ^.

Let [7 be a generic ultrafilter on ^ ; such a U exists since ^ is countable.
U determines an interpretation iv of Jt® (see Jech (1971; page 58)), which in
turn determines a model Jl{U) = i"vJ(m of Z.F + {AC}; we note that J! c ^( [ / ) ,
and use this fact to show that -#(17) preserves cardinals in Jt'.

Let t], X be cardinals in J( with ^ < X. Since the concept of ordinal is absolute,
tj and X are certainly ordinals in Jf{XJ\ and so to show that t], X are cardinals in
Jt{JU\ it suffices to show that there is no ^#(l/)-bijection: q a X. Suppose that

f:r\~X is an ^#(C/)-bijection, and let/be a name for/(Jech (1971; page 58)). Put
w = [f:vt] c*vX is a bijection], and for a. <>/,/?< X, put wai/i = [/(va) =V/?J • w.
Then w # 0, but if /? ̂  y, then wai/s • wa>r = 0. Furthermore, for every /? < X there
exists a < r\ such that wa,p ^ 0. For if p < X, then [VP ¥=VX} = 1, and so

We can now use a theorem due to Rosser (1969; Theorem 3.20) to show that
[3<x <vt)(f(<x) = v $ ] = SUP{[/(va)=vj3];a<J7}, from which the desired result
immediately follows. Thus | {/? < X; 3a < >7(waj/! ̂ 0)}\=X; since in ^# we have
rj < X, there must exist some <x°<tj such that | {/? < A: wao,/» ̂  0} | = X. As
A > Ko, this contradicts the c.c.c, since all these wao>/5 are pairwise incompatible.
Thus no such/can exist, and so rj, X are cardinals in Jt(JJ) with r\ < X. This shows
that J((U) preserves cardinals in Jt.

Now the group ^ and the filter !F determine a class HS of hereditarily sym-
metric elements oiJt® (see Jech (1971; page 115)). HS gives us in turn our de-
sired ZF model J/~, defined by Jf = iv"HS. Clearly J( £ >" £ -#([/), and so
follows from the above that JV preserves cardinals in Jf.

Having obtained our model Jf and seen that (KJ has the desired meaning in Jf,
we can turn our attention to the task of defining the appropriate ^"-set, which
we shall eventually call "A". To start with, however, we shall define some c/T-sets
bx, with x ranging over the set T. We define bxsMa for x e F as follows:-
dom(fcx) = {va; a < K} S HS, and £*(¥) = SUP{pe Q; p(x,a) = 1}; here SUP
is the generalized Boolean join operation. Clearly &{x)^sym(bx), and so
bxeHS; thus bx = iv(bx) = {a < K; 3p e U(p(x,oc) = 1)} is an ./F-set.

We use these ^T-sets to construct certain ./F-sets aXtl, (a, i)eA, which in turn
will be the elements of our desired ./F-set A. Thus for (a, i) e A we define aa>i e Ma

by dom(aa>i) = {£(,.,.»; (a, i,/DeI*} £f /S , fl«,,(i{«,,lW) = 1. For any fixed /3°
with (oU,/J0)er,SFl<«-'-'0>1gsymOg(,,i), and so

is an ^T-set.
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Define A e ^ b y dom 04) = {<?„„•; (a, i) e A} = HS, S(aaji) = 1. sym(^) = S?,
and so A = iv(A) = {ax t; (<x, i) e A} is an ^f"-set. We now need to show that
JT | = | A11 K0, and we commence by showing that Jf | = bx^ byif x ^ y.

Suppose that for some x, y e F with X j t j w e have p | — bx = by for some
peQ. Since domQ?) is finite, there is a < K such that neither (x,a) nor (y,a) are
in dom(p). Extending p to a condition q by putting q(x, a) = 1 and q(y,a) = 0,
we see that q \\ -vaebx &va<£ by, and hence that q\\ — bx¥=by. Since this
contradicts q g p, we conclude that no condition forces bx = by. However,
JV\ = bx = by if and only if p\\ — bx = by for some peU.lt follows immediately
that Jf\ =bx¥= br

As a result of this, we have Jf\ = axA^aliik for any (a,i), (0,k)eA with
(a, 0 ^ (j8, fe): using the definitions of 3F and A, we conclude that JV\ = \A\ $ K0.
Thus in order to show that ./f* | = | A | | K0, it suffices to show that there is no
^T-injection: K0 ->• A.

Suppose that/is such an JV -injection; let/ be a name for/, and let J be such
that | J | < K0 and ^J g sym(/). By injectivity, there exists a < K0, and (a, i),
(a, i') e A such that (a) i ^ V, (b) for no /? such that (a, i, /?) e r do we have either
(tx,i,P) or (a,i',P) in J, and (c) ^f| = (/: K0 -> A is injective and/(<r) = aail).
As above, we conclude that p II- (/: K0 -> S is injective and/(o-v) = aa () for some
peU. Since dom (p) is finite, there exists /J° such that (a, i, )S°) e r , and for no
P > /?°, 5 < K, do we have ((a,i,P),d)edom(p).

We now define a permutation # on F as follows.
(1) If (y,J) # (a, 0, (a, i'), and (y,j) e A, then for each 0 such that (y,j, 0) e F,

we have g(y,j,p) = 0,7, #).

(2) For each 0 £ 0° with (a,i,0)er, we have ^(«,i,^) = (a,i',0° + 0) and
g(a,i^0 + « = ( a , i , ^ ) .

(3) For each 0 > 0°2 with (a,i,/J)eF, we have g(<x,i,0) = (x,i',0).
(4) Repeat (2), (3) with i, i' interchanged.
Clearly g e G; in fact g e GJ. Let g e ̂  be the corresponding ^-automorphism;

then gr e sym(/). Also, a simple calculation shows that g(p) and p are compatible,
and that g(aa>i) = gaii,. Taking q :g g(p) • p, we see that g ^ p and

hence 5 Ih .aa,j = ax<i,. Since no condition can force gXii = aaii., / cannot exist,
and thus Jf \ = | A \ | K0.

The next task is to show that for each n, Jr\ = | A*-n+2i | > Kn+1, and to do
this we construct, for each n, a class of sets a eAln + 2\ where aeKn+1 — Kn.
For each such a, define aa e ^#^ by dom^J = {aXti; i <n + 2} s HS, gx(gXii) = 1.
sym(gx) = ^ , and so ax = ^ ( g j = {axy, i < n + 2} is an ^T-set.

Clearly JT\ = a e i " + 2 1 . Let us now define lneJf® by dom(/„) = {(va,a,)*;
a6Kn+1 — Kn},/n((

va, aa)*) = 2. Now (va,aa)^ is just the Boolean construction of
the ordered pair, and so from the fact that sym(ga) = ^ we deduce that
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sym((va,aj*) = 0 . Thus dom( / J s HS, and since sym(/J = <& we have that
fn = 'u(/n) = {(a>aa); H E ^ ^ - K , } is an ./f-set. It is in fact easy to see that
/„ is an ^"-injection: Kn+1 — Kn ->Aln+2J, from which we conclude that
^ r | = l/l

tn+2: l | S; Kn+U because Jf preserves cardinals in Jt.

Now it is provable within ZF that given any infinite set x and any m, n with
0 < m <: n, there is an injection / : x[m]->x[n]. Thus if we had J/~\= j ^ C n + 2 ] |
= Kn+1, then we would have Jf\ = \ A \ ^ Kn+1, which, since both K0 and Kn + 1

are alephs, contradicts JV I = IAIII K0. Thus it must be the case that
sr i — i A | > Kn + x .

Finally, we have to prove that ^V\ = |^4 ["+ 2 ] | K B + 2 . The same reasoning as
in the previous paragraph gives Jf | = | Al"+211 $ Kn+2, and so it suffices to show
that there is no ^T-injection: K.1+2 -* Aln+2'.

Suppose that / is such an injection, and, remembering that JV is a ZF model,
let us for the moment reason entirely within Jf. Let K be the collection of those
P < Kn+2 for which there is a finite subset 88$ of U {{/} x (K, + 1 — K;); i ^ n} such
that/(j8) = U {fk(a); (k,a)e38^}. This definition of K is acceptable in the sense
that it uses only objects in Jf, and so K is an ./T-set. Now if we had | K\ =Kn+2)

then since each/ t is injective, we could set up an injection h: Kn+2 -> s, where s is
the set of all finite subsets of a x K B + 1 . But this is absurd since the K; are alephs
and hence] s\ — Kn+1. Thus \K\ < Kn+2, and so | ; c n + 2 — ^ | = Kn+2.

The above reasoning was carried out within Jf. Translating, we see that if/ is
a name for / and / c T i s such that | J | < K0 and @J ^ sym(/), then there exist
peQ, y <Kn + 2, and (a, i), (a, V) e A such that i # i', neither (a, j , /?) nor (a, i', P)
belong to J for any /?, and p || - (f:vKn+2 ->• Aln+2i is injective

Just as we did in showing that J^ | = | A | J K0, however, we can construct
ge^J such that p and g(p) are compatible and g interchanges gXii and gXti..
Thus if we take a condition g ^ g(p) • p, we have q | j —gxAef(y)sgxA$f(y). This
contradiction shows that no such / can exist, which in turn shows that

j r \ - \AI"+21\ \\K

•" | ~ I A I II Kn + 2-
This completes the proof of the theorem stated on page 1.

If an infinite set x is well-orderable, then we have J xfm] | = | x w | for all m, n # 0.
We have just seen that if the condition of "well-orderability" is dropped, then
this property can fail quite drastically. Before looking at some other questions
related to the above equations, we prove a result mentioned on the previous page.

THEOREM 1. Let x be an infinite set. For any m, n with 0 < m < n, there is an
injection f: x[m] -> xM.
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PROOF. The result is clear if m = 0 or m = n; hence we may assume that
0 < m < n. Since m, n, are finite, it suffices to demonstrate that for each m > 0
there is an injection/: x[m]^xLm+13. This we now do. Since x is infinite, there
exists yo

exC2m+1]; by considering |J>0C)I:I| for each k tk m, we see that there exist
injections gk: y

om -> yolk+1]. Putting g = U {gk; k ^ m}, we have an injection
g. y>[<m+i]_,.y>[<m+2] s u c h t h a t | ^ z ) | = i + | z | for every zedomfa).

Now take any y e x w ; there is a unique partition y = y0 u yu with

We define/by f(y) = g(y0) U yi; clearly f"xlmi c x[m+H and it remains to prove /
injective.

But this is clear, since for any y, z e xCm]with y ^ z, then either y0 ^ z0, in which
>>! £ x — y0, and similarly for z, it follows that/O>) ^/ (z) .

The same result has been proved independently by Truss (to appear)

THEOREM 2. Let x be a nonempty set. Then

(1) x is infinite if and only if n\ x | ^ | x[2] for all n.
(2) x is Dedekind-infinite only i /K0|x | g x[2]|.
(3) x is finite if and only if P(x) is Dedekind-finite and |x [ 2 ] | < K0\x |-

PROOF. (1) Suppose x finite, and put m = |x [ 2 ] | + 1. Then m | x | > | x [ 2 ] | .
Now suppose x infinite, and let y = {a0, •••, an^1} be a fixed element of x M ; then
(x - y)C2] is infinite. We define a map f:n x (x - y) -»(x[ 2 ] - (x - y)[2]) by
f(i,a) = {a;,a}: clearly/is injective. Since n x y is finite, there exists an injection
g: n x j> -* (x — J>)[2:|. But now / j = / u ^ : n x x - > x[2] is injective.

(2) Suppose x Dedekind-infinite, and let y be a denumerably infinite subset of
x such that x — y is Dedekind-infinite. Define injections

/ : a > x ( x - > 0 - > ( x [ 2 1 - ( x - . y ) [ 2 1 )

and g: a> x y -+(x — j ) [ 2 ] in the same manner as in (1), and proceed accordingly.

(3) If x is finite, then P(x) and x[2] are also finite, whilst co x x is denumerably
infinite. Thus suppose that P(x) is Dedekind-finite and that | x[ 2 ] | < K 0 |x | . Thus
there is an injection / : xC2]->co x x. Suppose that for some n we have
/"x t 2 ] £ n x x. If x = <j) there is nothing to prove. Thus we may assume x i= </>,
and from the assumption that P(x) is Dedekind-finite, it follows that x is Dedekind-
finite, whence n |x | < ( n + l ) | x | . Thus we have |x [ 2 ] | < ( n + l ) | x | , and (1)
tells us that in this case x is finite.

Thus we may assume that there is an increasing co-sequence (nk) of natural
numbers such that /"xC2] n (nk x x) # <f> for each k.

Define g: x-* co as follows. For a ex,

g(a) = min {n; 3b e x3y e xt2](a e y ef(y) = (n, b)}.
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From the preceding observation it follows that g"x is an unbounded subset of co,
whence P(x) is Dedekind-infinite, a contradiction. Thus no such (nk) exists, and
so x must be finite.

A fairly well-known result says that for any set x, if | x | = 2\x\, then | x |
= Ko| x j ; an easy consequence of this is that if m\ x I = n\ x j for some m, n with
m < n, then fc|x| = K Q | X | for all k ^ m. In fact, as pointed out by the referee,
we can deduce | x | = Ko| x j . For Tarski (1949) has proved that for any cardinals
r], X, 2r\ = 2X =>t] = X. Thus suppose m\x\ = n\x\ for some m, n, m < n. Then
for some k we have 2*|x| = 2* + 1 |x | , whence by k applications of Tarski's
theorem we obtain | x | = 2|JC|.

Combining these remarks with part (1) of the preceding theorem, we see that
there are a priori the following possibilities for an infinite set, x.

(0
GO
(iii)

X

X

X

= 2
= 2
<2

X

X

X

= - = Ko

< he'12] I

x[2]j
r[2]|

X

X

X

<2
<2
<2

X

X

X

X

X

X

<

=

1!

x[2]

x[ 2 ]

x[2]

As an example of case (i), any infinite well-ordered set will do: as an example of
case (iii), we can take x to be any medial set. To find an example of case (ii), we
use our Theorem of the preceding section to assume the existence of a medial set y
such that | j>C2]i > Ki, and we put x = co x y. Then clearly

| x | = 2 |x | = ••• = K0|xJ.

If on the other hand we had | x | = | x[2 ] |, then we would have Ko| y\ > Kl5 from
which we could conclude that \y\ > K01. Thus x is an example of case (ii).

Case (iii) splits into the following subcases:-

(iiia)
(iiib)
(iiic)

Suppose we take a medial set x such that P(x) is also medial; then of course
x[ 2 ] | . On the other hand, Theorem
x |. Thus x satisfies (iiic).

In order to settle (iiia), let us show that for the model Jf and the set A
constructed in the preceding section, we have Jf \ = \ A \ <2\A\. Suppose on the
contrary there is an ./^-injection / : 2 x A -* A; let / be a name for / , and let
J <= F be such that \j\ < K0 and & ^ sym(/). It follows that there exist pe Q,
i < 2, and (a,j), (/?,fc)eA with a > Kt and (a,j) ^ (/?,k), such that for no a do

-f(i^x,j) — Qfi,k- But now
K0. Thus no such/exists,

and so JT\ = | A\ <2\A\. Furthermore, if (in JT) X is a cardinal < K0, then it
is a simple matter to construct an ^T-injection fx: X-+A. This is because fx, as a

xlZi is medial, and so we cannot have Ko| x | ^
2(3) tells us that we cannot have | x t 2 ] | < Ko

we have either (a,j, a) or (/?, k, a) in J, and such that p
we obtain a contradiction as in the proof of J/~ | = | A |
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[8] Finite subsets of a set 45

set of ordered pairs, has cardinality < K0, and so we can simply take J <=F large
enough so that &J ^ sym(/A) and still have \j\ <K0.

Thus we may assume the existence of a Dedekind-infinite set x such that
| x | | K1? | x | < 2 | x j , andj x[ 2 ] | > X2. Theorem 2(2) tells us that X 0 |x | ^ | x l 2 ] | ;
however, equality would imply that | x | > X2, contradicting | x | flX^ Thus x is
an example of (iiia). The possibility of (iiib) seems to be an open question.

We conclude by mentioning that in the terminology of the preceding section,
in the case K0 = Xo we have JT | = Ko | A \ 11 A1211; the proof of this proceeds along
conventional lines. Thus it is possible to have a medial set x such that
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