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DEFINING IDEALS OF BUCHSBAUM SEMIGROUP RINGS

YUUJI KAMOI

Introduction

Let H be a simplicial semigroup. We consider the semigroup ring k[H\ and

its defining ideal IH. For definition see the first paragraph of Section 1.

When dim(/c[//]) = 1, the defining ideal IH of k[H] has been studied by

many authors (e.g. [1], [2], [8], [11], [3]). In this paper, we study the ideal IH using

the notion of Grόbner bases for arbitrary dimension.

In [9], we gave a condition for k[H\ to be Cohen-Macaulay in terms of a Grόb-

ner bases of IH. Our aim of this paper is to extend this characterization to the

case of Buchsbaum semigroup rings. We show that the Buchsbaum property of

k[H] is determined by the form of a Grόbner bases of IH in Theorem 2.6. As a

corollary, we recover a result of [9] in Corollary 2.9. Also we see that if k[H] is a

Buchsbaum ring and not Cohen-Macaulay, then k[H] < ht IH in Corollary 2.10.

We apply these results to determine Buchsbaum semigroup rings of

codimension two. We can show the Grόbner bases of IH explicitly in Theorem 3.1.

1. Preliminaries

In this section, we give notations and terminologies which we shall use in this

paper.

Let N be the set of nonnegative integers and H be a finitely generated addi-

tive subsemigroup of N (r > 0) with generators hlf..., hr+n €= fj which satisfies

the following conditions:

(H-l) hlf...,hr are Q-linearly independent

(H-2) there exists an integer d > 0 such that dH c Σ ' = 1 Nλ Γ

Let A: be a field. We define a homomorphism φ of polynomial rings over k as:

Received October 8, 1992.

115

https://doi.org/10.1017/S0027763000024983 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024983


116 YUUJIKAMOI

φ:S=klXlf...,Xr,Y1,...,Yn] - k[tu...,tr]

X, H* thi (l<i< r)

Yj ^ thr+i (1 < j < n)

where we denote t '-— t\x * * fr

r for h = (alf..., ar) ^ Nr.

We put k[H] = Im(<p) and /# = ker(<p). We denote

x{ = f*' (1 < i < r)

z/, = ^ ( l < y < n )

m = (xίf...9xr9 y λ , . . . , yn) c A [ f l ] .

Note that {xίf..., xr} is a homogeneous system of parameters of λ;[iϊ] by (H-l) and

(H-2). Hence we have r — dim k[H] and » = ht /^.

DEFINITION 1.1. For a, β e Nw, we define

(1) α ω = the z-th coordinate of a

(2) α < β <=> α ( ί ) < j8(ί) for 1 < / < n

(3) α < ^ «=> α < i8 for a Φ β

(4) a±β= (aω±βω,...,a(M)±β(m)).

We denote a monomial of S by XΎβ = X?ω Z 1 ^ ) F/ ( 1 ) Y*(n) for α €=

N , 8̂ ̂  N and the set of all monomials of S by MH.

DEFINITION 1.2. A total order > s on MH is called a monomial order on S if it

satisfies the following conditions, for every u, v, w ^ MH,

if u <s v, then uw <s vw

if 1 Φ u, then 1 < 5 u.

Remark 1.3. It is well known that a monomial order > s on S satisfies the

following.

(1) If (a, β) < (r, δ) (in Nr+W), then XaYβ <sX
rYδ.

(2) Every descending sequence of monomials (w.r.t. > s) is stationary. In

particular, any nonempty subset of MH has the smallest element.

For 0 Φ f €Ξ S, we denote the maximal term of/w.r.t. < s by in(/) and call

it the initial term of / For a subset F cz S, we set

in(F) = {in(/) \0Φf(ΞF}.
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DEFINITION 1.4. Let / be an ideal of S and F be a finite subset of / \ {0}.

We call F a Grόbner bases of /, if (in(/)) = (in(F)). A Grόbner bases F of /

is called minimal, if in(F) is a minimal basis of (in(/)).

In this case, / is generated by F (cf. [4], [10]).

Throughout this paper, we fix a monomial order < s on S defined as follows.

DEFINITION 1.5. For XaYβ e MH, we denote the total degree of φ(XaYβ) by

wd(XaYβ). We define

wd(XaYβ) > wdUV)
or

wd(XaYβ) = wd(XrYδ) and the first non zero coordinate

of (α, β) — (γ, δ) ( e Zr+n) is a negative.

In this case, the monomial order > s has the following property. If XaY —

XΎδ €= IH and XaYβ >sX
rYδ, then a > 0 implies γ > 0 since

φ(X Y ). We shall use this fact freely this paper.

Next we define some notation.

NOTATION 1.6. (1) For a subset/of k[H\, we put

M(J) = {XΎβ e MH\φ(XaYβ)

(2) For X Y e MH, we put

ΐβ) = {XΎδ e Mw

Remark 1.7. By definition, we have the following.

(1) For J t V , I V E I , with XΎβΦXΎδ, XaYβ - XΎδ ^ IH if
and only if XaYβ e ΣCYrFΛ) or Z Ύ '

(2) For XaYβ e M ,̂ Σ(XαF^) # 0 if and only if X α Γ * e (in(4)).

(3) If Z^F' 3 is the smallest element of ΣUΓ r Γ δ ) (w.r.t. > s ) , then

Σ(XaYβ) = 0.
(4) If (α, i8) < (r, δ) (in Nr+W), then Σ(X°YΘ) * Φ implies Σ(XΎδ) Φ 0.

(5) If XaYβ - XΎδ e /H and / c fc[fl], then XaYβ e M(/) if and only if

(6) For 1 < i < r, XaYβ e M(te,)) if and only if there exists XaYβ -

X{X
7Yb e 4 .
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(7) For 1 < i < r, if YB e M(Cr,)), then Σ(Yβ) Φ φ.

We put

Λ = {XaYβ ~ XΎδ e S I Z r F * e Σ ϋ r * F * ) and Gcd(XaYβ, XΎδ) = 1}.

Then, by Remark 1.7 (1), we have 91 c /^. Furthermore, the following result is

standard (cf. Proposition 1.4 and Proposition 1.5 of [8]).

PROPOSITION 1.8. We have IH = (91) and (in(IH)) = (in($)). Ttes we can

choose a Grobner bases of IH from 91.

2. Buchsbaum property of semigroup rings

In this section, we give a condition for k[H] to be Buchsbaum in terms of a

Grobner bases of IH.

We recall that a Noetherian local ring (A, n) is called a Buchsbaum ring, if

lA(A/q) — eq(A) is a constant for every parameter ideal q of A.

k[H] is called a Buchsbaum ring, if the local ring k[H]m of k[H] at m is a

Buchsbaum ring. In this case, k[H\ satisfies the following conditions: for every

where » 1 , . . . , « , e N \ { 0 } (cf. Proposition 1.10 of ch. 1 in [12]).

In [6], S. Goto proved the following criterion for k[H\ to be Buchsbaum.

THEOREM 2.1 (Theorem 3.1 in [6]). The following conditions are equivalent.

(1) k[H] is a Buchsbaum ring.

(2) There exists a simplicial semigroup Hr c N such that k[H'] is a

Cohen-Macaulay and mk[H'] c k[H\.
rj c\ ty 0 0

(3) For 1 < i < r, [(xx,..., x ί β l ) : xt ] = [ ( x x , . . . , x ^ : m] {i.e. k[H] is a

quasi-Buchsbaum ring).

LEMMA 2.2. For t\ tu\ . . . , tup e Λ[/fl, w Ziαt e
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Proof. It is clear that [(f"\..., f>) : t°] => Σ ? = 1 [(ί"0 : *"]. We show the con-

verse inclusion.

For / e [ ( ί " 1 , . . . , tup) : /"], we write / = Σ " i c , Λ e, * 0 and w, e / / ( I <

i < m). Then * '/ = ΣΓ-i c/+w> e (f"\..., Λ ) . Since ( Λ , . . . , f"') is a N'-graded

ideal, ί ' e (ί ' , . . . , t ) for every 1 < j < m. Then we have r = t for

some 1 < i < p and for some d e f t Thus ί"' e [(ί"0 : f ] and / e Σ - = 1 [(ί"0 :

n. D

Hence we have the following by Theorem 2.1 and Lemma 2.2.

PROPOSITION 2.3. The following conditions are equivalent.

(1) /c[i/] 15 a Buchsbaum ring.

(2) For every 1 < i<j < r, [ ( ^ 2 ) : x ) \ = [ ( ^ 2 ) : m ] .

(2r) For 1 < i<j < r and u, v <Ξ H, if 2h} + v = 2A, + «, w ̂ en (/ ί\ {0})

+ υaH+2hv D

PROPOSITION 2.4. (Theorem 2.6 in [7]). The following conditions are equivalent.

(1) /c[//] is a Cohen-Macaulay ring.

(2) xx,. . ., xγ are regular sequence of k[H].

(3) [(.r,) : Xj] = (xt) for every 1 < i < j < r.

(3') For I < i< j < r and u, υ e H, if hj + v = h{ + u, then v ^ H + ht.

D

We define the subsets 3lH, $H and Ψ of Ά as:

^ = {XaYB - XΎδ e Λ I Σ ( F 5 ) = 0}

By Proposition 1.8, Remark 1.7 (3) and (4), it is easy to see that (in(/^)) =

(in ($„)).

DEFINITION 2.5. A sequence of monomials (Y&1,.. ,,Yβr) is called a

B-sequence, if it satisfies the following conditions: for every 1 < i Φ j < r,

(B-l) Σ(Yβi) = φ
(B-2) Y'
(B-3) Yβi j

(B-4) Gcd(F^, Yβj) = 1
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(B-5) XjY0i - X4Y
0i e IH.

We denote by ΔH the set of all B-sequences and put

% = {XjYβi- XtY
βi I (Yβ\...,Yβr) e ΔH, 1 < i < j < r).

The main purpose of this section is to prove the following result.

THEOREM 2.6. The following conditions are equivalent.

(1) k[H\ is a Buchsbaum ring.

(2) We can choose a Grobner bases of IH from 2FH U (SH {or (in{IH)) = (in(SFH

U %))).

To prove our result, we need some lemmas.

LEMMA 2.7. Suppose that k[H\ is a Buchsbaum ring.

(1) IfXaYβ e Af([(*,) : *,]) and a(i) = 0, then Yβ e M([(x) : Xj\).

(2) // F^ e M([(pCi) : J ^ ] ) αncί Σ ( F ^ ) = φ, then there exists (Yβ\.. .,Yβr) e

ΔH such that β = βi.

Proof. (1) This is proved by induction on the degree of Xa. If α = 0, then

there is nothing to prove. If a > 0, then we can find l<l<r,lΦi such that

Xa = XtX"'. Then we have XaΎβ e M C t ^ ) : x ^ ] ) . Since k[H] is Buchsbaum,

[(^•) : XjX{] = [(x{) : x ; ] . Hence, by the induction hypothesis, we have Y ^

(2) Since k[H] is Buchsbaum, [(#,) : j?; ] = [te,-) : m ] . Then, by Remark 1.7

(6), we have XkY
β - X^Y8" ^ IH ίor 1 < k Φ i < r. If Σ U " Λ F ^ ) ^ 0, then

we can replace X kY k by the smallest element of Σ(X kY k). Therefore we may

assume Σ(XaΎ$k) = φ. If αΛ ( Λ ) > 0, then Yβ e M ( ( ^ ) ) and, by Remark 1.7 (7),

Σ(Y ) ^ 0. This contradicts our assumption. Thus αA ( Λ ) = 0. On the other hand,

χa*γβ* ς= M([(xk) : ^ ] ) . By (1), this implies Yβ* e ([(χΛ) : ^ ] ) . Then, by

Remark 1.7 (6), there exists Z , F ^ - XkXΎδ G 4 . Hence we have

and F — Jίαfc r F G IH, since /^ is a prime ideal. By Remark 1.7 (1) and

Σ ( F ) = φ, we have F ^ 5 X * F and, by the definition of the ordering > 5 ,

ak + γ = 0. Hence we have XkY
β - X{Y

$k e /^ with Σ ( F ^ A ) = φ for 1 < /c Φ i

< r, We put βi = β. Then the sequence ( F ^ , . . . , F r) satisfies the conditions

(B-l) and (B-2) of Definition 2.5. We show the other conditions are also satisfied.
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(B-5): For every 1 < k < I < r, we have the following relation

Since IH is a prime ideal, we have X{Y
βk — XkY

βι G IH.

(B-3): For some 1 < k, I < r, if YBk G Af([0rz) :m]), then there exists

* ' ' G /H. Hence we have the relation

and Yβι G M([Cz2) : ^ 2 ] ) . Since /c[#] is Buchsbaum, [Cr,2) : χ 2 ] = [(x2) : xk] and

[(xΛ) : xf] = [(xk) : x j . Then it is easy to see that [Or2) : χ2

kλ — x^ix) : xk] and

thus Yβι e K y ) , Hence, by Remark 1.7 (7), Σ(F*0 ^ 0. This contradicts

condition (B-l). Thus Yβk £ MiVix) : m]).

(B-4): For some 1 < k, I < r, if GccKF**, Y$l) Φ 1, then we can write

XtY
βk - XkY

βι = Yδ(XξY
δk - XkY

δι) e IH

where F δ = Gcd(F^, Yβi), δk = βk - δ and δ, = β, - δ. Then we have XtY*k

- XkY
δι e 4 and F δ λ e M([(xΛ) : J:,]) = M([(xΛ) : m]), since A[fl] is

Buchsbaum. Since Yδ Φ 1, we have Y$k = Yδ+δk e M(teΛ)). Then, by (1.7), 7),

^ Φ φ. This is a contradiction. Hence GccKF**, Y$ι) = 1. D

LEMMA 2.8. Suppose that (in(IH)) = (]n(2FH U ^ ) ) .

(1) For X α F " - Z r F δ e /„ ^ / t Σ ( F " ) = 0 αn^ Z α F ^ > s X r F δ , ί^w

exists (Yβ\ . . . , r ' O e Δ H such t h a t XΎβ = X X"' Yβi for some \<iΦj

< r.

(2) ΛH = &'U %.

Proof. (1) Since (m(IH)) = (in(&H U 9H)) and Σ ( F ^ ) = φ, we have Z α F ^

( ) by Remark 1.7 (2) and (4). Thus there exists a B-sequence

( F * 1 , . . .,Yβr) and an element Z y F ^ - X{Y
βi ^§H such that XaYβ is divisible by

Z y F ^ . If βt < β, then Yβ e M ( ( ^ )) by the condition (B-2). By Remark 1.7 (7),

this contradicts Σ ( F ) = φ. Hence we have β = β{.

(2) Suppose that MH Φ 2F' Ό <&H. Then, by Remark 1.3 (2), there exists / =

XaYβ - XΎδ G 3iH\Ψ U ^ H such that in(/) is smallest element of m(3iE\$'

U <gH). Since / ^ ^ and Remark 1.7 (2), we have Σ(Yβ) = φ and, by (1), there

exists g = XjYβi - XtY
βi €= <gH such that XaYβ = XjXaΎβi. Thus we have

/ - Xa'g = XiX
aΎβi - XΎδ G IH.

If Z f X
e ' F ^ = XΎδ, then X ^ = 1, since Gcd(JT, Xr) = 1. Thus f=ge<§H.
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This is a contradiction. Hence we have XtX
a Y ' Φ XΎY . We put

XΎV = GcdϋίiX'Ύ'', XrYδ) and g' = XuΎVl - XUΎV2 e IH

where X^*'Y*> = χ*^γ^ and Z r F * = χ^γv+\ Then either #' e ^ or

- #' €= ΛH. Since in(/) > s in(gO, g' e ^ U ̂  or - #' e ^ U ^ by the mini-

mality of / We note that Σ(F*0 = 0 and Σ(Yδ) = 0. This implies that

Σ(FV*) = φ(p = 1,2) and ± #' ί^7. Hence we have either #' e <βH or - #' e

9H and there exists (F* 1 , . . .,Yδr) e ^ such that #' = ^ F * * - XkY
δι for some

1 < k Φ I < r. Since a{j) > 0, r(jfc) > 0 and Gcd(Xa, X7) = 1, we have / Φ k.

Then

F^ = Yv+δk e M([(^) : m]) Π M([(x,) : m]).

This contradicts condition (B-3). Hence we have % = W U <§H. D

o/ T^orem 2.6. (1)=>(2) For / = XaYβ - XrYδ e ^ we suppose

that in(/) ^ ( i n ( ^ ) ) . Then a > 0 and, by the definition of > s, we can find

1 < % < j < r such that / = XjXaΎ0 - X.X'Ύ5. Thus XaΎβ ^ M([(x) :

Xji) by Remark 1.7 (5). Since Gcd(Xα, Z r ) = 1, we have F* e M([(x{) : xj\) by

(2.7), 1). Then, by Remark 1.7 (2) and (4), Σ(F*) = φ and, by Lemma 2.7 (2),

there exists ( F * \ . . . , F * 0 ^ ΔH such that j8 = ft. Thus, XjY*'- XtY
βi e <&H

andin(/) = XaY$ ^ ( in(^)).

Hence we have (in(IH)) = ( i n ( ^ U ^ ) ) .

(2)=>(1) By Proposition 2.3, it suffices to show that [(xf) : Xj] = [(xf) :

m] for 1 < i < j < r. Therefore we suppose that [(xf) : xf] Φ [(xf) : m]. Then

there exists the smallest element XaYβ of M([(xf) : xf] \ [(xf) : m]. We note that

aω < 1 and Σ(F^) = φ. By Remark 1.7 (6), there exists X*XaYβ - XfXrYδ

e IH. If Σ(X Y ) Φ φ, then we can replace XΎY by the smallest element of

Σ(XΎδ). Thus we may assume that Σ(XΎδ) = φ. Since XaYβ <έM((xf)),we

have γ(j) < 1. Now we put

XΎV = Gcd(X*XaYβ, XfXΎδ) and g = XuΎVl

 r XUΎV2 e IH

where X*X*Yβ = X^Y^ and ^ 2 Z r F δ = χ ^ γ ^ \ Then g ^ 9tH or - g

G 5^. But, by Remark 1.7 (4), Σ(F V l ) = 0 = Σ(F V z ) and, by Remark 1.7 (2),

in(g ) ^ ( i n ( ^ ) ) . Then, by Lemma 2.8 (2), we have g e ^ or - g <E §H. On

the other hand, /i1(;) > 0 and μ2ω ^ 0, since 7(y) < 1, a(i) < 1. Thus we have

X*1 = Zy (resp. XUl = Xt) and a(i) = 1 (resp. r(y) = 1). Hence XaYβ e M ( ^

: m]) c M([(^2) : m]). This is a contradiction. •

https://doi.org/10.1017/S0027763000024983 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024983


BUCHSBAUM SEMIGROUP RINGS 1 2 3

As a consequence of Theorem 2.6, we have the following corollaries.

COROLLARY 2.9 (Theorem 1.2 in [9]). The follomrng conditions are equivalent.

(1) k[H] is a Cohen-Macaulay ring.

(2) We can take a Grόbner bases of IH from ?FE (or (in(IH)) = (m(!?H))).

Proof. By Theorem 2.6, we may assume that k[H] is a Buchsbaum ring.

If k[H\ is Cohen-Macaulay, then we have [(x) :Xj] = Crt) for every 1 < i

Φj<r. Hence, if Yβ e M ( [ ( ^ ) : ml), then Σ ( F ^ ) # 0 by Remark 1.7 (7).

Thus ^π — φ and ΔH = φ (cf. Definition 2.5). Hence we have (in(/#)) =

Conversely, if &[//] is not Cohen-Macaulay, then there exists 1 < i < j < r

such that [(xt) : Xj] Φ Crf) (cf. Proposition 2.4). Since /c[//] is a Buchsbaum, we

have [(.r,) : x,] = [ ( ^ ) : m] and there exists the smallest element Yβ e M([(x,-) :

x ;] \(x,)) (cf. Lemma 2.7 (1)). Then, by Remark 1.7 (2), Yβ (έ (in(IH)) and XfY*

G (111(4)) since z < . This shows that (in(/H)) Φ ( i n ( ^ ) ) . D

COROLLARY 2.10. // k[H] is a Buchsbaum ring and not Cohen-Macaulay, then

we have

dim k[H\ < h t s IH (i.e. r<n).

Proof. Since k[H] is not Cohen-Macaulay, we have (§H Φ φ by Theorem 2.6

and Corollary 2.9. Thus there exists (Yβ\.. .,Yβr) e 4^. We put w, = # {k e

{1, . . . , r} I j8ί(Λ) > 0). Then, by (B-2) of Definition 2.5, ^ ^ 0 and w, > 0 for

1 < z < r. Hence r < Σ [ = 1 n{. On the other hand, Σr

t=1n{ < n since Gcd(F \

Yβι) = 1 (cf. (B-4) of Definition 2.5), for 1 < k =F I < r. D

In the following example, we see that there exists a Buchsbaum and not

Cohen-Macaulay semigroup ring k[H] with k[H] — r and ht IH = n for 2 < r

EXAMPLE 2.11. For 2<r<n^N, we let β0 fl^N^n-r+1)

such that ap ^ ΣfΓo ^at and ap + a} £ ΣJΓQ1 N ^ , for 1 < j < p.

(e.g. (a0,..., ap_J = 1, ap = maχ{a ^ N | ^ ^ ΣJΓQ1 N ^ } , if r < « or a0 =

2, ax = 1, if r = n.)

We put hv.. .,hr+n, g e N r as follows:
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h, = (hiW = a0, h,(j) = 0(jΦi)) (l<i< r)

h2r+l = (a, a} (1 < j < p - 1)

g = (ap,.. .,ap)

hr+i = ht+g (l<i<r)

H' = Σ 1 < y < f o r 2 < / < , + n N / ? , + N|r c N f .

We define

φ:k\Xιt...,Xr, Y, Yn]^k[tx,...,tr]

by φ(Xt) = t"' (l<i<r), φ(Y,) = t"rt' (1 < < n),

ψ': k[X, Xr, Z, Yr+V..., Yn] -+ k[tv..., tr]

by φ'iXJ = th> (l<i<r), φ'(Y) = t"™ (1 < < p - 1), φ'{Z) = f.

Then, by Example 2.6 in [9], k[H'](= Im ψ') is a Cohen-Macaulay ring with

9iH, = SFH,. Also we have k[H] is a Buchsbaum ring. In fact, by the choice of

ao,...,ap, (H\{0)) + H' c H. Hence, by Theorem 2.1, &[#] is a Buchsbaum

ring. In this case, it is easy to see that

(1) ΔH= {(Yv...,Yr)}

(2) 9tH = 9HU <§H. D

3. Codimension two Buchsbaum semigroup rings

In this section we determine simplicial semigroups which defines Buchsbaum

semigroup rings of codimension two. Henceforce we put (ht IH =)n = 2.

When k[H] is a Cohen-Macaulay ring, we determined a Grόbner bases of IH

explicitly in Summary 2.5 of [9]. Therefore it suffices to consider Buchsbaum and

not Cohen-Macaulay semigroup rings.

Then we have following result.

THEOREM 3.1. The following conditions are equivalent.

(1) k[H] is a Buchsbaum ring and not Cohen-Macaulay.

(2) dim k[H] = 2 and IH has the following minimal basis

where alf a2, bv b2 e N \ {0}, {/, ;} = {1,2}.

(3) k[H\ is not Cohen-Macaulay and H is isomorphic to
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(&! + ft2, 0), (0, bx + b2), (axb2 — 1, α2ft2 + 1), (α.^ + 1, a2bx — ϊ) > as semigroup.

To prove our result, we need some preliminaries.

Now, we divide SFH into the following subsets.

Fx = {/e &H I m(/) = F 1

i , 0 < ί e N}

^ 2 = {/e &H I m(/) = F2

C, 0 < c e N}

Since ^ =£ 0, there exists the minimal element of i n C ^ ). We denote the

minimal element of i n ί ^ ) (resp. ^ 2 , ^ 3 ) by F/1 (resp. F/2, Y'3Ύ2

H% We call / e

^ ! (resp. #2, Ŝ 3) a minimal element of ̂  (resp. ^ 2 , 3F3), if in(/) = F/1 (resp.

LEMMA 3.2. Suppose that k[H] is a Buchsbaum ring. Then

(in(^)) = (Yΐ\ Yl\ Y^Yf").

Proof. Since (in(3^), in(^ 2 )) = (F/ 1 , F2*
2), it suffices to show that

Therefore, we assume that there exists an element f—Y1Y2 — X e S 3̂ such

that Yh

γYζ <έ ( F / \ Y2\ YΪ3Ύ2

h2). (Note that b < bl9 V < b2.)

Let /3 = YΪ*ιY2

h2 - Xa* G ^ 3 b e a minimal element of # 3 . Then, by our

assumption, we have either b31 > ί>, δ 3 2 < ft' or ft31 < ft, ft32 > ft'.

If ft31 > ft and ft32 < ft', then we have a relation

n • _ Vδ31-δ/r_ T/*'-ft32/ _ γa3Vb'-b32 γ a γb3l~b cz T
& ' ~ X l I X2 J3 ~ Λ X2 Λ X l *= 1H'

Since F^31"*, Y2~
h2 £ ( i n ( ^ ) ) and Theorem 2.6, we have i n φ

If in(ί) = XaΎ2

b'~~b», then there exists X{Y2

d - Xtf e <&H such that

X"Ύ2

b'-b" is divided by X,F/.

Since F/ e M([(xy) : m]) c M([(x ; ) : z/2]), we have Yt

d+1 e (in(^ 2 )) by

Remark 1.7 (2) and (7). Thus F f ~&32+1 e (in(^ 2)) and ft' - ft32 + 1 > ft2. Since

ft32 > 0, this contradicts that (ft' — ft32 + 1 <)ft' < ft2. Similarly, if in(^) =

XaY1

hι~b, then this contradicts that ft < bv

When ft31 < ft and ft32 > ft', it is the same way as above. •

COROLLARY 3.3 (Theorem 2.3 in [9]). The following conditions are equivalent.

(1) k[H] is a Cohen-Macaulay ring of codimension two.
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(2) Iff is generated by at most three elements.

Proof. If k[H\ is Cohen-Macaulay, then (in(IH)) is minimally generated by

at most three elements by Corollary 2.9 and Lemma 3.2. Namely, a number of

minimal Grόbner bases of IH is at most three. Hence β(IH) ^ 3.

The converse follows from Theorem 4.4 in [5]. D

Now, we denote the smallest element of Σ ( F 0 (resp. Σ ( F 2

2 ) ,

Σ ( r / 3 1 Γ / 3 2 ) ) by XaΎ2

Cl (resp. X°*Y?, I " 3 ) . We put

Λ = Yΐ1 - XaΎ2

Cl e ̂
f2 = Y2

2 - Xa2Y[2 e ^ 2

/3 = r/sir2*
aι - z " 3 e ^3.

TtenαrJί? 3.4. Since Σ(Z α i F 2

C l ) = 0 (resp. Σ d " 2 ^ ) , we have cγ<b2

(resp. c2 < bj).

LEMMA 3.5. // k[H] is a Buchsbaum ring and not Cohen-Macaulay, then

= 2 and 9H = IX^/'" 1 - ^ F , ^ 1 } ^ {i, j) = {1,2}.

. By Corollary 2.10, we have already dim(k[H\) = 2. Also, by

Theorem 2.6 and Definition 2.5, there exists X 2 F/' - XγY^ e ^ with dx < ftlf

rf2 < 62. Since F / 1 + 1 G (in(2FH)), dγ + 1 > ^ . Thus rfx + 1 = ftp Similarly, we

have d2 + 1 = 62.

But, by (B-2) and (B-3) of Definition 2.5, if (Y^~\ Y*j~ι) e ^ , then ( F / y " \

F/1"1) ^ V Hence we have 9H = {X2Y-j~1 ~ XJ-1'1) where U, j) = {1,2}. D

LEMMA 3.6. For {i, j) = {1,2}, if there exists an element of the form

for some dv d2, elf e2 > 0, then there does not exist an element of the form

γd2γej γd'\γe'i fz T

for any d[, d2, e[, e2 > 0.

Proof Suppose that there exist X2Ύt

βi - X?Ύ}

ej e IH and X2Ύf - xfιγf

G Iff for some dlf d2, d[> d2, el9 e2, e[, e2 > 0.

If e{ > e'i, then we can find an element X2Yt

9 ~ X[Ύf e IH such that
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0 < p, p', 0 < q, qr and q < e\, q = ex (mod e[) in the following manner.

We write e{ = me\ + r, where 0 < m and 0 < r < e\ and put gr = X2

2Y*j —

Xx Ύ{ \ For every 0 < / < m, we construct gι = X2 Yt — Xλ Y/ e

IH as follows.

• Assume that g0,... ,g", are constructed for 0 < / < m. Then we have

lejs , j y y XY

_ vd2+(l+l)d'2λ/ei-(l+l)eiλτe'j vdι+(l+l)d[λ/reΓle- cz r

By our assumptions (H-l) and (H-2), we have e] < β; — le'} and

. _ vrf2

+(/ + 1)rf2 ve«~ ( / + 1 ) eί' γd^
Sl + l '— Λ2 Yi Λl

In particular, we have gm = X2

 2 Ύ{ — Xx

 ι Ύj} ' e /^.

Similarly, if ^ < ^ , then we can find an element X2 Y} ~~ Xλ Yt

 e IH such

that 0 <p,p',0 < q, qf and q' < eif qf = et (mod et).

Thus, by the Euclidean algorithm, we can reduce to the case e{ — 0 or e\ = 0.

But, by (H-l) and (H-2), X2

2 ~ X^Ύ^ (έ IH and xfγfj - X?1 <έ IH for dlf d2, d[,

d2 > 0. This is a contradiction. D

Proof of Theorem 3.1. (1)=> (2). By Lemma 3.5, we have dim(&[//]) = 2 and

9H= {X2Y
 r l - XJ-rl)

where {ί, ;} = {1,2}. We put b[ = bγ- 1, b2 = b2 - 1. Then, by Theorem 2.6

and Lemma 3.2, we have following Grόbner bases of IH,

/2 = Y2

i+1 - X^X^Y

J3 — ϊ1 I 2 A χ Λ 2

Since Y,h e M([(xj) : m]) c M([Cry) : &]), Γ^K, e ( i n ( ^ ) ) . Namely, F / 3 1 F 2 * 3 2

divides Y[λY2. Thus 632 = 1. Similarly, b31 = 1. Hence we have /3 = YλY2 —
i y 2Λ2 .

We consider the following relation
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X2fj - Yjg = X^'Ύj - X^X^Y? e= IH.

Since Cj < b\ + 1 (cf. Remark 3.4), XιYf~cΎj ~ X^nX2

n+1 ^IH. If an = 0, this

contradicts our assumptions (H-l) and (H-2). Thus g'= Yf~c%•- X ^

e IH. By b] > 0, Yj £ (in(/,)) = (Γ/ ; + 1) and b\ - cy > 0. Thus we have

Then, by (H-l) and (H-2), y;.^" 1 - χ^-^χ^-a2 e ^ β u t ̂ ( F ^ 1 ) = 0.

Hence Fί*
;~Ci"1 - χ*n-ι-*iχ*»*-** = 0 and ^ = ^ + 1, aj2 = a2 - 1, Cj = b\ -

1. Then we have/J = F/ ;+1 - X^X^Y*'1.
Similarly,/;. - l^^1 - X?~lX?+lY^\

Now /^ is generated by fίf f2, f3, g. Thus, by Corollary 3.3, μ(IH) = 4 and

ί/i> Λ> Λ> ̂  is a minimal basis of IH.

(2)=>(3). Suppose that d\m(k[H]) = 2 and, after the permutation of vari-

ables, IH is minimally generated by

r _ τ̂ fr+1 _ γa1-lγa2+lvc-l
J\ — X\ A l A 2 Σ2
r _ τ^c + 1 _ T ί̂Zi+l v σ 2 - l V 6 - 1

J2 ~ X2 A l A 2 Xl

73 ~" J 1 J 2 A l A 2

^ = Z 2 F 2

C -Z 1 F/.

Then, by Corollary 3.3, k[H] is not Cohen-Macaulay.

We verify the second assertion. For H = Σ ί = i N/z/f we put

hλ = (dlf 0), A2 = (0, do), h3 = W31, rf32), A4 = W41, rf42).

Since /3, ^ ̂  / ,̂ we have h3 + Λ4 = α ^ + α2/ϊ2 and h2 + ch4 = h1 + bh3. Thus

d4i = β^^ — d3ί- for i = 1,2 and

ύd 3 1 = cd41 — dλ

bd32 = crf42 + <ί2.

Solving these equations, we have

3̂2 = ^ 7 (^2^ + 1)
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We define Q-isomorphism T : Q 2 -+ Q 2 by Tip, q) = ib + c)(-J-, -

Then we have

H= T(H) = (ib + c, 0), (0, b + c), iaxc - 1, azc + ΐ), iaλb + 1, a2b -

(3) => (1). By the form of i/, there exist elements

r _ y c + l _ y-β
J2~ Ϊ2 A l

/3= Y^-X^X?

g = x2γ2

c-xιγ
b

ι

l A 2 r 2

2 J l

of 4.

CLAIM. % H \ & H = {g).

Since k[H] is not Cohen-Macaulay, 9lH\^H Φ φ (cf. Corollary 2.9). Thus

L : = ̂ jΛ^/f u { ^ i s n o t empty^ i f #/Λ^/y φ Φ

If there exists # ' G L, then, by Lemma 3.6, we can write g' — X2

2Y2

2 —

XfΎΐ1 where 0 < dl9 d2J el9 e2. Since Γ/+1, F 2

C + 1 G (in(4)) and Y?\ Y2

β* <έ

( in(4)) , eγ< b and £2 < c. Then we have

Hence we have ft : = Z / 2 " 1 ^ " ' 1 - X^ι~ιY2~
e2 G 4 . Note that ft ^ 0 (since g ' # ^).

Then, by (H-l) and (H-2), either b - eι > 0 or c - e2 > 0.

If b — ex > 0, then we have

^/ _ V 2 r f 2 - l v 6 - 2 e i v e 2 _ γ2dι-lvc-e2

~ Λ2 Yl Y2 Λ l Y2
j

Since rfx, rf2 > 0, we have 2dx - 1 and 2d2 - 1 > 0. Also, by (H-l) and (H-2),

e2<c~e2. Thus 0 Φ Xf^Yf'2'1 - X^Yl~2t% e 4 . But this contradicts

Lemma 3.6.

If c — e2 > 0, we have a contradiction in the same way as above. Hence 91H =

$n U {g}.

The proof of Claim is completed.

By Theorem 2.6 and Claim, it suffices to show that iYx, Y2)
 e ΔH. Since we

have relations fίt f2, f3 ^ IH ( F x , Y2) satisfies condition (B-2). Also it is clear that

iYλ, Y2) satisfies conditions (B-l), (B-4) and (B-5). Then we have only to prove

that (Fj*, Y2) satisfies condition (B-3).

If YΪ e Miίix,) : m]) c M ( [ ( ^ ) : jr j), then we have Z 2 r ; - XfιX2

d2YΐΎ2

βi

e 4 with Σ ΐ Γ ^ F / 2 ) = 0 and ̂  > 0. Since Σ ( F / ) = φ, d2 = 0 and, by (H-l)
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and (H-2), eλ < b. Then we have X2Y[ βl - XdΎ2

2 e IH. But, by Lemma 3.6, this

is a contradiction. Hence we have Y1 ^ M([(x1) : m]). Similarly, Y2 £ M([(x2) :

m]). D

EXAMPLE 3.7. Let 0<a<b<c^N. We consider the following simplicial

semigroup

H= <(c, 0 ) , (0, c), (c- b, ft), (c-a,a)>.

and the semigroup ring k[H] = k[t[, t°2, t[ t2, t{ af2\.

In [3], H. Bresίnsky, P. Schenzel and W. Vogel discussed arithmetical

Buchsbaum curves in Pk and showed that k[H] is a Buchsbaum ring and not

Cohen-Macaulay if and only if

H= <(4m, 0), (0, 4m), (2m - 1, 2m + 1), (2m + 1, 2m - 1)>

for some m > 0 (cf. Theorem 3 in [3]).

We can verify this fact as follows.

By Theorem 3.1, if k[H] is a Buchsbaum ring and not Cohen-Macaulay, then

IH has the following minimal basis

r _ \rh+ι γaι-lγa2+lvb2-l
Λ "" M A l Λ2 *2
r — χrb2+ι v α i + 1 l Λ α 2 - 1 τ / ί Ί - 1

h ~ X2 Λ l Λ2 Xl

f3= YJz-XΪX2

g = X2Y2

b* - XJΪ\

where alf a2, bu b2

 e N\{0) . In this case, these are homogeneous polynomials

with respect to the total degree. Then we have aλ — a2—\,bγ — b2 and

H= <(26 l f 0), (0, 2b,), (b, - 1, b, + 1), (b, + 1, ftx - 1)>.

If &! = 2m + 1 (m > 0), then YΪm+1 - X™X2

m+1 G 4 . This contradicts that

{/i> Λ> Λ> ^ ^s a Grόbner bases of IH (cf. proof of Theorem 3.1). Hence we have

&! = 2m(m> 0) and

# = <(4m, 0), (0, 4m), ( 2 m - 1, 2m + 1), (2m + 1, 2 m - 1)>.

Also IH is generated by

/
• y2m+l y -rτ2m — l
1 ~~ Yl A 2 r 2

h — Y\ A i r 2

= X2Y2

2m-X1Y?m-
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Conversely, for H= <(4m, 0), (0, 4m), (2m - 1, 2m + 1), (2m + 1, 2m

— 1)), it is easy to see that k[H] is not Cohen-Macaulay (cf. Theorem 3.8 in [9]).

Hence, by Theorem 3.1 (3), k[H\ is a Buchsbaum ring. Π
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