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THE VOLUMES OF SMALL GEODESIC BALLS

AND GENERALIZED CHERN NUMBERS

OF KAEHLER MANIFOLDS

NOVICA BLAZIC

11. Introduction

In this paper we study a connection between global and local prop-
erties of Kaehler manifolds, more specifically we study a connection
between the volumes of small geodesic balls of a manifold M and some
generalized Chern numbers. We use the standard power series expansion
for VJr).

In Theorem 3.1 we give characterizations of a flat compact Kaehler
manifold in terms of the volumes of small geodesic balls and generalized
Chern numbers of-^c^M) and ωn~2cl(M). In Theorem 4.1 similar questions
for complex space forms are considered. So we prove one particular case
of the Conjecture (IV) stated by Gray and Vanhecke [6].

In Section 5 we introduce geodesically-Einstein manifolds and then
generalize some well known results about Einstein-Kaehler manifolds.
Chen and Ogiue [3] obtained the following inequality for a compact
Einstein-Kaehler manifold (M, g)

ί {2(n + l)c2-ncl}Λωn-2>0.
J M

So in Theorem 5.1 we prove that the same inequality also holds for
geodesically-Einstein compact Kaehler manifolds. Then, some conse-
quences of this inequality for complex surfaces are given. Also, we give
examples of some complex surfaces which admit no geodesically-Einstein
Kaehler metrics.

I wish to thank N. Bokan and M. Djoric for useful comments.

§ 2. Preliminaries

In this paper we use the notations given in [6] and [3]. Let M be
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an n-dimensional analytic Riemannian manifold. Let r0 > 0 be so small

that the exponential map expm is a diίfeomorphism on a ball of radius r0

in the tangent space Mm. We put

Sm(r0) = volume of {expm (x)\xe Mm, \\x\\ = r0),

Vm(rQ) = volume of {expm (x)\xe Mmy \\x\\< r0}.

Here we mean the (n — l)-dimensional volume for Sm(r0) and the ^-dimen-

sional volume for Vm(r0).

In [6] it is shown (Theorem 3.3) that for VJr) and SJr) the follow-

ing power series expansions hold

(2.1) Vm(r) = βnr«(l - Ar2 + Br" + O(r6))

where

A =
6(n + 2) '

and

(2.2) Sw(r) = C r ^ X l - Cr> + Dr* + O(r*))

where

n ' n

(Here β n is the volume of the unit ball in i?n and Cn is the (λi — ^-dimen-

sional volume of the unit Euclidean sphere Sn'\ In this case Cn = 7iβn

= nπn/\llΓ(nl2 + 1).)

Suppose that M i s a Kaehler manifold of complex dimension n. Let

θ\ - - , θn be a local field of unitary coframes. Then the Kaehler metric

is written as g = 2 (#α ® ^α + 0a ® ^α) and the fundamental 2-form j5(Z, Y)

= g(X, JY) is given by φ = V^17! Σ 0* Λ #α. Here, in Section 2, we use

the ranges a, β, ΐ, δ, = 1, , n. The form ^ is closed. The funda-

mental class ω of M is the de Rham cohomology class determined by φ.

The curvature tensor R of M is the tensor field with local components

Raβr3. Then the (1, l)-forms Ω% defined by Ω°β = Σ i?^0 r Λ ^δ, are closed.

The Ricci tensor p and the scalar curvature τ are given by paβ = 2] «̂fr/§

and τ = 2 Σ ρaa. We denote by ||JR|| and ||^|( the length of the curvature

https://doi.org/10.1017/S0027763000001768 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001768


VOLUMES OF SMALL GEODESIC BALLS 1S3

tensor and the Ricci tensor respectively, so that

||i?||2 = 4 2 ] ^ r ^ α - 5 f and ||^||2 = 2 £ PaβPβa.

We need the following general result.

LEMMA 2.1 ([3]). Let M be an n-dimensional Kaehler manifold. Then

The first equality holds if and only if M is a complex space form and the

second equality holds if and only if M is Einstein.

We define a closed 2£-form ϊk by

It is well known that ^-th Chern class ck is determined by the form Tk.

In particular, the first two Chern forms are given by

and

- Sπ% = Σ Ψl Λ Ωβ

β - Ωa

β Λ Ωί)

respectively.

Then we have

(2.3) ϊ1Λφn-ί = —φn,
nπ

(2.4) ΠΛφn-2 = X

 2 (τ2 -
4n(n — l)π

and

(2.5) Γ 2 Λ f " 2 = 1

 2 (τ2 - 4|| io||
Sn(n — l)π2

The generalized Chern numbers ωn'2c1(M), ωn~2c\(M) and ωn~2c2(M) are

defined by | ϊλ/\φn'\ \ ϊlΛφn-2, and | ϊ2Aφn~2 respectively.
J M J M J M

§ 3. Characterization of flat Kaehler manifolds

THEOREM 3.1. Let (M, g, J) be a compact, Kaehler manifolds of com-

plex dimension n. Suppose that generalized Chern numbers ωn~λc1 and
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ωn~2cl are nonnegatίve. Then, if M satisfies one of the following conditions,

(i) or (ii),

(i) Vm(r)>Ω2nr
2n

(ii) 2nVm(r) < rSm(r)

M is biholomorphically covered by Cn.

Proof. We will show first that ωn-%(M) > 0, ωn~2cl(M) > 0 and the

condition (i) imply the result. Because of (i)

(3.1) τ< 0 on M.

Then ωn-%(M) > 0, ωn-2c\{M) > 0 and the relations (2.3) and (2.4) give

(3.2) f ΓiΛ^n-1 = — ί τφn>0
JM nπ JM

and

(3.3) ί rlΛφn~2 = 1 ί (τ2 - 2)\\p\\2ψ > 0.
J M 4n(n — ΐ)π2 J M

Since τ is nonpositive, (3.2) implies τ = 0 on M. Because of (3.3), p = 0

on M and from (i) we have

+ 5τ2 - 18Jτ = - 3||Λ||2 > 0 .

So i? = 0 on M and M is biholomorphically covered by Cn.

If we take the condition (ii) instead of (i) the proof will go in a

similar way.

COROLLARY 3.1. Let M be a Kaehler manifold as in the Theorem 3.1.

// the first Chern class c^M) vanishes and if it satisfies one of the two

conditions, (i) or (ii), then M is biholomorphically covered by Cn.

§ 4. Characterization of Kaehler spaces of constant holomorphic
curvature

Let M(μ) be a Kaehler manifold with complex dimension n and con-

stant holomorphic sectional curvature μ Φ 0. Then for all p e M(μ) the

volume function for M(μ) is given by;

or

*-•%&{** ψ>r
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according to whether μ > 0 or μ < 0 (see [4]). In [6] the following con-

jecture was stated;

(IV) Let M be a Kaehler manifold with complex dimension n and

suppose that for all me M and all sufficiently small r > 0, Vm(r) is the

same as that of an n-dimensional Kaehler manifold with constant holomor-

phic sectional curvature μ. Then M has constant holomorphic sectional

curvature.

In the following theorem we will prove one particular case of the

conjecture (IV).

THEOREM 3.2. Let M be a compact Kaehler manifold with complex

dimension n, and suppose that for all me M and all sufficiently small

r > 0, Vm(r) is the same as that of an n-dimensional compact Kaehler

manifold M(μ) with constant holomorphic sectional curvature μ. Let ω and

ωμ denote the fundamental classes of M and M(μ) respectively. If the fol-

lowing conditions

(4.1) ω»-

(4.2) ωn~2cl(M) > ωn

μ-
2c\(M)

are satisfied, then M has constant holomorphic sectional curvature μ.

Proof. Let τμ, \\pμ\\2 and \\Rμ\\2 denote the appropriate functions for

M(μ). Since Vm(r) = V(r, μ) we have

(4.3)

and

(4.4) 3(1122,II2 - \\R\f) = 8(\\pμf - \\pf) < 0 .

The hypotheses (i) and (ii) imply that

(4.5) f τφ» = ί τμφμ
J M J M(μ)

and

(4.6) f (τ2 - 2\\ptf)φ« > f (τl - 2\\Pμf)φ»μ .

For μ = 0, from (4.3), (4.6) and (4.4) it follows that τ = \\p\\ = ||i?|| = 0 on

on M. So, in this case M is flat as we want to show. For μ Φ 0 for-

mulas (4.3) and (4.5) imply that
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f Φ'= f «•
Then, using (4.4) and (4.6), we obtain

f \\P\\Ψ< ί WPΛY
J M J M

This inequality, Lemma 2.1 and (4.4) give

ί (\\Rf--^-γWpiήΦ" = 4 ( — Γ T - 2 ) f (ll<°*112- n ^ " ^ °
J 3f \ 7 2 + 1 / 3 \ 7 2 + l /JM

So ||i?||2 = (4/(n + ϊ))\\pf on M and the required result follows from

Lemma 2.1.

COROLLARY 4.1. Lei (M(μ), gμ9 Jμ) be a compact n-dimensional Kaehler

manifold with constant holomorphic sectional curvature μ, fundamental

2-class ωμ and almost complex structure Jμ. Suppose that (M(μ),g) is a

Kaehler manifold with fundamental 2-class ω and almost complex structure

J. If

( i ) VJjr) > V(r, μ) for all m e M(μ) and all sufficiently small r > 0,

(ii) ω = ωμ9

(iii) J=Jμ,

then M has constant holomorphic sectional curvature μ.

§ 5. Geodesically-Einstein Kaehler manifolds

DEFINITION 5.1. Let M and Mε be Riemannian manifolds of the same

dimension. We say that M is geodesically-Einstein with respect to the

Einstein manifold Mε if there exists a map /: M -> Mε such that

(5.1) VJr) = Vnm)(r)

for all m e M and for all sufficiently small r > 0.

It is to expect that geodesically-Einstein manifolds have some similar

properties as Einstein manifolds. So, in this section we establish an in-

equality between Chern classes of geodesically-Einstein Kaehler manifolds.

Also geodesically-Einstein Kaehler surfaces are considered.

THEOREM 5.1. Let M and Mε be compact, n-dimensional, n > 2,

Kaehler manifolds as it was supposed in the Definition 5.1. If M is geo-

desicallyΈinstein with respect to Mε, then

https://doi.org/10.1017/S0027763000001768 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001768


VOLUMES OP SMALL GEODESIC BALLS 187

For n > 3 the equality holds if and only if M is a complex space

form. For n = 2, if Mε is a homogeneous manifold, the equality holds if

and only if Mε is a complex space form.

Proof. Let ||i?ε | |
2, \\ρε\\2 and τε denote the appropriate functions for

the Einstein-Kaehler manifold Mε. Since τe is constant on Mt, Lemma

2.1, (2.1) and (5.1) imply

(5.3)

and

(5.4) 3(||R | |2 - ||i?ε||
2) = 8(||^||2 - \\Pε\f) > 0 .

Thus

Sn(n - l)π> ί (V2 -
 n

JM\ 2(n + 1)

= f (ll*.ll2 f r l l f t l l V + f? 7 ?ί ί (WPII2 - HΛIIV ^ °
J M \ n + 1 / 3(7i + 1) J M

If the equality holds, then (n + l)\\Rεf = 4||/oε||
2 on /(M) and for

7i > 3, Up||a = \\Pε||
2. Then (n + l)||i?||2 = 4||p||2 on M by (5.4). Hence, for

n > 3, M is a complex space form because of Lemma 2.1.

Remark. The proof of this result utilizes only the first three non-

trivial terms in the power series expansion of Vm(r).

EXAMPLE. Here we will give example of non-Einstein Kaehler mani-

fold M for which

(5.5) Vm(r) = V(r, M3) + O(r^«)

holds for all m eM and all small enough r > 0. Here Ms is a complex

space form of complex dimension 2p, p > 2, and V(r, M3) is the volume

of a geodesic ball of radius r in Ms. So let Λfj and M2 be complex space

forms of complex dimension p, with scalar curvatures equal to τλ and r2

respectively. Let M% have scalar curvature rx + r2. Suppose that r2 = αr!

where (1 - p)(l + 4p)a2 - 2(1 + p)(l - 4p)a = (p - 1)(1 + 4p). Then for

M == Jlίj X M2 we have (5.5). Since τx Φ τ2, Mx X M2 is not an Einstein

manifold. Due to last remark inequality (5.2) holds for M = M1 X M2.
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We consider now the consequence of this theorem for a compact

Kaehler surface M which satisfies (5.1). Let X, a and a denote its Euler

characteristic, Hirzebruch signature and arithmetic genus respectively.

Then from the Gauss-Bonnet-Chern theorem, the Hirzebruch signature

theorem and the Riemann-Roch-Hirzebruch theorem (see [1], [2], [7] and

[8]), we have

X(M) = ί c 2 ,
J M

σ(M) = 1 ί (cj - 2c2),
3 JM

a(M) = -L f (cl + c2).12 JM

Since

X(M) - MM) = a(M) - σ(M) = - f (3c2 - cj) > 0
4 JM

we have the following corollary.

COROLLARY 5.1. Let M be a compact Kaehler surface satisfying the

hypotheses of the Theorem 5.1. Then

(i) X(M) > 3a(M) and

(ii) a(M)>σ(M).

The equality holds in (ϊ) or (iϊ) if and only if Mε has constant holomor-

phίc sectional curvature on f(M)czMε.

Remark. This corollary is a generalization of the Theorem 10.4 in [6].

THEOREM 5.2. Let M be a complex surface. Then any surface M ob-

tained from M by blowing up k points of M admits no geodesically-Einstein

Kaehler metric whenever either

k<σ-a or k < -ί(3σ - X)

where σ, a and X denote the Hirzebruch signature, the arithmetic genus and

the Euler characteristic of M.

Proof. Since the arithmetic genus is a birational invariant, the sur-

faces M and M have the same arithmetic genus. On the other hand,

topologically, blowing up a point on a surface is equivalent to attaching
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CP2 with opposite orientation (we denote this by CP2). Since M is ob-

tained from M by blowing up k points of M> M is diίfeomorphic to the

direct sum M# kCP2. Here # denotes the direct sum of topological spaces.

Since we have

σ(M%kCP2) = σ(M) - k,

and

X{M$kCΪ>2) = X(M) + k,

this theorem then follows from Corollary 5.1.

Now we can apply Corollary 5.1 on M = CP2%n = CP*% #CP2.

COROLLARY 5.2. Ϊ7ie manifold M — CP2 # n does noί admit a geodes-

ically-Einstein Kaehler metric for n > 1.

Proof We have σ(M) = n and %(M) = rc + 2. Hence

Z(M) - 3σ(M) = - 2(n - 1 ) < 0 for Λ > 1 •

If the required metric exists, then we obtain a contradiction with Corol-

lary 5.1. We should notice t h a t for even n, M does not admit almost

complex structure because X + a is not multiple of 4.
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