Y. Tanigawa Nagoya Math. J. Vol. 100 (1985), 83-96

CONSTRUCTION OF SIEGEL MODULAR FORMS OF DEGREE THREE AND COMMUTATION RELATIONS OF HECKE OPERATORS

YOSHIO TANIGAWA

In connection with the Shimura correspondence, Shintani [6] and Niwa [4] constructed a modular form by the integral with the theta kernel arising from the Weil representation. They treated the group $Sp(1) \times O(2, 1)$. Using the special isomorphism of O(2, 1) onto SL(2), Shintani constructed a modular form of half-integral weight from that of integral weight. We can write symbolically his case as " $O(2, 1) \rightarrow$ Sp(1)". Then Niwa's case is " $Sp(1) \rightarrow O(2, 1)$ ", that is from the halfintegral to the integral. Their methods are generalized by many authors. In particular, Niwa's are fully extended by Rallis-Schiffmann to " $Sp(1) \rightarrow O(p, q)$ ".

In [7], Yoshida considered the Weil representation of $Sp(2) \times O(4)$ and constructed a lifting from an automorphic form on a certain subgroup of O(4) to a Siegel modular form of degree two. In this note, under the spirit of Yoshida, we consider $Sp(3) \times O(4)$ and construct a Siegel modular form of degree three. We use Kashiwara-Vergne's results [2] for the analysis of the infinite place. Roughly speaking, the representation (λ, V_{λ}) of O(4) which corresponds to an irreducible component of the Weil representation determines the representation $\tau(\lambda)$ of GL(3, C). Then we can make the $V_{i'}$ -valued theta series. By integrating the inner product of this theta series and a V_{λ} -valued automorphic form, we get a Siegel modular form (Proposition 1). The main results in this note are commutation relations of Hecke operators (Theorems 1, 2). By these formulas we can express the Andrianov's L-function by the product of the L-functions of original forms. It is desired that the relations of Theorems 1 and 2 are computed more naturally.

Received April 24, 1984.

§1. Weil representation and the results of Kashiwara and Vergne

Let v be a place of Q. We fix a non-trivial additive character ψ_v of Q_v . For a positive integer n, let $Sp(n, Q_v)$ be a symplectic group of degree n i.e. $Sp(n, Q_v) = \{g \in GL(2n, Q_v) | {}^tgJg = J\}$ where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Let (E, S) be a k-dimensional quadratic space E with a quadratic form $S[x] = {}^txSx$. We put $X_R = M_{k,n}(R)$ for any ring R. We also put $S[x] = {}^txSx$ for $x \in X_{q_v}$. The function $q(x) = \psi_v(\frac{1}{2}\operatorname{tr}(S[x]))$ defines a character of second degree on X_{q_v} . The associated self duality on X_{q_v} is given by $\langle x, y \rangle = \psi_v(\operatorname{tr}({}^tySx))$. We denote by dx the self-dual measure on X_{q_v} with respect to \langle , \rangle . The Fourier transform of Φ is defined by

$$\Phi^*(x) = \int_{X_{Q_v}} \Phi(y) \langle x, y \rangle dy.$$

Then the Weil representation R_v of $Sp(n, Q_v)$ is realized on $L^2(X_{Q_v})$ and has the following forms for special elements (cf. Weil [9]):

$$\begin{array}{lll} ({\rm \ i \ }) & R_v \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \varPhi(x) = \psi_v ({\rm tr} \ bS[x]) \varPhi(x) & \mbox{ for } b = {}^v b \in M_n({\bm Q}_v) \\ ({\rm \ ii \ }) & R_v \begin{pmatrix} a & 0 \\ 0 & {}^t a^{-1} \end{pmatrix} \varPhi(x) = |\det(a)|^{1/2} \varPhi(xa) & \mbox{ for } a \in GL(n, \ {\bm Q}_v) \\ ({\rm \ iii \ }) & R_v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \varPhi(x) = \varPhi^*(x). \end{array}$$

It is well known that for even k, R_v is equivalent to a true representation π_v of $Sp(n, Q_v)$ (cf. Lion and Vergne [4] p. 212, Yoshida [8]).

Hereafter we choose an additive character so that $\psi_{\infty} = e^{2\pi i x}$, $x \in \mathbf{R}$ and $\psi_p = e^{-2\pi i \operatorname{Fr}(x)}$, $x \in \mathbf{Q}_p$ for each finite place p, where $\operatorname{Fr}(x)$ is the fractional part of $x \in \mathbf{Q}_p$.

In [2], Kashiwara and Vergne decompose the Weil representation R_{∞} into irreducible components. We will recall briefly their results.

Let (E, S) be a positive definite quadratic space of dimension k. There are two groups acting on $L^2(X_R)$, the orthogonal group O(S) of (E, S) and Sp(n, R). The action of O(S) is defined by

$$(\sigma \Phi)(x) = \Phi({}^t \sigma x) \quad \text{for } \sigma \in O(S),$$

and that of $Sp(n, \mathbf{R})$ by the Weil representation. It is easily seen that they commute with each other. Therefore we can decompose $L^2(X_{\mathbf{R}})$ under O(S). Let (λ, V_{λ}) be an irreducible unitary representation of O(S). Denote by $L^2(X_{\mathbf{R}}; \lambda)$ the space of all V_{λ} -valued square integrable functions

SIEGEL MODULAR FORMS

 $\phi(x)$ on X_R which satisfies $\phi(\sigma x) = \lambda(\sigma)\phi(x)$ for $\sigma \in O(S)$. Then $L^2(X_R) = \bigoplus_{\lambda \in \widehat{O(S)}} L^2(X_R; \lambda') \otimes V_{\lambda}$ where λ' is the contragradient representation of λ .

A polynomial Q(x) on X_R is said to be pluriharmonic if $\Delta_{ij}Q = 0$ for all *i*, *j*. Here $\Delta_{ij} = \sum_{\ell=1}^{k} (\partial/\partial x_{\ell i})(\partial/\partial x_{\ell j})$. Let \mathfrak{h} be the space of all such polynomials. $GL(n, \mathbb{C}) \times O(S)$ acts on \mathfrak{h} by $Q(x) \to Q(\sigma^{-1}xa)$ for $(a, \sigma) \in$ $GL(n, \mathbb{C}) \times O(S)$. For an irreducible representation (λ, V_{λ}) of O(S), we denote by $\mathfrak{h}(\lambda)$ the space of all V_{λ} -valued pluriharmonic polynomials Q(x) such that $Q(\sigma x) = \lambda(\sigma)Q(x)$ for $\sigma \in O(S)$. As above, we have $\mathfrak{h} =$ $\bigoplus_{\lambda \in \widehat{O(S)}} \mathfrak{h}(\lambda') \otimes V_{\lambda}$. We define $\tau(\lambda)$ as the representation of $GL(n, \mathbb{C})$ on $\mathfrak{h}(\lambda)$ by the right translation.

On the other hand, the special representation of $Sp(n, \mathbf{R})$ is defined as follows. Let (τ, V) be an irreducible representation of GL(n, C) and $\delta(a) = \det(a)$ be a one dimensional representation. Let $Sp(n, \mathbf{R})_2$ be the two fold covering group of $Sp(n, \mathbf{R})$. Then for $h \in \mathbb{Z}$, we define the representation $T(\tau, h)$ of $Sp(n, \mathbf{R})_2$ in $\mathcal{O}(H_n, V)$, the space of all V-valued holomorphic functions f(Z) on the Siegel upper half plane H_n , by

$$(T(\tau, h)(g)f)(Z) = \delta(CZ + D)^{-h/2}\tau((CZ + D))f((AZ + B)(CZ + D)^{-1})$$

for $\tilde{g}^{-1} = (g, \ \delta(CZ + D)^{1/2}) \in Sp(2, R)_2$ with $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

THEOREM A (Kashiwara and Vergne). Let the notation be as above. Suppose that $\mathfrak{h}(\lambda) \neq \{0\}$, then

- (i) $\tau(\lambda)$ is irreducible
- (ii) $L^{2}(X_{R}; \lambda)$ is equivalent to $(T(\tau(\lambda), k), \mathcal{O}(H_{n}, \mathfrak{h}(\lambda)))$.

The correspondence $\lambda \to \tau(\lambda)$ is also determined explicitly in their paper.

For any $Q \in \mathfrak{h}(\lambda)$ and $Z \in H_n$, we put

$$f_{Q,Z}(x) = Q(x)e^{\pi\sqrt{-1}\operatorname{tr}\left(ZS[x]\right)}.$$

 $f_{\varrho,z}$ is a V_{λ} -valued function on X_{R} . We also put $\tau = \tau(\lambda)$ and $V_{\tau} = \mathfrak{h}(\lambda)$.

THEOREM B (Lion and Vergne). Let $f_{Q,Z}$ be as above, then for any $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, R)$,

$$R_{\infty}(g)f_{Q,Z} = \det{(CZ+D)^{-k/2}}f_{\tau({}^t(CZ+D)^{-1})Q,g(Z)}.$$

This theorem is easily proved by checking the above formula for the

YOSHIO TANIGAWA

generators of the form $\begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Especially for $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, it is obtained by acting the differential operator $Q((1/2\pi i)(\partial/\partial x))$ on both sides of the theta formula.

§2. Shintani-Yoshida's construction of Siegel modular form of degree three

Let D be a quaternion algebra over Q which does not split only at ∞ and 2. We denote by $a \to a^*$ the canonical involution of D. Let R be a maximal order in D and Z the center of D. Let (ξ_{ν}, V_{ν}) be the symmetric tensor representation of $GL(2, \mathbb{C})$ of degree ν . We put $\sigma_{\nu}(g) = (\xi_{\nu} \cdot \iota)(g)N(g)^{-\nu/2}$ for $g \in D_{\infty}^{\times}$, where ι is an embedding of D_{∞}^{\times} into $GL(2, \mathbb{C})$. Let A be the adele ring of rational field Q and D_A^{\times} be the adelization of D^{\times} . Then an automorphic form on D_A^{\times} of the type (R, σ_{ν}) is a V_{ν} -valued function φ on D_A^{\times} with the following properties:

(i) $\varphi(\widetilde{\imath}g) = \varphi(g) ext{ for any } \widetilde{\imath} \in D_Q^{ imes} ext{ and } g \in D_A^{ imes},$

(ii) $\varphi(gk) = \sigma_{\downarrow}(k)\varphi(g)$ for any $k \in D_{\infty}^{\times}$ and $g \in D_{A}^{\times}$,

(iii) $\varphi(gk) = \varphi(g)$ for any $k \in (R \otimes \mathbb{Z}_p)^{\times}$ and $g \in D_A^{\times}$ where p is any finite place of Q,

 $({\rm iv}) \quad \varphi(zg)=\varphi(g) \,\, {\rm for \,\, any} \,\, z\in Z_{A}^{\times} \,\, {\rm and} \,\, g\in D_{A}^{\times}.$

We put (E, S) = (D, norm) as a quadratic space over Q. So the dimension of E is four. $D^{\times} \times D^{\times}$ acts on E by $\rho(a, b)x = a^*xb$, $(a, b) \in D^{\times} \times D^{\times}$. Under this action, the group $G' = \{(a, b) \in D^{\times} \times D^{\times} | N(a) = N(b) = 1\}$ operates isometrically on E, and is considered as a subgroup of O(S).

Let G = Sp(3) be a symplectic group of degree 3. We put $K_p = Sp(3, \mathbb{Z}_p)$ for any finite place p and K_{∞} = the stabilizer of $\sqrt{-1}$ in G_R . We get the local (true) Weil representation π_v of G_v corresponding to the quadratic space E and the additive character ψ_v defined in Section 1. The global Weil representation π is also defined in the usual way.

We are going to define a lifting from an automorphic form on G'_A to that on G_A . As before we let $X = M_{4,3}$. For any finite place p, let f_p be the characteristic function of X_{Z_p} . For the infinite place ∞ , let $\sigma_{n_1} \otimes \sigma_{n_2}$ be an irreducible representation of G'_R such that $n_1 \equiv n_2 \pmod{2}$. We put $m_1 = (n_1 + n_2)/2$, $m_2 = |n_1 - n_2|/2$ and λ the irreducible representation of $O(S)_R$ with the signature (m_1, m_2) . Then $\sigma_{n_1} \otimes \sigma_{n_2}$ is naturally included in λ . Let $\tau(\lambda')$ be the representation of GL(3, C) which corresponds to λ' . For any $Q \in \mathfrak{h}(\lambda')$, we put $f_Q = \prod_{v \neq \infty} f_v \times f_{Q, \sqrt{-1}} \in \mathscr{S}(X_A) \otimes V_{\lambda'}$ where $f_{Q, \sqrt{-1}} = Q(x)e^{-\pi \operatorname{tr}(S[x])}$. Now we define the theta series by

$$heta_{f_Q}(g,h) = \sum_{x \in X_Q} (\pi(g)f_Q)(\rho(h)x)$$

for $g \in G_A$, $h \in G'_A$. Then from Theorem B, we get

where $Q' = (\delta^2 \otimes \tau(\lambda'))({}^t(-B\sqrt{-1} + A)^{-1})Q.$

Let φ_1 and φ_2 be automorphic forms on D_A^{\times} of type (R, σ_{n_1}) and (R, σ_{n_2}) respectively. Then $\varphi = \varphi_1 \otimes \varphi_2$ can be regarded as a V_{λ} -valued automorphic form on G'_A . Define a function of G_A by

$$\varPhi_{f_Q}(g) = \int_{G'_Q \setminus G'_A} (heta_{f_Q}(g, h), arphi(h)) dh.$$

Here (,) is the natural inner product on $V_{\lambda'}$ and V_{λ} . Take a basis $B = \{Q_1, \dots, Q_m\}$ of $\mathfrak{h}(\lambda')$ and fix it. The matrix representation of $\tau(\lambda')$ with respect to B is also denoted by the same letter. Finally we define the C^m -valued function on G_A by

(2.2)
$$\Phi_{B}(g) = (\Phi_{f_{Q_{1}}}(g), \cdots, \Phi_{f_{Q_{m}}}(g)).$$

The next Proposition follows at once by the definitions.

PROPOSITION 1. Let the notation be as above. Then $\Phi_B(g)$ is a Siegel modular form with respect to the representation $\delta^2 \otimes \tau(\lambda')$; it satisfies the following properties,

(i)
$$\Phi_{\scriptscriptstyle B}(\gamma g) = \Phi_{\scriptscriptstyle B}(g)$$
 for any $\gamma \in G_Q, g \in G_A$,

(ii)
$$\Phi_B(gk) = \Phi_B(g)(\delta^2 \otimes \tau(\lambda'))(\iota(-B\sqrt{-1} + A)^{-1})$$
 for any $k = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$

 $\in K_{\scriptscriptstyle\infty}, \; g \in G_{\scriptscriptstyle A},$

(iii) $\Phi_{\scriptscriptstyle B}(gk) = \Phi_{\scriptscriptstyle B}(g)$ for any $k \in K_{\scriptscriptstyle p}, g \in G_{\scriptscriptstyle A}$, where p is any finite place.

To transform into classical notation, we put $j(g, Z) = (\delta^2 \otimes \tau(\lambda'))$. $\binom{\iota}{(CZ + D)}$ for any $Z \in H_3$ and $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(3, \mathbb{R})$. Then j(g, Z) satisfies the cocycle relation $j(g_1g_2, Z) = j(g_2, Z)j(g_1, g_2(Z))$. For any point $Z \in H_3$ we choose an element $g \in Sp(3, \mathbb{R})$ such that $g(\sqrt{-1}) = Z$ and put $g' = 1_f \cdot g \in G_A$, where 1_f is an element of the finite part of G_A such that all the *p*-component is equal to 1. Then $F(Z) = \Phi_B(g')j(g, \sqrt{-1})$ satisfies the transformation formula $F(\mathcal{I}(Z)) = F(Z)j(\mathcal{I}, Z)$ for $\mathcal{I} \in Sp(3, \mathbb{Q}) \cap \prod_{p \neq \infty} K_p$.

YOSHIO TANIGAWA

§3. Hecke operators

Let \tilde{G} be the group of symplectic similitude of degree 3 i.e.

$$G_F = \{g \in GL(6, F) \mid {}^tgJg = m(g)J, m(g) \in F^{\times}\}$$

for any field F. In order to consider Hecke operators we must extend the function on $G_q \backslash G_A$ to the function on \tilde{G}_A . For that purpose we will adopt Yoshida's standard extension. Put $\tilde{K}_p = \tilde{G}_{Q_p} \cap GL(6, \mathbb{Z}_p)$ and $\tilde{G}_{\infty,+}$ $= \{g \in GL(6, \mathbb{R}) \mid {}^t gJg = m(g)J, m(g) > 0\}$. By the approximation theorem, we have $\tilde{G}_A = \tilde{G}_q \cdot \prod_{p \neq \infty} \tilde{K}_p \cdot \tilde{G}_{\infty,+}$. Let ν be an element of \tilde{G}_A such that $\nu_p = \begin{pmatrix} 1_3 & 0 \\ 0 & \mu_p 1_3 \end{pmatrix}, \ \mu_p \in \mathbb{Z}_p^{\times}$, for each finite place p and $\nu_{\infty} = \mu_{\infty} 1_{e}, \ \mu_{\infty} \in \mathbb{R}_+^{\times}$, for the infinite place ∞ . Then by the approximation theorem, any element g of \tilde{G}_A can be written as $g = \gamma k \nu$ with $\gamma \in \tilde{G}_q$ and $k \in \prod_{p \neq \infty} K_p \times G_{\infty}$. Suppose that Φ is a function on G_A which is left invariant under G_q . We define a function $\tilde{\Phi}$ on \tilde{G}_A by $\tilde{\Phi}(g) = \Phi(k)$ for $g = \gamma k \nu$. It is shown in [7] that this is well-defined and left invariant under \tilde{G}_q .

We put $S_p = \{g \in M_{\mathfrak{g}}(\mathbb{Z}_p) | {}^{t}gJg = m(g)J, m(g) \neq 0\}$. For the Hecke pair (\tilde{K}_p, S_p) we denote by $\mathscr{L}(\tilde{K}_p, S_p)$ the corresponding Hecke ring. It is well known that the complete representatives of the double cosets $\tilde{K}_p \setminus S_p / \tilde{K}_p$ is given by

$$lpha = egin{pmatrix} p^{d_1} & & & 0 \ & p^{d_3} & & \ & & p^{e_1} \ & & & p^{e_2} \ & & & & p^{e_3} \end{pmatrix}$$

where $d_1 \leq d_2 \leq d_3 \leq e_3 \leq e_2 \leq e_1$ and $m(\alpha) = p^{d_i + e_i}$ for any *i*. We denote the element $\tilde{K}_p \alpha \tilde{K}_p$ of $\mathscr{L}(\tilde{K}_p, S_p)$ by $T(p^{d_1}, p^{d_2}, p^{d_3}, p^{e_1}, p^{e_2}, p^{e_3})$ and put $m(\tilde{K}_p \alpha \tilde{K}_p) = m(\alpha)$. For a non-negative integer *n*, we define the Hecke operator of degree p^n by $T(p^n) = \sum \tilde{K}_n \alpha \tilde{K}_p$ where the summation is taken over all distinct double cosets $\tilde{K}_p \alpha \tilde{K}_p$ with $m(\tilde{K}_p \alpha \tilde{K}_p) = p^n$.

 $\mathscr{L}(\tilde{K}_p, S_p)$ is a polynomial ring generated by $T_0 = T(1, 1, 1, p, p, p)$, $T_1 = T(1, 1, p, p^2, p^2, p)$, $T_2 = T(1, p, p, p^2, p, p)$ and $T_3 = T(p, p, p, p, p, p)$. Define a local Hecke series by $D_p(s) = \sum_{n=0}^{\infty} T(p^n) p^{-ns}$.

THEOREM C (Andrianov). Let the notation be as above and put $t = p^{-s}$. Then

(3.1)
$$D_p(s) = \left[\sum_{n=0}^{6} (-1)^{n+1} e(n) t^n\right] \times \left[\sum_{n=0}^{8} (-1)^n f(n) t^n\right]^{-1},$$

88

where

$$\begin{split} e(0) &= -1, \ e(1) = 0, \ e(2) = p^2(T_2 + (p^4 + p^2 + 1)T_3), \ e(3) = p^4(p + 1)T_0T_3, \\ e(4) &= p^7(T_2T_3 + (p^4 + p^2 + 1)T_3^2), \ e(5) = 0, \ e(6) = -p^{15}T_3^3; \ f(0) = 1, \\ f(1) &= T_0, \ f(2) = pT_1 + p(p^2 + 1)T_2 + (p^5 + p^4 + p^3 + p)T_3, \\ f(3) &= p^3(T_0T_2 + T_0T_3), \ f(4) = p^6T_0^2T_3 + p^6T_2^2 - 2p^7T_1T_3 - 2p^6(p - 1)T_2T_3 \\ &- (p^{12} + 2p^{11} + 2p^{10} + 2p^7 - p^6)T_3^2, \ f(5) = p^6T_3f(3), \ f(6) = p^{12}T_3^2f(2), \\ f(7) &= p^{18}T_3^3f(1), \ f(8) = p^{24}T_3^4. \end{split}$$

For $\tilde{K}_p \alpha \tilde{K}_p \in \mathscr{L}(\tilde{K}_p, S_p)$, let $\tilde{K}_p \alpha \tilde{K}_p = \bigcup \alpha_i \tilde{K}_p$ be a right cosets decomposition. α_i may be considered as an element of \tilde{G}_A by the canonical embedding $\tilde{G}_{Q_p} \longrightarrow \tilde{G}_A$. Let Φ be a Siegel modular form and $\tilde{\Phi}$ its standard extension. We define the action of $\tilde{K}_p \alpha \tilde{K}_p$ on $\tilde{\Phi}$ by $(\tilde{\Phi} | \tilde{K}_p \alpha \tilde{K}_p)(g) = \sum_i \tilde{\Phi}(g\alpha_i)$, which does not depend on the choice of representatives α_i . Suppose that Φ is an eigenfunction of all Hecke operators: $\tilde{\Phi} | T(m) = \lambda(m)\tilde{\Phi}$ for all $m \in \mathbb{Z}, m > 0$. Then by the Theorem C of Andrianov, we have

$$\sum_{n=0}^{\infty} \lambda(p^n) n^{-ns} = G_{p,\phi}(p^{-s}) H_{p,\phi}(p^{-s})^{-1}$$

where $G_{p,\phi}$ (resp. $H_{p,\phi}$) is the polynomial given by the numerator (resp. denominator) in (3.1) after replacing the e(n) (resp. f(n)) with the corresponding eigenvalues. We define the Andrianov's *L*-function by the Euler product

$$L(s, \Phi) = \prod_{p} H_{p, \phi}(p^{-s})^{-1}.$$

On the other hand, any odd prime p is unramified in D. Therefore $D_p = D \otimes Q_p$ is isomorphic to $M_2(Q_p)$. Hence we get the *p*-part of Hecke operators in the usual way. If φ is an automorphic form D_A^{\times} such that $\varphi \mid T(p) = \lambda'(p)\varphi$ for all $p \neq 2$, we define the *L*-function of φ by

$$L(s,arphi) = \prod\limits_{p
eq 2} rac{1}{1-\lambda'(p)p^{-s}+p^{1-2s}}.$$

Note that in this paper we don't set any normalization in the definitions of Hecke operators and *L*-functions.

The following Proposition will be used in Section 4.

PROPOSITION D (Yoshida). Let V be a vector space over **R** and $f = \prod f_v$, where f_p is a characteristic function of X_{Z_p} for finite p and f_{∞} is an element of $\mathscr{S}(X_R) \otimes V$. Define the theta series by $\theta_j(g, h) = \sum_{x \in X_0} \pi(g) f(\rho(h)x)$ for $(g,h) \in G_A \times O(S)_A$. For a double coset $\tilde{K}_p \alpha \tilde{K}_p$ with $m(\alpha) = p^{d_1+e_1}$, let $\tilde{K}_p \alpha \tilde{K}_p = \bigcup \alpha_i \tilde{K}_p$ be a right cosets decomposition.

(i) When $d_1 + e_1$ is odd, $d_1 + e_1 = 2t + 1$ ($t \in \mathbb{Z}$), we put

$$m{z} = \ p^{-t} inom{1_3}{0} \ p^{-1} m{1_3} inom{0} \in ilde{G}_q.$$

Then for any element $g \in \tilde{G}_A$ we have

$$\sum_{i} \tilde{\theta}_{f}(g\alpha_{i}, h) = \tilde{\theta}_{f'}\left(\begin{pmatrix} 1_{3} & 0\\ 0 & p^{-1}1_{3} \end{pmatrix}_{\infty} g, h\right)$$

where $f' = \prod_{v \neq p} f_v \times f'_p$ and $f'_p = \sum_i \pi_p(z_p \alpha_i) f_p$.

(ii) When $d_1 + e_1$ is even, $d_1 + e_1 = 2t(t \in \mathbb{Z})$, we put $z = p^{-\iota} \mathbb{1}_{\scriptscriptstyle 6} \in \tilde{G}_q$. Then for any element $g \in \tilde{G}_A$, we have

$$\sum_{i} \tilde{ heta}_{f}(g lpha_{i}, h) = \tilde{ heta}_{f'}(g, h)$$

where $f' = \prod_{v \neq p} f_v \times f'_p$ and $f'_p = \sum_i \pi_p(z_p \alpha_i) f_p$.

§4. Local computation of Hecke operators

In this section we will compute the action of Hecke operators on Φ_B explicitly. It is enough to determine $f'_p = \sum_i \pi_p(\boldsymbol{z}_p \alpha_i) f_p$ by Proposition D. First note that, if we put $\Gamma = Sp(3, Z)$, the left cosets decomposition $\Gamma \alpha \Gamma = \bigcup_i \Gamma \alpha_i$ corresponds to the right cosets decomposition $\tilde{K}_p \alpha \tilde{K}_p = \bigcup_i m(\alpha) \alpha_i^{-1} \tilde{K}_p$. It is well known that the representatives $\{\alpha_i\}$ can be given by

$$\alpha_{\scriptscriptstyle ijk} = \begin{pmatrix} A_i & B_{\scriptscriptstyle ik} \\ 0 & D_i \end{pmatrix} \begin{pmatrix} U_{ij} & 0 \\ 0 & {}^t U_{ij}^{-1} \end{pmatrix}$$

where $A_i = \begin{pmatrix} p^{a_{i1}} & p^{a_{i2}} & 0 \\ 0 & p^{a_{i3}} \end{pmatrix}$, $0 \leq a_{i1} \leq a_{i2} \leq a_{i3}$ with $D_i = m(\alpha)A_i^{-1}$ integral, B_{ik} is taken over the complete set of representatives of integral matrices mod D_i with

$$\begin{pmatrix} A_i & B_{ik} \\ 0 & D_i \end{pmatrix} \in \Gamma lpha \Gamma$$
, and $SL(3, Z) = \bigcup_j (SL(3, Z) \cap A_i^{-1}SL(3, Z)A_i)U_{ij}$.

Suppose that $m(\alpha) = p$ or p^2 . For each *i*, we define the function on X_{q_p} by

$$f_p^{(i)}(\mathbf{x}) = \sum_k \psi_p(\operatorname{tr}(-B_{ik}D_i^{-1}S[\mathbf{x}]))f_p(\mathbf{x}).$$

Then by Proposition D, we have

$$egin{aligned} &f'_p(x) &= \sum\limits_{ijk} \pi_p(z_p m(lpha) lpha_{ijk}^{-1}) f_p(x) \ &= \sum\limits_{ijk} \pi_p\Big(igg(egin{aligned} U_{ij}^{-1} & 0 \ 0 & {}^t U_{ij} igg) \Big) \cdot \pi_p\Big(igg(egin{aligned} pA_i^{-1} & 0 \ 0 & m(lpha)/pD_i^{-1} igg) igg(egin{aligned} 1 & -B_{ik} D_i^{-1} \ 1 & 1 \ \end{pmatrix} igg) f_p(x) \ &= \sum\limits_{i,j} \pi_p\Big(igg(egin{aligned} U_{ij}^{-1} & 0 \ 0 & {}^t U_{ij} \ \end{pmatrix} igg) |\det(pA_i^{-1})|^2 \ &\times \sum\limits_k \psi_p(\operatorname{tr}(-B_{ik} D_i^{-1} S[xpA_i^{-1}])) f_p(xpA_i^{-1}) \ &= \sum\limits_i |\det(pA_i^{-1})|^2 \sum\limits_j f_p^{(i)}(xp(A_i U_{ij})^{-1}). \end{aligned}$$

Henceforth we write the above $f'_p(x)$ by $(f_p | \tilde{K}_p \alpha \tilde{K}_p)(x)$ to clarify the operation of $\tilde{K}_n \alpha \tilde{K}_p$.

First we deal with the Hecke operator of degree p.

THEOREM 1. We assume that p is an odd prime number. Put

Then for an element $T_{_0} = T(1, 1, 1, p, p, p)$ of $\mathscr{L}(ilde{K}_{_p}, S_{_p})$, we have

(4.1)
$$(f_p | T_0)(x) = \frac{p+1}{p} G_0(x).$$

Proof. We will write $Y = M_{4,1}$ for simplicity. We prove the above equality case by case. First note that for any $a \in GL(3, \mathbb{Z}_p)$ both sides of the equality are invariant under $x \to xa$. We will frequently use this remark for a = permutation matrices, $\begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ etc. Now let us write down all A_i and U_{ij} .

$$\begin{array}{ll} (\mathrm{i}\) & A_{1} = 1_{3} & \text{and} \ \{U_{1j}\} = \{1_{3}\} \\ (\mathrm{ii}\) & A_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & p \end{pmatrix} \text{ and } \{U_{2j}\} = \left\{ \begin{pmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & \gamma & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\ & 0 \leq \alpha, \ \beta, \ \gamma \leq p - 1 \right\} \end{array}$$

(iii)
$$A_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix}$$
 and $\{U_{3j}\} = \left\{ \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \gamma \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \\ 0 \leq \alpha, \beta, \gamma \leq p - 1 \right\}$

(iv) $A_4 = p1_3$ and $\{U_{4j}\} = \{1_3\}.$

We put $S[x] = (u_{ij})$ and define the subsets of X_{z_p} by

$$egin{aligned} V_1 &= \{x \in X_{{m Z}_p} \,|\, u_{ij} \in p{m Z}_p \,\,\, ext{for all} \,\,\, i \,\,\, ext{and} \,\,\, j\}, \ V_2 &= \{x \in X_{{m Z}_p} \,|\, u_{11}, \,\, u_{12}, \,\, u_{22} \in p{m Z}_p\}, \ V_3 &= \{x \in X_{{m Z}_p} \,|\, u_{11} \in p{m Z}_p\}. \end{aligned}$$

Let ϕ_i denote the characteristic function of V_i . Then we have

$$f_p^{(1)}=p^6\phi_1, \ \ f_p^{(2)}=p^3\phi_2, \ \ f_p^{(3)}=p\phi_3, \ \ f_p^{(4)}=f_p.$$

Therefore for $x = (x_1, x_2, x_3) \in X_{Q_p}, x_i \in Y_{Q_p}$, we have

$$egin{aligned} &(f_p \,|\, T_0) = \phi_1(px) + p^{-1} \{\sum\limits_{0 \leq lpha, eta \leq p-1} \phi_2(px_1, px_2, \, -lpha x_1 - eta x_2 + x_3) \ &+ \sum\limits_{0 \leq r \leq p-1} \phi_2(px_1, px_3, eta x_1 - x_2) + \phi_2(px_2, px_3, x_1) \} \ &+ p^{-1} \{\sum\limits_{0 \leq lpha, eta \leq p-1} \phi_3(px_1, \, -lpha x_1 + x_2, \, -eta x_1 + x_3) \ &+ \sum\limits_{0 \leq r \leq p-1} \phi_3(px_2, \, -eta x_2 + x_3, x_1) + \phi_3(px_3, \, x_1, \, x_2) \} + f_p(x). \end{aligned}$$

By the above remark, we have only to consider the following cases.

Case 1. We assume $x \in X_{Z_p}$. In this case, all the terms occur, so that $(f_p | T_0)(x) = (2(p+1)^2)/p$ and $G_0(x) = 2(p+1)$.

Case 2. We assume $px \notin X_{Z_p}$. In this case, all the terms vanish, so that both sides of (4.1) equal to zero.

Case 3. We assume that $x_1 \notin Y_{Z_p}$ and $px_1, x_2, x_3 \in Y_{Z_p}$. Then

$$(f_p | T_0)(x) = egin{cases} 2(p+1)/p & ext{if } u_{11} \in p^{-1}Z_n \ 0 & ext{otherwise.} \end{cases}$$

Now let us compute $G_0(x)$. By the above remark we may assume that

$$x_1 = \begin{pmatrix} lpha & 0 \\ 0 & eta \end{pmatrix} \quad lpha \in p^{-1} Z_p, \quad lpha \notin Z_p.$$

Then we have

SIEGEL MODULAR FORMS

$$egin{pmatrix} p & v \ 0 & 1 \end{pmatrix}^* x_1 = egin{pmatrix} lpha & -veta \ 0 & peta \end{pmatrix}, & egin{pmatrix} 1 & 0 \ 0 & p \end{pmatrix}^* x_1 = egin{pmatrix} plpha & 0 \ 0 & eta \end{pmatrix}, \ x_1 igg(egin{pmatrix} p & v \ 0 & 1 \end{pmatrix} = egin{pmatrix} plpha & vlpha \ 0 & eta \end{pmatrix}, & x_1 igg(egin{pmatrix} 1 & 0 \ 0 & p \end{pmatrix} = igg(eta & 0 \ 0 & peta \end{pmatrix}. \end{cases}$$

Note that $\beta \in \mathbb{Z}_p$ if and only if $u_{11} \in p^{-1}\mathbb{Z}_p$. Therefore we have

$$G_{\scriptscriptstyle 0}(x) = egin{cases} 2 & ext{if} \;\; u_{\scriptscriptstyle 11} \, egin{array}{c} p^{-1} oldsymbol{Z}_p \ 0 & ext{otherwise.} \end{cases}$$

Case 4. We assume that $x_1, x_2 \notin Y_{Z_p}, px_1, px_2, x_3 \in Y_{Z_p}$, and there is no $s \in \mathbb{Z}$ such that $sx_1 + x_2 \in Y_{Z_p}$. Then we have

$$(f_p | T_0)(x) = egin{cases} (p+1)/p & ext{if } u_{11}, \, u_{12}, \, u_{22} \in p^{-1} oldsymbol{Z}_p \ 0 & ext{otherwise.} \end{cases}$$

On the other hand, let $x_1 = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ and $x_2 = \begin{pmatrix} \alpha' & \gamma' \\ \delta' & \beta' \end{pmatrix}$ with $\alpha \notin \mathbb{Z}_p$. As in the Case 3, $G_0(x) = 0$ if $u_{11} \notin p^{-1}\mathbb{Z}_p$. Hence we can suppose that $\beta \in \mathbb{Z}_p$. We have only to consider the following two terms:

$$egin{pmatrix} 1 & 0 \ 0 & p \end{pmatrix}^* x_{\scriptscriptstyle 2} = egin{pmatrix} plpha' & p \varUpsilon' \ \delta' & \beta' \end{pmatrix} ext{ and } x_{\scriptscriptstyle 2} egin{pmatrix} p & 0 \ 0 & 1 \end{pmatrix} = egin{pmatrix} plpha' & \varUpsilon' \ p\delta' & \beta' \end{pmatrix}.$$

When $\beta' \notin \mathbb{Z}_p$ we have $G_0(x) = 0$. On the other hand, if $\beta' \in \mathbb{Z}_p$, the above condition implies that there does not occur the case that both $\tilde{\gamma}'$ and δ' belong to \mathbb{Z}_p . So that we have

$$G_{\scriptscriptstyle 0}(x) = egin{cases} 1 & ext{if } ec{\gamma} \in oldsymbol{Z}_p ext{ and } \delta' \in oldsymbol{Z}_p, ext{ or } ec{\gamma}' \notin oldsymbol{Z}_p ext{ and } \delta' \in oldsymbol{Z}_p \ 0 & ext{if } ec{\gamma}', \, \delta' \in p^{-1}oldsymbol{Z}_p - oldsymbol{Z}_p. \end{cases}$$

Anyway, $G_0(x) = 1$ if and only if β , $\beta' \in \mathbb{Z}_p$, $\gamma'\delta' \in p^{-1}\mathbb{Z}_p$ and $\gamma' \notin \mathbb{Z}_p$ or $\delta' \notin \mathbb{Z}_p$, which is equivalent to u_{11} , u_{12} , $u_{22} \in p^{-1}\mathbb{Z}_p$. Otherwise $G_0(x) = 0$. Therefore we get the equality (4.1) in this case.

Case 5. We assume that $x_i \notin Y_{Z_p}$, $px_i \in Y_{Z_p}$ for i = 1, 2, 3, and for any pair (i, j) there is no $r \in \mathbb{Z}$ such that $rx_i + x_j \in Y_{Z_p}$ and there are no $s, t \in \mathbb{Z}$ such that $sx_1 + tx_2 + x_3 \in Y_{Z_p}$. Then we have $(f_p | T_0)(x) = \phi_1(px)$. We shall see that it is equal to zero. Let $x_1 = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, $x_2 = \begin{pmatrix} \alpha' & \gamma' \\ \delta' & \beta' \end{pmatrix}$ and $x_3 = \begin{pmatrix} \alpha'' & \gamma'' \\ \delta'' & \beta'' \end{pmatrix}$ with $\alpha \notin \mathbb{Z}_p$. Suppose that $u_{ij} \in p^{-1}\mathbb{Z}_p$ for all i and j. Then we have $\beta \in \mathbb{Z}_p$, $\beta' \in \mathbb{Z}_p$, $\gamma'\delta' \in p^{-1}\mathbb{Z}_p$, $\beta'' \in \mathbb{Z}_p$, $\gamma''\delta'' \in p^{-1}\mathbb{Z}_p$ and $\gamma'\delta'' + \gamma''\delta' \in p^{-1}\mathbb{Z}_p$.

YOSHIO TANIGAWA

Subcase 1. We assume $\tilde{r}' \in \mathbb{Z}_p$. We have $\delta' \in \mathbb{Z}_p$ and $\delta'' \in \mathbb{Z}_p$. But then there exist r and s in \mathbb{Z} such that $rx_1 + sx_2 + x_3 \in Y_{\mathbb{Z}_p}$, which contradicts our assumption.

Subcase 2. We assume $\delta' \notin \mathbb{Z}_p$. This is also impossible as above.

Subcase 3. We assume $\tilde{\gamma}', \delta' \in \mathbb{Z}_p$. From $x_2 \notin Y_{\mathbb{Z}_p}$ we have $\alpha' \notin \mathbb{Z}_p$, but then there exists r in \mathbb{Z} such that $rx_1 + x_2 \in Y_{\mathbb{Z}_p}$, which also contradicts our assumption. Therefore we have $(f_p | T_0)(x) = 0$.

On the other hand, by the same method as Case 4, we have $G_0(x) = 1$ if and only if

$$\beta, \beta', \beta'' \in \mathbb{Z}_p,$$

and

$$\begin{split} & \widetilde{\gamma}' \in p^{-1} \boldsymbol{Z}_p - \boldsymbol{Z}_p, \quad \delta' \in \boldsymbol{Z}_p, \quad \widetilde{\gamma}'' \in p^{-1} \boldsymbol{Z}_p - \boldsymbol{Z}_p, \quad \delta'' \in \boldsymbol{Z}_p, \quad \mathrm{or} \\ & \widetilde{\gamma}' \in \boldsymbol{Z}_p, \quad \delta' \in p^{-1} \boldsymbol{Z}_p - \boldsymbol{Z}_p, \quad \widetilde{\gamma}'' \in \boldsymbol{Z}_p, \quad \delta'' \in p^{-1} \boldsymbol{Z}_p - \boldsymbol{Z}_p. \end{split}$$

If this is true, there exist s and t in Z such that $sx_1 + tx_2 + x_3 \in Y_{Z_p}$, which also contradicts our assumption, so that we have $G_0(x) = 0$. This completes the proof. q.e.d.

Let φ_i be an automorphic form on D_A^{\times} . We constructed the Siegel modular form Φ_B of degree 3 for some fixed basis B of $\mathfrak{h}(\lambda)$ in Proposition 1. The following corollary is an easy consequence of Theorem 1.

COROLLARY 1. Let p be an odd prime number. Suppose that φ_i is an eigenfunction of T(p) with the eigenvalue $\lambda_i(p)$. Then Φ_B is also an eigenfunction of T_0 with eigenvalue $p^2(p+1)(\lambda_1(p) + \lambda_2(p))$.

Next we deal with the Hecke operators of degree p^2 . To state the commutation relations for Hecke operators T_1 and T_2 , we introduce two functions:

$$\begin{split} G_1(x) &= \sum_{v_1, v_2=0}^{p-1} f_p \Big(\rho \Big(\begin{pmatrix} p & v_1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} p & v_2 \\ 0 & 1 \end{pmatrix} \Big) x \Big) + \sum_{v_1=0}^{p-1} f_p \Big(\rho \Big(\begin{pmatrix} p & v_1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Big) x \Big) \\ &+ \sum_{v_2=0}^{p-1} f_p \Big(\rho \Big(\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \begin{pmatrix} p & v_2 \\ 0 & 1 \end{pmatrix} \Big) x \Big) + f_p \Big(\rho \Big(\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Big) x \Big) \\ G_2(x) &= \sum_{v=0}^{p^2-1} f_p \Big(\rho \Big(\begin{pmatrix} p^2 & v \\ 0 & 1 \end{pmatrix}, 1 \Big) x \Big) + \sum_{v=1}^{p-1} f_p \Big(\rho \Big(\begin{pmatrix} p & v \\ 0 & p \end{pmatrix}, 1 \Big) x \Big) + f_p \Big(\rho \Big(\begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix}, 1 \Big) x \Big) \\ &+ \sum_{v=0}^{p^2-1} f_p \Big(\rho \Big(1, \begin{pmatrix} p^2 & v \\ 0 & 1 \end{pmatrix} \Big) x \Big) + \sum_{v=1}^{p-1} f_p \Big(\rho \Big(1, \begin{pmatrix} p & v \\ 0 & p \end{pmatrix} \Big) x \Big) + f_p \Big(\rho \Big(1, \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix} \Big) x \Big) . \end{split}$$

94

THEOREM 2. Let the notation be as above. We assume that p is an odd prime number. Let $T_2 = T(1, p, p, p^2, p, p)$ and $T(p^2)$ be elements of Hecke ring $\mathscr{L}(\tilde{K}_p, S_p)$ defined in Section 3. Then

$$(4.2) (f_p | T_2)(px) + f_p(px) = p^2 \{G_1(x) + (p^2 + p + 1)f_p(px)\}$$

$$(4.3) (f_p | T(p^2))(px) = p^4(p^2 + p + 1)G_2(x) + p^5(p + 2)G_1(x) \\ + p^5(2p + 1)f_p(px).$$

The proofs of (4.2) and (4.3) are similar to that of (4.1) but more complicated, so we omit them here.

COROLLARY 2. Let φ_i be an automorphic form on D_A^{\times} for i = 1, 2 and Φ_B be the Siegel modular form constructed by them. Suppose that φ_i be an eigenfunction of T(1, p) with eigenvalue $\lambda_i(p)$, i = 1, 2. Then

(i) $\Phi_{\scriptscriptstyle B} | T_{\scriptscriptstyle 2} = (p^2 \lambda_{\scriptscriptstyle 1}(p) \lambda_{\scriptscriptstyle 2}(p) + p^4 + p^3 + p^2 - 1) \Phi_{\scriptscriptstyle B}$

In fact, φ_i is also an eigenfunction of $T(1, p^2)$ with the eigenvalue $\mu_i(p^2) = \lambda_i(p)^2 - (p+1)$. Then (i) and the following (ii)' are easy consequences of Theorem 2:

$$egin{aligned} ext{(ii)'} & \varPhi_{\scriptscriptstyle B} \,|\, T(p^2) = \{ p^4(p^2+p+1)(\mu_1(p^2)+\mu_2(p^2)) + p^5(p+2)\lambda_1(p)\lambda_2(p) \ &+ p^5(2p+1) \} \varPhi_{\scriptscriptstyle B}. \end{aligned}$$

We get (ii) at once from (ii)'.

It is clear that the Hecke operator $T_3 = T(p, p, p, p, p, p)$ acts trivially on f_p so we have $\Phi_B | T_3 = \Phi_B$.

By Theorem C of Andrianov, we know the following relation:

$$pT_1 = T_0^2 - T(p^2) - p(p^2 + p + 1)T_2 - p(p^5 + p^4 + 2p^3 + p^2 + p + 1)T_3.$$

This gives us the eigenvalue of T_1 :

$$egin{aligned} & \varPhi_{\scriptscriptstyle B} \, | \, T_{\scriptscriptstyle 1} = \{ p^{\scriptscriptstyle 4} (\lambda_{\scriptscriptstyle 1}(p)^2 + \lambda_{\scriptscriptstyle 2}(p)^2) + p^2 (p^3 + p^2 + p - 1) \lambda_{\scriptscriptstyle 1}(p) \lambda_{\scriptscriptstyle 2}(p) \ & + p^2 (p^4 - p^3 - p^2 - 2p - 1) \} \varPhi_{\scriptscriptstyle B}. \end{aligned}$$

Let f(n) be as defined in Theorem C and $\lambda(n)$ the corresponding eigenvalue: $\Phi_B | f(n) = \lambda(n) \Phi_B$. Then, using these formulas, we have

$$H_{p, \phi_B}(t) = \sum_{n=0}^{\infty} \lambda(n) t^n = \prod_{i=1}^{2} (1 - \lambda_i(p) p^3 t + p^7 t^2) (1 - \lambda_i(p) p^2 t + p^5 t^2).$$

Therefore we get the following theorem.

THEOREM 3. Let the notation and assumptions be as in Corollary 2. Define the L-function of φ_i by

$$L(s, \varphi_i) = \prod_{p \neq 2} (1 - \lambda_i(p)p^{-s} + p^{1-2s})^{-1}.$$

Then, up to the Euler 2-factor, the L-function of $\Phi_{\rm B}$ can be expressed by

$$L(s, \Phi_{\scriptscriptstyle B}) = \prod_{i=1}^{2} L(s-3, \varphi_i) L(s-2, \varphi_i).$$

References

- [1] A. N. Andrianov, Shimura's conjecture for Siegel's modular group of genus 3, Soviet Math. Dokl., 8 (1967), No. 6, 1474-1478.
- [2] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math., 44 (1978), 1-47.
- [3] G. Lion and M. Vergne, The Weil representation, Maslov index and theta series, Birkhäuser, Progress in Math., 6 (1980).
- [4] S. Niwa, Modular forms of half integral weight and the integral of certain theta functions, Nagoya Math. J., 56 (1974), 147-161.
- [5] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973). 440-481.
- [6] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J., 58 (1975), 83-126.
- [7] H. Yoshida, Siegel's modular forms and the arithmetic of quadratic forms, Invent. Math., 60 (1980), 193-248.
- [8] —, Weil's representations of the symplectic groups over finite fields, J. Math. Soc. Japan, 31 (1979), 399-426.
- [9] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan

96