J. Watanabe

Nagoya Math. J.
Vol. 86 (1982), 173-201

COUNTING THE NUMBER OF BASIC INVARIANTS FOR $G \subset G L(2, k)$ ACTING ON $k[X, Y]$

JUNZO WATANABE

List of notation

The notations used in this paper without explicit mention are listed below. Here R is a positively graded Noetherian ring, a a homogeneous ideal of R, and f, g, \cdots, h are homogeneous elements of R.
$\operatorname{dim} R=$ Krull dimension of R
emb. $\operatorname{dim} R=$ embedding dimension of R
ht $\mathfrak{a}=$ height of \mathfrak{a}
$\mu(\mathfrak{a})=$ minimal number of generators of \mathfrak{a}
hd $\mathfrak{a}=\mathrm{hd} R / \mathfrak{a}-1=$ homological dimension of \mathfrak{a}
$(f, g, \cdots, h)=$ ideal generated by f, g, \cdots, h
$[f g \cdots h]$ = row vector
$o(G)=$ order of a finite group G
$\mu(\mathfrak{a})$ and hd \mathfrak{a} are also written $\mu_{R}(\mathfrak{a})$ and $\operatorname{hd}_{R}(\mathfrak{a})$ when R needs to be mentioned. Polynomial rings are always regarded as graded rings with natural gradation.

Introduction

In this paper we consider a certain group representation ρ that is defined for each finite subgroup G of $G L(2, k) . \rho$ is explained as follows: Let G act linearly on the polynomial ring $R=k[x, y]$, and let $\mathfrak{a}=\left(R_{+}^{G}\right) R$ be the ideal of R generated by all the non-constant invariant forms. Then the representation module V of ρ is the space spanned by a set of basic relations (syzygies) of \mathfrak{a} over R. Since $\operatorname{hd} R / \mathfrak{a}=2$, we have that $\mu(\mathfrak{a})=$ $\operatorname{dim} V+1$. When $\operatorname{ch} k=0$ or otherwise $\operatorname{ch} k$ does not divide $o(G)$, a set of generators of the ideal \mathfrak{a} chosen from among invariant forms generate the ring of invariants R^{G} as an algebra over k. Consequently we also

Receiver May 6, 1980.
have emb. $\operatorname{dim} R^{G}=\operatorname{dim} V+1$; for example if $\operatorname{dim} V=2, R^{G}$ is a 'hypersurface'. The study of ρ has its origin in an attempt to answer the question raised by S . Goto which asks when R^{G} is a hypersurface, R being a polynomial ring of any dimension acted on linearly by a finite group G. It had been an empirically established fact that for every finite group G in $S L(2, C), R^{G}$ is a hypersurface, and any answer to Goto's problem should explain it. It is in fact proved here by showing $\operatorname{dim} V=2$ for $G \subset S L(2, C)$; although it does not generalize to answer Goto's problem, it leads to the question what ρ is for $G \subset G L(2, k)$ in general.

The main results of this paper are Theorem 3.6 and its proof, where ρ is determined for subgroups in $S L(2, C)$, and what is stated in $\S 7$, where ρ is determined for abelian groups in $G L(2, C)$. It should be emphasized that the primary interest of Theorem 3.6 lies not in the statement itself but in the method to prove it. In fact the invariant theory for finite groups of $G L(2, C)$ has been studied in its full detail, and for each $G \subset G L$ ($2, C$), a set of basic invariants has been (and can be) computed. (See, for example, [7] or [8].) Thus upon looking at it we at once have the statement of Theorem 3.6 and then we can determine ρ, but this is not our intention.

When G is abelian, R^{G} is isomorphic to a two dimensional normal semigroup ring $K[M]$, and the generators of M can best be dealt with by means of continued fractions. Let M be a normal semigroup in Z_{+}^{2} (expressed additively), and assume $\left\{\left(a_{i} b_{i}\right) \mid i=1,2, \cdots, m\right\}$ is the basis of M with the order that $a_{1}>a_{2}>\cdots>a_{m}$. Here we can assume a_{i} 's (and b_{i} 's) do not have a common divisor. Then any successive three terms a_{i}, a_{i+1}, a_{i+2} are related by the formula $a_{i} / a_{i+1}=B_{i}-a_{i+2} / a_{i+1}$, where B_{i} is the smallest positive integer such that $B_{i} a_{i+1} \geq a_{i}$. In this paper we do not assume this knowledge but we prove what is equivalent to it in a form suitable to our purpose (Proposition 6.2 and Proposition 6.4). This is partly for the sake of self-containedness and partly for that, in order to write $\rho(G)$ for an abelian group, we need the numbers $r_{i}=a_{i}-a_{i+1}$ instead of a_{i}, and it seems that the numbers r_{i} are occasionally more properly dealt with than a_{i} themselves. For example, from the fact that the sequence r_{i} is monotone decreasing follows an unexpected result (Theorem 8.9).

The definition of ρ is given in §2. Actually ρ is defined for any group acting on a polynomial ring R over a field, but only when $\operatorname{dim} R=2$ and
G is finite, we know 'a priori' the properties (i), (ii) of Theorem 2.4 are the case. These properties are a direct consequence of the so called structure theorem of homologically one dimensional ideals, and are quite helpful to determine the degree of $\rho(=\operatorname{dim} V)$. This might interest one to know other cases in which hd $\mathfrak{a}=1$ even when $\operatorname{dim} R \neq 2$. We have an example of such cases when $k^{*}=G L(1, k)$ acts linearly on $R=k[X, Y, Z]$ with $\operatorname{dim} R^{G}=2$. A proof for this based on the fact r_{i} is monotone decreasing, as mentioned above, is given in § 8.

The structure theorem of homologically one dimensional ideals is stated in §1. Theorem 2.1 in § 2 is a very basic fact in invariant theory (originally due to Hilbert) that makes it possible to replace generators of algebras by generators of ideals. Besides these two well known theorems little is presupposed in this paper.
$\S \S 4,5$, as well as $\S 1$, are of preliminary nature.
The author wishes to express his deepest thanks to Prof. H. Yamada, Prof. H. Morikawa, and especially to Prof. H. Matsumura for their patience and constant encouragement over the long period of his sickness. Special thanks are also due to K. Watanabe, S. Goto and Y. Namikawa for their valuable suggestions.

§ 1. The structure theorem of homologically one dimensional ideals

In this section R denotes a polynomial ring over an arbitrary field unless otherwise specified. $\quad R_{+}$denotes the homogeneous maximal ideal.

Assume a homogeneous ideal $\mathfrak{a} \subset R$ is minimally generated by f_{1}, f_{2}, \cdots, f_{n+1}, and hd $\mathfrak{a}=1$ (or we may also say $h d R / \mathfrak{a}=2$). Let

$$
0 \longrightarrow R^{n} \underset{M}{\longrightarrow} R^{n+1} \underset{F}{\longrightarrow} R
$$

be a minimal free resolution of R / a. We shall write an element of a free module as a row vector and represent a homomorphism between free modules as a matrix in such a way that, in the notation $M: R^{n} \rightarrow R^{n+1}$ for example, if $v \in R^{n}$, then its image by M is $v M$, the usual matrix product. Under this convention, F is a column matrix with entries a minimal set of generators of \mathfrak{a}, so that we may assume ${ }^{\tau} F=\left[f_{1} f_{2} \cdots f_{n} f_{n+1}\right] . \quad\left({ }^{\tau} F\right.$ is the transpose of F. Throughout, we will write a column matrix in this way in order to save space.) Since \mathfrak{a} is homogeneous, the entries of M may, as well as f_{i} 's, be taken homogeneous. We recall that an ideal I (in any ring R) is called perfect if $\operatorname{hd} R / I=\operatorname{ht} I$. Now let us state the
structure theorem of homologically one dimensional ideals in the homogeneous case.

Theorem 1.1. With the notation above, let M_{i} be the matrix obtained from M by deleting the i-th column, and let $D_{i}=\operatorname{det} M_{i}$. Then there is a homogeneous element $h \in R$ such that $f_{i}=(-1)^{i} h D_{i}$. h is a greatest common divisor of f_{i} 's, and h is a unit if and only if \mathfrak{a} is perfect (i.e., ht $a=2$).

For proof, see Peskine-Szpiro [5], Chaptre I, Theorem 3.3, where this is proved over a local ring. Homogeneous translation is immediate.

Let M be an n by $n+1$ matrix over R, and let $D_{i}=\operatorname{det} M_{i}$ be as in Theorem 1.1 above. We shall refer to D_{i} as the i-th maximal minor of M, and denote by $I(M)$ the ideal generated by all the D_{i}. We have

Proposition 1.2. Suppose

$$
0 \longrightarrow R^{n} \underset{M}{\longrightarrow} R^{n+1} \underset{F}{\longrightarrow} R
$$

is a complex, and $F \neq 0$ and F has no units as entries. Then the complex is exact if and only if ht $I(M) \geq 2$.

Proof. This is a special case of Buchsbaum-Eisenbud [1], Theorem.
Remark 1.3. Either of Theorem 1.1 and Proposition 1.2 can be regarded as a corollary of the other, but we treated them independently, as they are of different nature. In the sequel, Proposition 1.2 will be referred to as Buchsbaum-Eisenbud criterion.

Definition 1.4. Suppose that

$$
R^{\nu} \underset{M}{\longrightarrow} R^{\mu} \underset{F}{\longrightarrow} R
$$

is exact, $M \otimes R / R_{+}=0$, and the entries of M and F are homogeneous. A row vector $v \in R^{\mu}$ is called a relation of F if it is in $\operatorname{Ker} F$. Thus, for example, every row of M is a relation of $F . \quad M$ is called a relation matrix of F (or of $\operatorname{Im} F$). Note if M^{\prime} is another relation matrix of F, then there is an invertible matrix $U=\left[u_{i j}\right]$ such that $u_{i j} \in R$ are homogeneous and $M^{\prime}=U M$. A relation of F is said to be basic if it can be a row of a relation matrix of F. Thus, $v \in R^{\mu}$ is a basic relation if and only if $v \in$ $\operatorname{Ker} F$ and $v \notin\left(R_{+}\right) \operatorname{Ker} F$. Assume $\left[a_{1} a_{2} \cdots a_{\mu}\right.$] is a relation of F (and all a_{i} are homogeneous). Then we have: $\operatorname{deg} a_{1} f_{1}=\operatorname{deg} a_{2} f_{2}=\cdots=\operatorname{deg} a_{\mu} f_{\mu}$, whenever $a_{i} \neq 0$. Say this number is equal to p. Then p is called the
degree of the relation.
In Theorem 1.1, assume $M=\left[a_{i j}\right]$ and the i-th row of M is a relation of degree p_{i}. Then by definition we have: $\operatorname{deg} a_{i j}=p_{i}-d_{j}$ with $d_{j}=$ $\operatorname{deg} f_{j}$. Put $d=\operatorname{deg} h$. Then the theorem, in particular, says:

Corollary 1.5. $p_{1}+p_{2}+\cdots+p_{n}=d_{1}+d_{2}+\cdots+d_{n+1}-d . \quad$ (cf. Peskine and Szpiro [5] § 3.)

Remark 1.6. The numbers p_{i} may also be explained as follows: If $R(-p)$ denotes a free module on one generator having degree p, then p_{i} are such that M is a degree 0 map in the sequence

$$
0 \longrightarrow \oplus_{i=1}^{n} R\left(-p_{i}\right) \underset{M}{\nrightarrow} \oplus_{i=1}^{n+1} R\left(-d_{i}\right) \underset{F}{\longrightarrow} R(0) .
$$

The following two lemmas are application of Proposition 1.2 and Corollary 1.5 to be used in $\S 3$.

Lemma 1.7. Let $R=k[x, y]$, and a a homogeneous ideal of R minimally generated by f_{1}, f_{2}, and f_{3} such that $\operatorname{ht}\left(f_{1}, f_{2}\right)=2$. With $d_{1}=\operatorname{deg} f_{1}$, assume $d_{1}+d_{2}=d_{3}+2$. Then we have $\left(f_{1}, f_{2}\right): f_{3}=(x, y)$.

Proof. Note, in R, any ideal of height 2 is perfect. Let $M=\left[a_{i j}\right]$ and F be as in Theorem 1.1 with $n+1=3$. Then it is easy to see that $\left(f_{1}, f_{2}\right): f_{3}=\left(a_{13}, a_{23}\right)$. Since ht $\left(f_{1}, f_{2}\right)=2, a_{13} \neq 0$ and $a_{23} \neq 0$. This means $\operatorname{deg} a_{i 3}>0$ for $i=1,2$, because they cannot be units. Thus, if p_{1} and p_{2} are the degrees of the first and the second rows (relations) of M, then p_{i} $\geq d_{3}+1$ for $i=1,2$. This says that $2\left(d_{3}+1\right) \leq p_{1}+p_{2}=d_{1}+d_{2}+d_{3}$. (Note we can use Corollary 1.5 with $d=0$, since \mathfrak{a} is perfect.) Because of the condition posed on the degree of the generators, the only possibility is that $p_{1}=d_{3}+1$, which implies $\operatorname{deg} a_{13}=\operatorname{deg} a_{23}=1$. These two elements generate an ideal of height 2 , hence $\left(a_{13}, a_{23}\right)=(x, y)$ as desired.

Remarks 1.8. (i) For any two elements f_{1} and f_{2} in $R=k[x, y]$ with $\operatorname{ch} k=0$, if f_{3} is the Jacobian of f_{1} and f_{2}, then the condition of the lemma concerning degrees is satisfied.
(ii) Assume M is a relation matrix of ${ }^{\tau} F=\left[f_{1} f_{2} \cdots f_{\mu}\right]$. Then, as was said in the proof of the lemma, it generally holds that the ideal generated by all the elements that appear in the last column of M is the ideal (f_{1}, $\left.f_{2}, \cdots, f_{\mu-1}\right): f_{\mu}$.

Lemma 1.9. Let $R=k[x, y]$, where k is a field of characteristic 0.

Assume $f, h \in R$ are homogeneous elements such that $\operatorname{ht}(f, h)=2$ and deg $f \geq 2$, $\operatorname{deg} h \geq 2$. Let δ be the Jacobian determinant of f and h. Then we have that $\mu(f, h, \delta)=3$; in particular $\delta \notin(f, h)$.

Proof. We write $f_{x}=\partial f / \partial x$ and $f_{y}=\partial f / \partial y$ for any $f \in R$. Then by definition $\delta=\operatorname{det}\left(\begin{array}{cc}f_{x} & f_{y} \\ h_{x} & h_{y}\end{array}\right)$. Let us consider the matrix $M=\left(\begin{array}{rrr}-h_{x} & f_{x} & y \\ h_{y} & -f_{y} & x\end{array}\right)$. If D_{i} denotes the i-th maximal minor of M, we obtain the complex

$$
0 \longrightarrow R^{2} \xrightarrow[M]{\longrightarrow} R^{3} \underset{F}{ } R \text {, where }{ }^{\tau} F=\left[\begin{array}{ll}
D_{1} & -D_{2} \\
D_{3}
\end{array}\right] .
$$

(Note $M F=0$ holds generally.) Notice that

$$
\begin{aligned}
& D_{1}=x f_{x}+y f_{y}=(\operatorname{deg} f) f \\
& D_{2}=-x h_{x}-y h_{y}=-(\operatorname{deg} h) h \\
& D_{3}=h_{x} f_{y}-f_{x} h_{y}=-\delta
\end{aligned}
$$

Thus $I(M)$ contains f and h, and since $h t(f, h)=2$ by assumption, Buchsbaum-Eisenbud criterion proves that the complex is exact, and in particular it is a minimal free resolution of $R / \operatorname{Im} F$ (for otherwise a unit would appear in the matrix M). Thus the ideal $I(M)=(f, h, \delta)$ is minimally generated by three elements.

Remark 1.10. The lemma above holds more generally: let $R=k\left[x_{1}\right.$, $\left.x_{2}, \cdots, x_{n}\right], n \geq 2$, and assume $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ is a homogeneous system of parameters of R such that $\operatorname{deg} f_{i} \geq 2$ for all i. Then $\mu\left(f_{1}, f_{2}, \cdots, f_{n}, \delta\right)$ $=n+1$, where δ is the Jacobian determinant of \mathfrak{f}.

This can be proved by showing δ is a generator of the socle of the Gorenstein ring R / f, as was pointed out by S . Goto. The method here seems more appropriate for our purpose to prove Theorem 3.6.

§2. The representation ρ

We want to fix some notations and terminology as we review basic definitions and facts of invariant theory.

Let k be an algebraically closed field. When a linear algebraic group G over k acts on a k-algebra by k-automorphisms, we denote by $a^{g}(a \in R$, $g \in G)$ the image of a by the automorphism g. If $a=a^{g}$ for all $g \in G$, then a is an invariant. If a and a^{g} differ only by unit multiple for all $g \in G, a$ is a semi-invariant. By R^{G} will be denoted the ring of invariants, i.e., the subring of R consisting of all the invariants. If $M=\left[a_{i j}\right]$ is a
matrix over R, M^{g} will denote the matrix $\left[a_{i j}^{g}\right]$. When R^{G} is finitely generated over k, a set $\left\{f_{1}, f_{2}, \cdots, f_{\mu}\right\}$ of invariants is called a system of basic invariants if they generate the ring R^{G} over k and they are irredundant.

Now assume G is a linearly reductive linear algebraic group (i.e., every rational G-module, not necessarily finite dimensional, is completely reducible), and R is a finitely generated k-algebra. Then it is well known that R^{G} is finitely generated over k (when G acts k-rationally on R, of course).

The following fact on which the proof of finite generation of R^{G} is based is very important in this paper.

Theorem 2.1. Let G be linearly reductive, and R finitely generated over k. Assume R is positively graded and the action preserves grading. Let I $=\left(R_{+}^{G}\right) R$ be the ideal of R generated by all the invariants without constant terms. Then an ideal basis of I chosen from among invariant forms is an algebra basis of R^{G}, i.e., if $I=\left(f_{1}, f_{2}, \cdots, f_{\mu}\right), f_{i} \in R^{G}$, then $R^{G}=k\left[f_{1}, f_{2}, \cdots\right.$, f_{μ}].

Proof can be found wherever finite generation of R^{G} is proved, e.g. Mumford [] or Fogarty [].

When a ring is positively graded, the minimal number of generators of a homogeneous ideal and the embedding dimension of the ring have definite meaning. The theorem implies:

Corollary 2.2. $\mu(I)=\mathrm{emb} . \operatorname{dim} R^{G}$.
Remark 2.3. Later we concern ourselves only with (i) torus groups and (ii) finite groups when ch $k=0$, both of which are well known to be linearly reductive.

Now suppose R is a polynomial ring (and G linearly reductive). Let $R^{G}=k\left[f_{1}, f_{2}, \cdots, f_{\mu}\right]$ with $\mu=\mathrm{emb} . \operatorname{dim} R^{G}$. Then f_{i} are a minimal basis of the ideal $I=\left(R_{+}^{G}\right) R$. Put ${ }^{\tau} F=\left[f_{1} f_{2} \cdots f_{\mu}\right]$, and let M be a relation matrix of F, so that

$$
\left.R^{\nu} \xrightarrow[M]{\longrightarrow} R^{\mu} \underset{F}{\longrightarrow} \quad \text { is exact with minimal } \nu . \quad \text { (See } \S 1 .\right)
$$

Since f_{i} are invariant, we see that $R^{\nu} \xrightarrow[M^{8}]{\longrightarrow} R_{F}^{\mu} R$ is also exact, hence there is an invertible matrix $U=\left[u_{i j}\right]$ over R such that $M^{g}=U M$. If $\bar{u}_{i j} \in k$ denotes the residue class of $u_{i j}$ module R_{+}($=$the homogeneous maximal ideal of R), we see $\left[\bar{u}_{i j}\right]$ is uniquely determined by g, hence we
may write $\left[\bar{u}_{i j}\right]=\rho(g)$. Clearly ρ is a homomorphism, and thus we have obtained a representation. Since $\left(R_{+}\right) \operatorname{Ker} F$ and $\operatorname{Ker} F$ are both G-modules, G acts on $\operatorname{Ker} F /\left(R_{+}\right) \operatorname{Ker} F=V$, which is nothing but the representation module of ρ. Since G is linearly reductive, we may assume $\operatorname{Ker} F=V \oplus$ $\left(R_{+}\right) \operatorname{Ker} F$ as G-modules. If the rows of M have been chosen to be a basis of such V, it holds that $M^{g}=\rho(g) M$.

We will call $\rho: G \rightarrow G L_{k}(V)$ the representation of G to the syzygy space of F.

If hd $I=1, \rho$ has the following property.
Theorem 2.4. In the situation above assume hd $I=1$. If I is perfect, then,
(i) $\rho(G) \subset S L_{k}(V)$.
(ii) If $V=V_{1} \oplus V_{2}$ is a proper decomposition of V as G-modules and $\rho_{i}: G \rightarrow G L_{k}\left(V_{i}\right)$ are the corresponding representations, then $\rho_{i}(G) \not \subset S L_{k}\left(V_{i}\right)$, $i=1,2$.

Proof. (i) We may assume a relation matrix M of F is such that $M^{g}=\rho(g) M$ for any $g \in G$. It follows that if D is any maximal minor of M, then $D^{g}=\operatorname{det} \rho(g) D$. But according to Theorem 1.1, D is an invariant, which implies $\operatorname{det}(g)=1$.
(ii) M being as above, we may further assume that the first n_{1} rows of M span V_{1}. Let M_{1} be the submatrix consisting of these rows. If $\operatorname{det} \rho_{1}(g)=1$ for all $g \in G$, then all the maximal minors of M_{1} are invariants. Now compare the following two numbers:

$$
\begin{aligned}
& N_{1}=\operatorname{Min}\{\operatorname{deg} D \mid D \text { is a maximal minor of } M\} \\
& N_{2}=\operatorname{Min}\left\{\operatorname{deg} \Delta \mid \Delta \text { is a maximal minor of } M_{1}\right\} .
\end{aligned}
$$

We immediately see that $N_{2}<N_{1}$ since M_{1} is a proper submatrix of M. On the other hand since the maximal minors of M, being precisely f_{i} 's (modulo unit multiple), generate the ring of invariants, we have $N_{2} \geq N_{1}$. This contradiction proves (ii).

Remark 2.5. In Theorem 2.4 replace "I perfect" by "I not perfect". Then a greatest common divisor of f_{i} 's, say h, is a semi-invariant with character $\operatorname{det} \rho^{-1}$. In fact if D is any maximal minor of M, D is a semiinvariant with character det ρ. Since $h D$, being one of f_{i} 's, is an invariant, the assertion follows. It is easy to see that in this case, too, (ii) holds without any modification.

Remark 2.6. When a finite group G acts linearly on $R=k[x, y]$, we are in the situation of Theorem 2.4, provided $\operatorname{ch} k=0$ or $(\operatorname{ch} k, o(G))=1$. Let H be the subgroup of $G \subset G L(2, k)$ generated by all the reflexions. Then G / H acts on R^{H}, which is a polynomial ring (in two variables). Thus we may talk about ρ for G / H. It is easy to see that $\rho(G)$ and $\rho(G / H)$ are equivalent and, in particular, $\operatorname{Ker} \rho \supset H$. Accordingly we may assume, to obtain $\rho(G), G$ does not contain any reflexions. (cf. §7)

The next proposition applies to any finite $G \subset G L(2, C)$ not containing reflexions.

Proposition 2.7. Assume $\operatorname{ch} k=0$. Let $\rho: G \rightarrow G L_{k}(V)$ be a representation of (any) group G, having the property (i) and (ii) in Theorem 2.4. Assume ρ is completely reducible. If $G /[G, G]$ is cyclic of order p (say), then ρ decomposes into at most p irreducible factors.

Proof. Let $\rho=\rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{n}$ be a decomposition of ρ, and let $g \in G$ be a generator of $G /[G, G]$. Notice that $\operatorname{det} \rho_{i}(G)$ is a cyclic group generated by $\operatorname{det} \rho_{i}(g)$, since $\operatorname{det} \rho_{i}([G, G])=\{1\}$. Hence we can write det $\rho_{i}(g)=\omega^{a_{i}}$, where ω is a primitive p-th root of 1 . If $n>p$, we get a contradiction to Lemma 2.8 below.

Lemma 2.8. Assume there are given n integers a_{i}. If p is a positive integer such that $p<n$, then there is a proper subset $I \subseteq\{1,2, \cdots, n\}$ such that $\sum_{i \in I} a_{i} \equiv 0 \bmod p$.

Proof is left to the reader.

§3. The number of basic invariants for $G \subset S L(2, C)$

In this section we assume k is an algebraically closed field of characteristic 0 . G always denotes a finite subgroup of $S L(2, k) . \quad R$ is $k[x, y]$ on which G acts by linear transformation of x and y. We will always be assuming G is non-trivial, in which case G cannot leave a linear form invariant.

Notation 3.1. For $f_{1}, f_{2} \in R, J\left(f_{1}, f_{2}\right)$ denotes the Jacobian of f_{1} and f_{2}, i.e., $J\left(f_{1}, f_{2}\right)=\operatorname{det}\left[\partial f_{i} / \partial x_{j}\right]$, where $x_{1}=x$ and $x_{2}=y$.

Lemma 3.2. If $f, h \in R^{G}$, then $J(f, h) \in R^{G}$. More generally, if f and h are semi-invariants such that $f h \in R^{G}$, then $J(f, h) \in R^{G}$.

Proof is easy by direct computation.

Proposition 3.3. Let $R^{G}=k\left[f_{1}, f_{2}, \cdots, f_{n+1}\right]$ with $\operatorname{deg} f_{1} \leq \operatorname{deg} f_{2} \leq \operatorname{deg} f_{i}$, $i \geq 3$. Assume $\operatorname{deg} f_{1}>2$. Then $\operatorname{ht}\left(f_{1}, f_{2}\right)=2$.

Proof. Everything will be considered in R. Assume ht $\left(f_{1}, f_{2}\right)=1$. Then f_{1} and f_{2} have a greatest common divisor. Let it be f and write f_{i} $=f h_{i}, i=1,2$. Then one easily sees h_{1} is not a constant, and hence ht $\left(h_{1}, h_{2}\right)=2$. Since f_{1} is an invariant, G permutes the divisors of f_{1}, and the same is true for f_{2}. From the fact that h_{1} and h_{2} have no common divisor, it follows that f and h_{1} are semi-invariants. By the preceding lemma, $J\left(f, h_{1}\right)$ is an invariant whose degree is equal to $\operatorname{deg} f+\operatorname{deg} h_{1}-2$ $=\operatorname{deg} f_{1}-2$. This contradicts the assumption of $\operatorname{deg} f_{1}$ to be minimal and >2.

Proposition 3.4. Let $R^{a}=k\left[f_{1}, f_{2}, \cdots, f_{n+1}\right]$, f_{i} being a system of basic invariants. Assume $2<\operatorname{deg} f_{1} \leq \operatorname{deg} f_{2} \leq \operatorname{deg} f_{i}$ for $i \geq 3$. Set $\delta=J\left(f_{1}, f_{2}\right)$. Then f_{1}, f_{2}, δ can be a part of a system of basic invariants.

Proof. First of all δ is an invariant by Lemma 3.2. Let $\mathfrak{m}=\left(f_{1}, f_{2}\right.$, $\left.\cdots, f_{n+1}\right) R^{G}$ be the homogeneous maximal ideal of R^{a}. Then by comparing the degrees of the generators of \mathfrak{m}^{2} and the degree of δ, we see that if $\delta \in \mathfrak{m}^{2}$, then the only possibility is $\delta=f_{1}^{2}$ (mod unit multiple), which cannot be the case by Lemma 1.9. Thus $\delta \notin \mathfrak{m}^{2}$. Now it suffices only to show that f_{1}, f_{2} and δ are linearly independent over k, which is true again by Lemma 1.9.

Proposition 3.5. Let $R^{G}=k\left[f_{1}, f_{2}, \cdots, f_{n+1}\right]$ with basic invariants f_{i}. Assume $2<\operatorname{deg} f_{1} \leq \operatorname{deg} f_{2} \leq \operatorname{deg} f_{1}$ for $i \geq 3$, and $f_{n+1}=J\left(f_{1}, f_{2}\right)$. Then (f_{1}, $\left.f_{2}, \cdots, f_{n}\right): f_{n+1}=(x, y)$.

Proof. $\left(f_{1}, f_{2}, \cdots, f_{n}\right) ; f_{n+1} \supset\left(f_{1}, f_{2}\right): f_{n+1}=(x, y)$ by Lemma 1.7. (cf. Remark 1.8.)

Theorem 3.6. Write $R^{G}=k\left[f_{1}, f_{2}, \cdots, f_{n+1}\right]$ with minimal n. Then n $=2$. Moreover we can choose f_{i} so that $f_{3}=J\left(f_{1}, f_{2}\right)$.

Proof. Case I. Assume $\operatorname{deg} f_{i}>2$, for all i. Then, by Proposition 3.4, we may further assume $\operatorname{deg} f_{1} \leq \operatorname{deg} f_{2} \leq \operatorname{deg} f_{i}$ for $i \geq 3$, and $f_{n+1}=$ $J\left(f_{1}, f_{2}\right)$. Put ${ }^{\tau} F=\left[f_{1} f_{2} \cdots f_{n+1}\right]$ and let M be a relation matrix of F over R, so that we have the exact sequence

$$
0 \longrightarrow R^{n} \underset{M}{\longrightarrow} R^{n+1} \underset{F}{\longrightarrow} R .
$$

Let $\rho: G \rightarrow G L_{k}(V)$ be the representation of G to the syzygy space of F. We may assume M has been chosen so that $M^{g}=\rho(g) M$ for $g \in G$. (See § 2.) By Proposition 3.5 and Remark 1.8 (ii), there are at least two basic relations of degree equal to $\operatorname{deg} f_{n+1}+1$, which, say, is equal to p. Let M_{1} be the matrix consisting of all the rows of M which are relations of degree p (see Definition 1.4), and M_{2} the matrix consisting of the other rows of M. Further let V_{1} and V_{2} be the vector spaces spanned by the rows of M_{1} and of M_{2} respectively. It is clear that V decomposes: $V=$ $V_{1} \oplus V_{2}$ as G-modules, and correspondingly $\rho=\rho_{1} \oplus \rho_{2}$.

Let us restrict our attension to M_{1}, V_{1} and ρ_{1}. Because all the rows of M_{1} are relations of degree p, all the elements in the last column of M_{1} are either linear forms or 0 . Thus, in view of Proposition 3.5, we can assume that the last column of M_{1} is ${ }^{\tau}[x y 00 \cdots 0]$. Now consider the effect of $g \in G$ to the last column of $M_{1} . g$ transforms ${ }^{\tau}[x y 0 \cdots 0]$ to ${ }^{\tau}\left[x^{g} y^{g} 0 \cdots 0\right]$, hence $\rho_{1}(g)$ takes the form

$$
\rho_{1}(g)=\left(\left.\frac{\rho_{11}(g)}{0}\right|_{\rho_{12}(g)} ^{*}\right),
$$

where $\rho_{11}(g)$ is a 2×2 matrix satisfying

$$
\rho_{11}(g)\binom{x}{y}=\binom{x^{g}}{y^{g}}
$$

so that $\operatorname{det} \rho_{11}(g)=1$. Now by the complete reducibility of ρ and by Theorem 2.4 we are forced to conclude that there have been only two basic relations and therefore $n=2$.

Case II. Assume $\operatorname{deg} f_{1}=2$. Then f_{1} is either a product of two independent linear forms or a square of a linear form. Hence we may assume that, by change of variables, f_{1} is either $x y$ or x^{2}. Keeping in mind the fact $G \subset S L(2, k)$, one easily sees that in the first case ($f_{1}=x y$), G is generated by

$$
\left(\begin{array}{ll}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right), \quad \text { with } \omega^{s}=1
$$

and in the second case, G is generated by $-E_{2}$. In either case $R^{G}=$ $k\left[x y, x^{s}, y^{s}\right]$ for some s, hence $n=2$. Rewrite $R^{g}=k\left[x y, x^{s}+y^{s}, x^{s}-y^{s}\right]$. Then the last generator is the Jacobian of the first two.
Q.E.D.

§4. Monomial ideals in $k[x, y]$ and their syzygy

The first lemma and the example following it are easy and proof is omitted.

Lemma 4.1. Let R be a graded UFD, and let \mathfrak{a} be a homogeneous ideal (minimally) generated by two elements: (f, g). Then we have:
(i) $\operatorname{hd} R / a=2$. To be precise, if $f=f_{1} d$ and $g=-g_{1} d$ with $d a$ greatest common divisor of f and g, then

$$
\begin{aligned}
& 0 \longrightarrow R \longrightarrow R^{2} \longrightarrow R \\
& {\left[g_{1} f_{1}\right] \quad{ }^{\tau}[f g]}
\end{aligned}
$$

is a minimal free resolution of R / a.
(ii) Assume $\left[\begin{array}{ll}b & a\end{array}\right]$ is a relation of ${ }^{\circ}[f g]$ (i.e., $\left.[b a]^{5}[f g]=0\right)$. Then a basic relation of ${ }^{\tau}[f g]$ is obtained from $[b a]$ by dividing out a greatest common divisor of b and a, i.e., if $d=G C D(b, a), 1 / d[b a]$ is it.
(iii) Assume $[b a]$ is a relation of ${ }^{\circ}[f g]$, and b and a are homogeneous. Then $\operatorname{deg} b \geq \operatorname{deg} a \Leftrightarrow \operatorname{deg} f \leq \operatorname{deg} g$.

Example 4.2. Let $R=k[x, y]$ and let $f=x^{b} y^{b}, g=x^{a^{\prime}} y^{b^{\prime}}$ with $a>a^{\prime}$ and $b<b^{\prime}$. Set $a-a^{\prime}=r$ and $b^{\prime}-b=s$. Then a minimal free resolution of R / \mathfrak{a} is

$$
\begin{aligned}
& 0 \longrightarrow R \longrightarrow R^{2} \longrightarrow \\
& {\left[-y^{s} x^{r}\right]^{r} } \\
& {[f \mathrm{~g}] }
\end{aligned}
$$

Next we consider a relation matrix of a general monomial ideal in $R=k[x, y]$. Let \mathfrak{a} be the ideal generated by the monomials

$$
f_{i}=x^{a_{i} y^{b_{i}}}, i=1,2, \cdots, n+1, n \geq 1
$$

If the generators have been chosen minimal, we may assume, with suitable numbering of the generators, that $a_{1}>a_{2}>\cdots>a_{n+1}$ and $b_{1}<b_{2}<\cdots$ $<b_{n+1}$. With the positive integers $r_{i}=a_{i}-a_{i+1}$ and $s_{i}=b_{i+1}-b_{i}, i=$ $1,2, \cdots, n$, we define the matrix M to be

$$
\left[\begin{array}{cccccc}
-y^{s_{1}} & x^{r_{1}} & 0 & 0 & \cdots \\
0 & -y^{s_{2}} & x^{r_{2}} & 0 & 0 & \cdots
\end{array}\right] .
$$

Now we have

Proposition 4.3. The matrix M above is a relation matrix of ${ }^{\tau} F=$ [$f_{1} f_{2} \cdots f_{n+1}$]. That is,

$$
0 \longrightarrow R^{n} \underset{M}{\longrightarrow} R^{n+1} \underset{F}{\longrightarrow} R
$$

is a minimal free resolution of R / a.
Proof. That $M F=0$ is obvious. Among the maximal minors of M are a power of x and a power of y. Hence ht $I(M)=2$. This shows the complex is exact by Buchsbaum-Eisenbud criterion.

In the next remark, we want to show the maximal minors of M explicitly, but we treat M a little more generally for a later purpose.

Remark 4.8. Let

$$
M=\left(\begin{array}{ccccc}
B_{1} & A_{1} & & & \\
& B_{2} & A_{2} & & \\
& & & \cdots \cdots \cdots \cdots & \\
& & & \cdots \cdots \cdots \cdots & \\
& & & & B_{n}
\end{array}\right]
$$

Then the i-th minor of M is, disregarding the signs,

$$
D_{i}=\prod_{j=1}^{i-1} B_{j} \prod_{j=i}^{n} A_{j} .
$$

In particular, $D_{1}=\prod_{j=1}^{n} A_{j}$, and $D_{n+1}=\prod_{j=1}^{n} B_{j}$.
Remark 4.6. Let \mathfrak{a} and M be as in Proposition 4.3. Then the maximal minors of M coincide with the generators of \mathfrak{a} if and only if \mathfrak{a} is perfect, which is equivalent to $a_{n+1}=b_{1}=0$.

The following lemma is used in $\S 6$.
Lemma 4.7. Let M and F be the matrices given in Proposition 4.3. Let M^{\prime} be matrix of the following type:

$$
\left(\begin{array}{cccc}
* & x^{r_{1}} & & \\
& * & x^{r_{2}} & \\
& & \cdots & \\
& & \cdots & \\
& & & \cdots
\end{array}\right)
$$

where the elements in the *-ed positions are known only in the quotient field of R (and might not be in R). Even then $M^{\prime} F=0$ implies $M^{\prime}=M$.

Proof. This is clear because the condition $M^{\prime} F=0$ determines the elements in the $*$-ed positions uniquely.

§ 5. Certain monomial ideals in $k[x, y]$ and $k[X, Y, Z]$

We denote by Z_{+}^{2} and Z_{+}^{3} the additive semigroups of non-negative intergers of rank 2 and rank 3.

In this and the next sections, we are primarily concerned with the subsemigroups $M_{p, r} \subset Z_{+}^{2}$ and $S_{p, r} \subset Z_{+}^{3}$ defined as follows:

Definition 5.1. For any pair of positive integers p, r, we define

$$
\begin{aligned}
M_{p, r} & =\left\{[a b] \in Z_{+}^{2} \mid a+r b \in(p)\right\} \quad \text { and } \\
S_{p, r} & =\left\{[a b l] \in Z_{+}^{3} \mid a+r b-p \ell=0\right\} .
\end{aligned}
$$

Here $(p)=p Z$, the set of multiples of p.
Remark 5.2. (i) Note that the projection $[a b \ell] \rightarrow[a b]$ gives an isomorphism from $S_{p, r}$ onto $M_{p, r}$ as semigroups.
(ii) When $r \equiv r^{\prime}(p), M_{p, r}$ and $M_{p, r^{\prime}}$ are the same subset of Z_{+}^{2}, but $S_{p, r}$ and $S_{p, r^{\prime}}$ may be different as sets, although they are isomorphic as semigroups, since they are isomorphic to $M_{p, r}=M_{p, r^{\prime}}$.

Now assume, temporarily, k is an algebraically closed field of characteristic 0 , and let $\omega \in k$ be a primitive p-th root of 1 . Let us consider the automorphism g of the polynomial ring $R=k[x, y]$ that takes x to ωx and y to $\omega^{r} y$. Then $x^{a} y^{b}$ is left unchanged by g if and only if $[a b] \in$ $M_{p, r}$. Hence if G is the cyclic group of automorphisms of R generated by g, then the ring of invariants R^{G} is the semigroup ring $k\left[M_{p, r}\right]$. If a $=\left(R_{+}^{G}\right) R$, then by Theorem 2.1 and Remark 2.3 the minimal ideal basis for \mathfrak{a} consisting of monomials is a minimal set of generators of R^{G} as a k-algebra, which is precisely the minimal basis of the semigroup $M_{p, r}$. (Note that a basis for $M_{p, r}$ is unique.) The situation for $S_{p, r}$ is the same as for $M_{p, r}$ if G is replaced by a certain action of a 1 -dimensional torus. In fact consider the action of $T=G L(1, k)$ on the polynomial ring $A=$ $k[X, Y, Z]$ defined by

$$
X \longrightarrow t X, \quad Y \longrightarrow t^{r} Y, \quad Z \longrightarrow t^{-p} Z, \quad \text { for } t \in T
$$

Then the ring of invariants A^{T} is the semigroup ring $k\left[S_{p, r}\right]$, and the minimal generating set of the semigroup is a minimal set of generators of the ideal $\left(A_{+}^{T}\right) A$.

Let us fix our notations for the rings and the ideals corresponding to $M_{p, r}$ and $S_{p, r}$ as follows:

Notation 5.3.

$$
\begin{array}{ll}
R=k[x, y]=k\left[Z_{+}^{2}\right] & A=k[X, Y, Z]=k\left[Z_{+}^{3}\right] \\
R_{p, r}=k\left[M_{p, r}\right] & A_{p, r}=k\left[S_{p, r}\right] \\
\mathfrak{a}_{p, r}=\left(M_{p, r}\right) R & I_{p, r}=\left(S_{p, r}\right) A
\end{array}
$$

To be precise, $R_{p, r}\left(\right.$ resp. $A_{p, r}$) is the subring of $k[x, y]$ (resp. $k[X, Y, Z]$) generated by those monomials whose exponents are in $M_{p, r}$ (resp. $S_{p, r}$), and $\mathfrak{a}_{p, r}$ (resp. $I_{p, r}$) is the ideal of R (resp. A) generated by the monomials $\neq 1$ in $R_{p, r}\left(\right.$ resp. $\left.A_{p, r}\right)$.

Remark 5.4. In the notations above, k is an arbitrary field. Since the semigroups are defined certainly independent of the field, the other things are as well defined, although, for example, $R_{p, r}$ may not appear as the ring of invariants for some k. Even then it is true that, as long as the generators are concerned, the ideal, the algebra and the semigroup in the correspondence are regarded as the same. This is easy to see once it is known for k such that $k=\bar{k}$ and $\operatorname{ch} k=0$.

Remark 5.5. We have the following commutative diagram of rings:

where i are the inclusions and ψ is the projection $X \rightarrow x, Y \rightarrow y, Z \rightarrow 1$. ψ induces the isomorphism $A_{p, r} \xrightarrow{\sim} R_{p, r}$ which corresponds to the isomorphism of the semigroups $S_{p, r} \xrightarrow{\sim} M_{p, r}$. Note also that $\operatorname{Ker} \psi=(Z-1) A$ and $A / I_{p, r} \otimes_{A} A /(Z-1) \xrightarrow{\sim} R / \mathfrak{a}_{p, r}$.

Remark 5.6. (i) In the sequel whenever we say that

$$
\left[a_{i} b_{i}\right], \quad i=1,2, \cdots, n+1
$$

is the minimal basis of the semigroup $M_{p, r}$, it will be tacitly assumed that they are arranged in the order that $a_{1} \geq a_{2} \geq \cdots \geq a_{n+1}$, so that the fact is $a_{1}>a_{2}>\cdots>a_{n+1}$ and $b_{1}<b_{2}<\cdots<b_{n+1}$. (cf. the paragraph preceding Proposition 4.3.) The same will be applied to $S_{p, r}$, so if we say

$$
\left[a_{i} b_{i} \ell_{i}\right], \quad i=1,2, \cdots, n+1
$$

is the minimal basis of $S_{p, r}$, then $a_{1}>a_{2}>\cdots,>a_{n+1}$, and $b_{1}<b_{2}<\cdots$ $<b_{n+1}$. As to the sequence ℓ_{i} see Lemma 5.8 below.
(ii) Note, with the convention made above, that the first term of the minimal basis of $M_{p, r}$ is [$p 0$] and that of $S_{p, r}$ is [$\left.p 01\right]$.

Remark 5.7. When $p=r$, the minimal basis of $M_{p, p}$ is [$p 0$] and [01] with $n=1$. This corresponds to the ring of invariants of $P=k[x, y]$ under the action of the automorphism

$$
\left(\begin{array}{ll}
\omega & \\
& 1
\end{array}\right)
$$

where ω is a primitive p-th root of 1 . In fact $R^{a}=k\left[x^{p}, y\right]$. Although one might expect the notation ' $M_{p, 0}$ ' in this case, we do not let $r=0$.

Lemma 5.8. Suppose $\left[a_{i} b_{i} \ell_{i}\right.$], $i=1,2, \cdots, n+1$ is the minimal basis of $S_{p, r}$. Then we have that $\ell_{1} \leq \ell_{2} \leq \ell_{3} \leq \cdots \leq \ell_{n+1}$.

Proof. By the definition of $S_{p, r}$

$$
a_{i}=p \ell_{i}-r b_{i} \quad \text { and } \quad a_{i+1}=p \ell_{i+1}-r b_{i+1}
$$

Hence $a_{i}-a_{i+1}=p\left(\ell_{i}-\ell_{i+1}\right)+r\left(b_{i+1}-b_{i}\right)$. Note we have that $a_{i}-a_{i+1}$ >0 and $b_{i+1}-b_{i}>0$. Then, if ($\ell_{i}-\ell_{i+1}$) were positive, we would have $a_{i}-a_{i+1}>p$, a contradiction to $a_{1}=p \geq a_{i}$.

Proposition 5.9. Put $\mathfrak{a}=\mathfrak{a}_{p, r}$ and $I=I_{p, r}$. Then,
(i) $\operatorname{hd}_{R} R / \mathfrak{a}=2$, and \mathfrak{a} is perfect.
(ii) $\mathrm{hd}_{4} A / I=2, I$ is imperfect and Z is the greatest common divisor of (the generators of) I.
(iii) If L is a minimal free resolution of A / I over $A, L \otimes_{A} A /(Z-1)$ is a minimal free resolution of R / a over R, with the identification $A /(Z-1)$ $\xrightarrow{\sim} R$.

Proof. (i) Since \mathfrak{a} contains a power of x and a power of y, ht $\mathfrak{a}=$ $2=\mathrm{hd} R / \mathrm{a}$.
(ii) Set $r_{i}=a_{i}-a_{i+1}, s_{i}=b_{i+1}-b_{i}$ and $k_{i}=\ell_{i+1}-\ell_{i}, i=1,2, \cdots$, n. (Note $k_{i} \geq 0$ by the preceding lemma.) Define the matrices M_{1} and F_{1} as follows:

$$
\begin{aligned}
& { }^{\tau} F_{1}=\left[\begin{array}{llll}
X^{a_{1}} Y^{b_{1}} Z^{\ell_{1}} & X^{a_{2}} Y^{b_{2}} Z^{\ell_{2}} \cdots \cdots X^{a_{n+1}} Y^{b_{n+1}} Z^{\ell_{n+1}}
\end{array}\right] .
\end{aligned}
$$

Then we claim that

$$
L: 0 \longrightarrow A^{n} \underset{M_{1}}{\longrightarrow} A^{n+1} \underset{F_{1}}{\longrightarrow} A
$$

is a minimal free resolution of A / I. In fact it is obvious that $M_{1} F_{1}=0$. To prove the complex is exact, it suffices to show ht $I\left(M_{1}\right) \geq 2$ by Buchsbaum-Eisenbud criterion. This indeed is true for $I\left(M_{1}\right)$ contains a power of X and a monomial in Y and Z. (Consider the first and the last minors of M_{1}.) For the second assertion, note that the first of the minimal generators of I is $X^{p} Z$. On the other hand, the first maximal minor of M_{1} is X^{α}, where $\alpha=\sum s_{i}$, and α is equal to p. This shows $I\left(M_{1}\right) Z=I$.
(iii) We can assume L is the complex given in the proof of (ii). In L substitute Z by 1, and one obtains the minimal free resolution of R / a given in $\S 4$. (One may also use the argument of Lemma 8.3.)

§ 6. The finite sequence $\Phi(p, r)$

Definition 6.1. Let p, r be positive integers, and let $\left[a_{i} b_{i} \ell_{i}\right.$], $i=1$, $2, \cdots, n+1$ be the minimal generators of $S_{p, r}$. With the assumption of Remark 5.6, let $a_{i}-a_{i+1}=r_{i}, i=1,2, \cdots, n$. Then we denote the sequence r_{j} symbolically by $\Phi(p, r)=r_{1} \oplus r_{2} \oplus \cdots \oplus r_{n}$. If it happens that $r_{2} \oplus r_{3}$ $\oplus \cdots \oplus r_{n}=\Phi\left(p^{\prime}, r^{\prime}\right)$ for some p^{\prime} and r^{\prime}, we shall write $\Phi(p, r)=r_{1} \oplus$ $\Phi\left(p^{\prime}, r^{\prime}\right)$. Note $\Phi(p, r)$ depends only on the residue class of r modulo p.

The following proposition, of which the proof is carried out elementarily, enables us to compute $\Phi(p, r)$ actually.

Proposition 6.2. Assume $p>r>0$. Let $p^{\prime}=p-r$ and let r^{\prime} be the integer such that $r \equiv r^{\prime}\left(p^{\prime}\right)$ and $p^{\prime} \geq r^{\prime}>0$. Suppose $\left[a_{i} b_{i} \ell_{i}\right], i=1,2$, $\cdots, n+1$ are the minimal generators of $S_{p, r}$ indexed as in Remark 5.6. Then:
(i) $\left[a_{i} b_{i}\right], i=1,2, \cdots, n+1$ are the minimal generators of $M_{p, r}$.
(ii) $\left[a_{i} b_{i}-\ell_{i}\right], i=2,3, \cdots, n+1$ are the minimal generators of $M_{p^{\prime}, r^{\prime}}$.

Proof. (i) See Remark 5.2 (i).
(ii) \quad Set $S=S_{p, r}, M=M_{p, r}$ and $M^{\prime}=M_{p^{\prime}, r^{\prime}}$. Let S^{\prime} be the semigroup in Z_{+}^{3} generated by [$a_{i} b_{i} \ell_{i}$], $i=2,3, \cdots, n+1$. Consider the linear map $f: Z^{3} \rightarrow Z^{2}$ that sends [$a b l$] to [ab-l]. We are going to show that f induces an isomorphism of S^{\prime} onto M^{\prime}, which proves the assertion, for certainly generators are mapped to generators by an isomorphism of semigroups.

Step I. First let us note that $b_{i}-\ell_{i} \geq 0$ for $i \neq 1$. In fact if $\ell_{i}-$ $b_{i}>0$, then it follows that $a_{i}=p \ell_{i}-r b_{i}=p\left(\ell_{i}-b_{i}\right)+(p-r) b_{i}>p$ because of $b_{i} \geq 0$. This contradicts the fact $p=a_{1}>a_{i}$ for $i \neq 1$.

Step II. We show that $\left[a_{i} b_{i}-\ell_{i}\right] \in M^{\prime}$ provided that $i \neq 1$, i.e., $f\left(S^{\prime}\right)$ $\subset M^{\prime}$. By definition $a_{i}+r b_{i}=p \ell_{i}=\left(r+p^{\prime}\right) \ell_{i}$. This, together with the fact that $r \equiv r^{\prime}(p)$, implies $a_{i}+r^{\prime}\left(b_{i}-\ell_{i}\right) \equiv 0\left(p^{\prime}\right)$, i.e., $\left[a_{i} b_{i}-\ell_{i}\right] \in M^{\prime}$.

Step III. We prove that, for any $\left[\begin{array}{ll}a & b^{\prime}\end{array}\right] \in M^{\prime}$, there is $\left[\begin{array}{ll}a & b\end{array}\right] \in S=S_{p, r}$ such that $b-\ell=b^{\prime}$. (Note, presently, we do not claim [abl] is in $S^{\prime \prime}$.) For this consider the system of linear equations

$$
\begin{align*}
& a+r b=p \ell \tag{*}\\
& b-\ell=b^{\prime} \tag{1}
\end{align*}
$$

where b and ℓ are regarded as unknowns. We want to find a solution $\left[\begin{array}{ll}b & \ell\end{array}\right]$ in Z_{+}^{2} (then [$\left.\begin{array}{lll}a & b & \ell\end{array}\right]$ is the required element in S).

Since $p=r+p^{\prime}$, (1) is equivalent to

$$
\begin{equation*}
a+r(b-\ell)=p^{\prime} \ell . \tag{1}
\end{equation*}
$$

Since $r \equiv r^{\prime}\left(p^{\prime}\right)$, we have the number $B \in Z$ that satisfies $r=r^{\prime}+B p^{\prime}$. It can easily be proved that $r \geq r^{\prime}$, i.e., $B \geq 0$. (See the proof of Proposition 6.5 below.) With the integer B and with (2), (1)' is equivalently transformed to

$$
\begin{equation*}
a+r^{\prime} b^{\prime}=p^{\prime} \ell-B p^{\prime} b^{\prime} \tag{1}
\end{equation*}
$$

That $\left[a b^{\prime}\right] \in M^{\prime}$ implies the existence of ℓ^{\prime} such that

$$
a+r^{\prime} b^{\prime}=p^{\prime} \ell^{\prime}
$$

Therefore (1)" is equivalent to

$$
\begin{align*}
& \ell^{\prime}=\ell-B b^{\prime}, \quad \text { i.e., } \quad \ell=\ell^{\prime}+B b^{\prime} . \tag{3}\\
& b=b^{\prime}+\ell=(B+1) b^{\prime}+\ell^{\prime} . \tag{4}
\end{align*}
$$

For b, we have
(3) and (4) is the required solution of $\left(^{*}\right.$); in the matrix notation

$$
\binom{b}{\ell}=\left(\begin{array}{cc}
B+1 & 1 \\
B & 1
\end{array}\right)\binom{b^{\prime}}{\ell^{\prime}}
$$

where, we repeat, B is the integer satisfying $r=r^{\prime}+B p^{\prime}$.
Step IV. We prove $\left.f\right|_{s^{\prime}}: S^{\prime} \rightarrow M^{\prime}$ is surjective. Let [$\left.a^{\prime} b^{\prime}\right]$ be a member of the minimal basis of M^{\prime}. Then $p^{\prime} \geq a^{\prime}$. In Step III we showed there was $\left[\begin{array}{ll}a & b\end{array}\right] \in S$ such that $a=a^{\prime}$ and $b-\ell=b^{\prime}$. Since S is generated by S^{\prime} and $\left[a_{1} b_{1} \ell_{1}\right]=\left[\begin{array}{lll}p & 1 & 1\end{array}\right]$, and since $p>p^{\prime},\left[\begin{array}{ll}a & b\end{array}\right]$ above has to be contained in S^{\prime}. Because $\left.f\right|_{s^{\prime}}$ is a homomorphism of semigroups, this proves it is surjective.

That $\left.f\right|_{s^{\prime}}$ is injective is in fact trivial; an argument, for example, is to consider the ring homomorphism $k\left[S^{\prime}\right] \rightarrow k\left[M^{\prime}\right]$ which f induces. The rings are both 2 -dimensional domains, and it can have no kernel.
Q.E.D.

Remark 6.3. In the course of proof we actually proved that the linear map

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & B+1 & 1 \\
0 & B & 1
\end{array}\right): Z^{3} \rightarrow Z^{3}
$$

induces an isomorphism between S^{\prime} and $S_{p^{\prime}, r^{\prime}}$.
Proposition 6.4. Let $p>r>0$ be positive integers. Then we have

$$
\begin{aligned}
& \Phi(p, r)=r \oplus \Phi\left(p^{\prime}, r^{\prime}\right), \quad \text { where } \\
& p^{\prime}=p-r, \quad \text { and } \quad r^{\prime} \equiv r(p) .
\end{aligned}
$$

Proof. Immediate by Proposition 6.2 and the definition of $\Phi(p, r)$.
Since $\Phi(p, r)$ depends only on the residue class of $r \bmod p$, we may always be assuming $p \geq r>0$. By Remark 5.7, $\Phi(p, p)=p$. Thus the sequence $\Phi(p, r)$ ends when it has reduced to $\Phi\left(r_{n}, r_{n}\right)=r_{n}$. Here are some properties of $\Phi(p, r)$ that follow immediately from Proposition 6.4.

Proposition 6.5. Let $\Phi(p, r)=r_{1} \oplus r_{2} \oplus \cdots \oplus r_{n}$. Then: (i) $r_{1} \geq r_{2}$ $\geq \cdots \geq r_{n}$. (ii) If c is a positive integer, $\Phi(c p, c r)=c r_{1} \oplus c r_{2} \oplus \cdots \oplus c r_{n}$. (iii) $r_{n}=(p, r)$, the greatest common divisor of p and r.

Proof. (i) Let p^{\prime} and r^{\prime} be as in Proposition (6.4). By induction it suffices to show $r \geq r^{\prime}$. Assume $\frac{1}{2} p \geq r$. Then $p^{\prime}=p-r \geq r$, hence $r=r^{\prime}$. Assume $\frac{1}{2} p<r$. Then $p^{\prime}=p-r<r$, so $r^{\prime} \leq p^{\prime}<r$. (ii) Easy
by induction. (iii) It is easy to see $(p, r)=\left(p^{\prime}, r^{\prime}\right)$, hence the assertion is immediate by induction.

The next theorem shows not only the generators but the syzygies of $I_{p, r}$ are related to those of $\mathfrak{a}_{p^{\prime}, r^{\prime}}$.

Theorem 6.6. As in Proposition 6.2, assume $p>r>0$, and $p^{\prime}=p-r$ and $r^{\prime} \equiv r\left(p^{\prime}\right)$. Let M_{1} be the matrix defined in the proof of Proposition 5.9:

$$
M_{1}=\left(\begin{array}{ccc}
-Y^{s_{1}} Z^{k_{1}} & X^{r_{1}} & \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
& \cdots \cdots \cdots \cdots & \\
& -Y^{s_{n}} Z^{k_{n}} \quad X^{r_{n}}
\end{array}\right)
$$

so that

$$
0 \longrightarrow A^{n} \underset{M_{1}}{\longrightarrow} A^{n+1} \underset{F_{1}}{\longrightarrow} A
$$

is a minimal free resolution of $A / I_{p, r}$. Define the matrix M^{\prime} by

Then M^{\prime} is a relation matrix of $\mathfrak{a}_{p, r}$ over $R=k[x, y]$.
Proof. Let M_{1}^{\prime} be the matrix obtained from M_{1} by omitting the first row and the first column:

$$
M_{1}=\left(\begin{array}{c|c}
* & * * * * \\
\hline * & M_{1}^{\prime} \\
* & *
\end{array}\right)
$$

Let $e_{i}=X^{a_{i}} Y^{b_{i}} Z^{\ell_{i}}, i=1,2, \cdots, n+1$ be the minimal generators of $I_{p, r}$, and define the matrix F_{1}^{\prime} by $F_{1}^{\prime}=\left[e_{2} e_{3} \cdots e_{n+1}\right]$. Then we have the exact sequence

$$
L_{1}^{\prime}: 0 \longrightarrow A^{n-1} \underset{M_{1}^{\prime}}{\longrightarrow} A^{n} \xrightarrow[F_{1^{\prime}}]{ } A
$$

(To prove this is exact, use Buchsbaum-Eisenbud criterion.) In the complex L_{1}^{\prime} substitute X by x, Y by y, and Z by y^{-1}, and one obtains a complex of free modules over $\bar{R}=k\left[x, y, y^{-1}\right]$:

$$
L^{\prime}: 0 \longrightarrow \bar{R}^{n-1} \xrightarrow[M^{\prime}]{\longrightarrow} \bar{R}^{n} \underset{F^{\prime}}{\longrightarrow} \bar{R},
$$

where M^{\prime} is the matrix in the statement of our present proposition. The complex L^{\prime} is exact, for it is nothing else than $L_{1}^{\prime} \otimes_{A} A /(Y Z-1)$, and $Y Z-1$, being inhomogeneous, cannot be a zerodivisor on the cokernel of F_{1}^{\prime}. Proposition 6.2 says precisely that the entries of F^{\prime} are the minimal generators of $\mathfrak{a}_{p^{\prime}, r^{\prime}}$, and we are in the situation where Lemma 4.7 applies, so that the fact is that the complex L^{\prime} is defined over $R=k[x, y]$ and the maps restrict to the submodules $R^{\nu} \subset \bar{R}^{\nu}$ to give a minimal free resolution of $R / a_{p^{\prime}, r^{\prime}}$ over $R: 0 \longrightarrow R^{n-1} \xrightarrow[M^{\prime}]{ } R^{n} \xrightarrow[F^{\prime}]{ } R$.
Q.E.D.

Assume k is an infinite field, and let $t \in T=G L(1, k)$ act on $A=$ $k[X, Y, Z]$ by $X \rightarrow t X, Y \rightarrow t^{r} Y, Z \rightarrow t^{-p} Z$, where p and r are positive integers. Then, as we saw in the last section, the ring of invariants A^{T} is $A_{p, r}=k\left[S_{p, r}\right]$, and the ideal $\left(A_{+}^{T}\right) A=I_{p, r}$ is homologically 1-dimensional (Proposition 5.8). Let us denote by $P_{p, r}$ the representation of R to the syzygy space of $I_{p, r}$, which was defined in $\S 2$. Then we have:

Proposition 6.7. According to Proposition 6.4 write $\Phi(p, r)=r_{1} \oplus$ $\Phi\left(p^{\prime}, r^{\prime}\right) .\left(r_{1}\right.$ is such that $r_{1} \equiv r(p), 0<r_{1} \leq p$.) Then as a representation of $T=G L(1, k)$, we have:

$$
P_{p, r}(t)=t^{r_{1}} \oplus P_{p^{\prime}, r^{\prime}}(t), \quad t \in T
$$

Proof. As we have shown in the proof of Proposition 5.9, a relation matrix of $I_{p, r}$ has the form

$$
\left(\begin{array}{ccccc}
* & X^{r_{1}} & & & \\
& * & X^{r_{2}} & & \\
& & \cdots \cdots & & \\
& & \cdots \cdots & \\
& & & * & X^{r_{n}}
\end{array}\right)
$$

where $\Phi(p, r)=r_{1} \oplus r_{2} \oplus \cdots \oplus r_{n}$. It follows at once that $P_{p, r}$ is given by

$$
t \longrightarrow\left(\begin{array}{llll}
t^{r_{1}} & & & \\
& t^{r_{2}} & & \\
& & \ddots & \\
& & & t^{r_{n}}
\end{array}\right]
$$

(Consider how $t \in T$ multiplies $X^{r_{i}}$'s and disregard about it for the monomials in the $*$-ed positions, as they should be the same.)

§ 7. The syzygy of $\left(R_{+}^{G}\right) R$ for finite abelian groups in $G L(2, k)$

Throughout this section, $k=\bar{k}, \operatorname{ch} k=0$.
Let $G \subset G L(2, k)$ be a finite abelian group put in the diagonal form. Assume G does not contain any reflexions. (Generally, an invertible matrix of finite order is called a pseudo-reflexion if all but one of the eigenvalues are equal to 1 . In this paper we say reflexion for pseudoreflexion.) Then it is easy to see that G is cyclic. (In fact, consider the projections $\left(\begin{array}{cc}\omega_{1} & \\ & \omega_{2}\end{array}\right) \in G \rightarrow \omega_{i} \in k^{*}$. Any element in the kernel of either of them would be a reflexion, hence G is mapped injectively to k^{*}. And a finite subgroup of k^{*} is cyclic.) Let $g=\left(\begin{array}{ll}\omega_{1} & \\ & \omega_{2}\end{array}\right)$ be a generator of G. Then, because G contains no reflexions, if $o(G)=p$, both ω_{1} and ω_{2} are primitive p-th roots of 1 . Thus there is r such that $\omega_{1}=\omega_{2}^{r}$. Note that the residue class of $r \bmod p$ is uniquely determined by G, and also that r is relatively prime to p. Rewrite $\omega=\omega_{1}, g=\left(\begin{array}{cc}\omega & \\ \omega^{r}\end{array}\right)$. Now let G act on $R=k[x, y]$ by $x^{g}=\omega x, y^{g}=\omega^{r} y$. Then the ring of invariants R^{G} is, using the notation of $\S 5, k\left[M_{p, r}\right]$. Let $\mathfrak{a}=\left(R_{+}^{G}\right) R$ and let M be the relation matrix of \mathfrak{a} given in $\S 4$:

$$
M=\left(\begin{array}{ccccc}
-y^{s_{1}} & x^{r_{1}} & & & \\
& -y^{s_{2}} & x^{r_{2}} & & \\
& & \cdots \cdots & \\
& & & \cdots \cdots & \\
& & & -y^{s_{n}} & x^{r_{n}}
\end{array}\right)
$$

Then by definition of $\Phi(p, r)$ and by Proposition (4.9) (iii), we have that $\Phi(p, r)=r_{1} \oplus r_{2} \oplus \cdots \oplus r_{n}$. Let s be positive integer such that $r s \equiv 1(p)$. Then G may as well be generated by $g^{s}=\left(\begin{array}{cc}\omega^{s} & \\ \omega\end{array}\right)$, and by interchanging the roles of x and y it immediately follows that $\Phi(p, s)=s_{n} \oplus s_{n-1} \oplus \cdots \oplus s_{1}$. (Note the reversed order of indices. Also note it is implied that $\Phi(p, r)$ and $\Phi(p, s)$ have the same length.) Since \mathfrak{a} is perfect, the generators of \mathfrak{a} coincide with the maximal minors of M;

$$
D_{\nu}=\prod_{i=\nu}^{n} x^{r_{i}} \prod_{i=1}^{\nu-1} y^{s_{i}}, \quad \nu=1,2, \cdots, n+1
$$

These are also an algebra basis of R^{G}.
Let $\rho: G \rightarrow G L_{k}(V)$ be the representation of G to the syzygy space of a. We can think V is the space spanned by the rows of M and ρ is such that $\rho(g) M=M^{g}$. Then we at once have:

$$
\rho(g)=\left(\begin{array}{llll}
\omega^{r_{1}} & & & \\
& \omega^{r_{2}} & & \\
& & \ddots & \\
& & & \omega^{r_{n}}
\end{array}\right)
$$

In view of Proposition 6.4 it might be in some number theoretic sense: interesting to note:

$$
\rho\left(g^{s}\right)=\left(\begin{array}{llll}
\omega^{s_{n}} & & & \\
& \omega^{s_{n-1}} & & \\
& & \ddots & \\
& & & \omega^{s_{1}}
\end{array}\right)
$$

Note Ker ρ is trivial since $r_{n}=1$.
Next we consider generally a finite abelian group $G \subset G L(2, k)$. We may assume G has been diagonalized. Let H be the group generated by all the reflexions in G. Then it is easy to see that $R^{H}=k\left[x^{\alpha}, y^{\beta}\right]$, for some α and β. The induced action of G on R^{H}, regarding x^{α} and y^{β} as new variables, contains no longer reflexions, and we can apply the preceding consideration to G / H and $R^{H}=k\left[x^{\alpha}, y^{\beta}\right]$. Certainly R^{G} is the ring of invariants of R^{H} under the action of G / H. Thus, with certain $\Phi(p, r)=\oplus r_{i}$ and $\Phi(p, s)=\oplus s_{n-i}$ such that $r s \equiv 1(p)$,
is a relation matrix of $\left(R_{+}^{G}\right) R^{H}$ over R^{H}. Since the inclusion $R^{H} \rightarrow R$ is faithfully flat, the matrix M above serves as a relation matrix of $\left(R_{+}^{G}\right) R$ over R. Let ρ be the representation of G to the syzygy space of $\left(R_{+}^{G}\right) R$. Then one sees easily that $\operatorname{Ker} \rho=H$, and $\rho(G)$ can be thought of as the representation of G / H to the syzygy space of $\left(R_{+}^{G}\right) R^{H}$ over R^{H}. (cf. Remark (2.6).)
§ 8. Homological dimension of certain monomial ideals in $k[X, Y, Z]$
Let $R=k[X, Y]$ and $A=k[X, Y, Z]$. Define the morphism $\phi: R \rightarrow A$ by $X \rightarrow X Z$ and $Y \rightarrow Y Z$. Denote by ()$_{z=1}: A=R[Z] \rightarrow R$ the morphism of R-algebras that sends Z to 1 . Clearly ($)_{Z=1}$ is a ring retract of ϕ.

If $M=\left[a_{i j}\right]$ is a matrix over A, we will write $M_{Z=1}$ for the matrix $\left[\left(a_{i j}\right)_{Z=1}\right]$, which is a matrix defined over R. Conversely, if $M=\left[a_{i j}\right]$ is a matrix with $a_{i j} \in R$, we write $\phi(M)$ for $\left[\left(a_{i j}\right)\right]$. Note that for a homogeneous polynomial $f \in R$, we have that $\phi(f)=f Z^{\operatorname{deg}(f)}$. If $\mathfrak{a} \subset R$ is an ideal, the ideal $\phi(\mathfrak{a}) A$ will be denoted simply by $\phi(\mathfrak{a})$.

Lemma 8.1. (i) For a homogeneous ideal $\mathfrak{a} \subset R$, $\mu_{R}(\mathfrak{a})=\mu_{A}(\phi(\mathfrak{a}))$. If $f \in A$ is homogeneous, then $(f)_{z=1}=0$ implies $f=0$.

Proof. (i) Since ϕ has a ring retract, it holds that $\phi(\mathfrak{a}) \cap R=\mathfrak{a}$ for any ideal $\mathfrak{a} \subset R$, from which the assertion follows easily. (ii) Clear.

As in the preceding sections we are concerned with monomial ideals in R, but this time we start with a matrix of the following form:

$$
M=\left(\begin{array}{ccccc}
Y^{s_{1}} & X^{r_{1}} & & & \\
& Y^{s_{2}} & X^{r_{2}} & & \\
& \cdots \cdots \cdots \cdots & & \\
& & \cdots \cdots \cdots \cdots & \\
& & & \cdots \cdots \cdots & \\
& & & Y^{s_{n}} & X^{r_{n}}
\end{array}\right) \text {, }
$$

where r_{i} and s_{i} are positive integers. The purpose of this section is to consider for what monomial ideal $a \subset R$ it holds that $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2$. For this we need consider the matrix M^{*} derived from M as follows:

$$
M^{*}=U^{-1} \phi(M)
$$

where U is the $n \times n$ diagonal matrix

$$
\left(\begin{array}{llll}
Z^{m_{1}} & & & \\
& Z^{m_{2}} & & \\
& & \ddots & \\
& & & Z^{m_{n}}
\end{array}\right)
$$

with $m_{i}=\operatorname{Min}\left\{r_{i}, s_{i}\right\}$. Note that the i-th row of M is

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{lllll}
\cdots & Y^{s_{i}} & X^{r_{i}} & \cdots
\end{array}\right], \text { and hence that of } \phi(M) \text { is }} \\
{[\cdots}
\end{array} Y^{s_{i}} Z^{s_{i}} \quad X^{r_{i}} Z^{r_{i}} \quad \cdots\right] .\right] . ~ l
$$

Therefore the i-th row of M is, letting $\ell_{i}=\left|r_{i}-s_{i}\right|$,

$$
\begin{array}{lllll}
{[\cdots} & Y^{s_{i}} & X^{r_{i}} Z^{e_{i}} & \cdots] & \text { if } s_{i} \leq r_{i}, \text { and } \\
{[\cdots} & Y^{s_{i}} Z^{\ell_{i}} & X^{r_{i}} & \cdots] & \text { if } s_{i} \geq r_{i}
\end{array}
$$

Throughout this section the above notations ϕ, R, A, M, M^{*} etc. are kept fixed.

Proposition 8.2. Let $\mathfrak{a} \subset R$ be a homogeneous ideal and suppose, with an $F, 0 \longrightarrow R^{n} \xrightarrow[M]{ } R^{n+1} \underset{F}{ } R$ is a minimal free resolution of R / \mathfrak{a}. Then if $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2,0 \longrightarrow A^{n} \xrightarrow[M^{*}]{ } A^{u+1} \underset{\phi(F)}{\longrightarrow} A$ is a minimal free resolution of $A / \phi(\mathfrak{a})$ over A.

For proof we need the following
Lemma 8.3. Let $\mathfrak{a} \subset R$ be a homogeneous ideal, and let L be a minimal free resolution of $A / \phi(\mathfrak{a})$ over A. If $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2$, then $L \otimes_{A} A /(Z-1)$ is, identifying $A /(Z-1)$ with R, a minimal free resolution of R / a over R.

Proof. Note $\Phi(\mathfrak{a})$ is homogeneous and $Z-1$ is not a zero divisor on $A / \phi(\mathfrak{a})$, from which it follows that $L \otimes{ }_{A} A /(Z-1)$ is exact. To say it is minimal is that the ranks of the free modules in the complex are the betti numbers of R / \mathfrak{a}. But this is clear for the first betti number is $\mu_{R}(\mathfrak{a})$ $\mu_{A}(\phi(\mathfrak{a}))$ and the second betti number is one less than that.

Proof of Proposition 8.2. Let M^{\prime} be the kernel of $\phi(F)$ so that the complex $0 \longrightarrow A^{n} \xrightarrow[M^{\prime}]{ } A^{n+1} \xrightarrow[\phi(F)]{ } A$ is a minimal free resolution of $A / \phi(\mathfrak{a})$. Certainly the entries of M^{\prime} can be assumed homogeneous. By the lemma above we may assume $M_{z=1}^{\prime}=M$. Then, in view of Lemma 8.1 (ii), we see that M^{\prime} and M have 0's in the same positions. This is to say that, if ${ }^{\mathrm{r}} F=\left[f_{1} f_{2} \cdots f_{n+1}\right]$, then the i-th row of M^{\prime} is essentially a basic relation of $\phi\left(f_{1}\right)$ and $\phi\left(f_{i-1}\right)$. On the other hand, the i-th row of $\phi(M)$ is a (may-not-be-basic) relation of $\phi\left(f_{i}\right)$ and $\phi\left(f_{i+1}\right)$. (In fact $\phi(M) \phi(F)=\phi(M F)=0$.) Thus it turns out that M^{\prime} is the matrix obtained from $\phi(M)$ by dividing out greatest common divisors from all the rows, which is precisely M^{*}. (cf. Lemma 4.1 (ii).)

Lemma 8.4. The following conditions are equivalent.
(i) ht $I(M) \geq 2$.
(ii) If $s_{j}>r_{j}$ for some j, then $s_{i} \geq r_{i}$ for all $i>j$.

Proof. Recall that M^{*} is the matrix

$$
\left(\begin{array}{ccccc}
B_{1} & A_{1} & & & \\
& B_{2} & A_{2} & & \\
& & \cdots \cdots & & \\
& & & \cdots \cdots & \\
& & & B_{n} & A_{n}
\end{array}\right),
$$

where

$$
\begin{array}{lll}
& B_{i}=Y^{s_{i}} Z^{\ell_{i}} & \text { and } A_{i}=X^{r_{i}}, \text { if } s_{i} \geq r_{i}, \\
\text { and } & B_{i}=Y^{s_{i}} & \text { and } A_{i}=X^{r_{i}} Z^{\ell_{i}}, \text { if } s_{i} \leq r_{i} .
\end{array}
$$

We recall also $D_{\nu}=\prod_{i=1}^{\nu-1} B_{i} \prod_{i=\nu}^{n} A_{i}, \nu=1,2, \cdots, n+1$ are the maximal minors of M^{*}, and $I\left(M^{*}\right)$ is the ideal they generate.

Let us prove (ii) implies (i) first. Assume $s_{i} \leq r_{i}$ for all i. Then D_{n+1} is a power of Y and D_{1} is a monomial in X and Y. This proves ht $I\left(M^{*}\right)$ ≤ 2. In the case $s_{i} \geq r_{i}$ for all i, the symmetry in X and Y shows ht $I\left(M^{*}\right) \geq 2$ as well. Assume we have $s_{i} \leq r_{i}$ for $i=1,2, \cdots, j$, and $s_{i} \geq r_{i}$ for $i=j+1, j+2, \cdots, n$ for some $j \neq 1, n$. In this case D_{j} is a monimial in X and Y, and does not contain Z as a divisor. (In any case) D_{1} is a monomial in X and Z, and D in Y and Z. Thus we have $\operatorname{ht} I\left(M^{*}\right)$ ≥ 2. We have proved (ii) \Rightarrow (i) completely.

The negation of the condition (ii) is: There are indices $j<k$ such that $s_{j}>r_{j}$ and $s_{k}<r_{k}$. When this is the case, it is true that both B_{j} and A_{k} have Z as a divisor. Because $j<k, D_{\nu}$ has either B_{j} or A_{k} as a factor for ν whatever. This shows $I\left(M^{*}\right) \subset(Z)$ and ht $I\left(M^{*}\right)=1$. We have proved (i) \Rightarrow (ii).

Theorem 8.5. Let \mathfrak{a} be an ideal in $R=k[X, Y]$ generated by the monomials $f_{i}=X^{a_{i}} Y^{b_{i}}, i=1,2, \cdots, n+1$, where we assume without loss of generality $a_{1}>a_{2}>\cdots>a_{n+1}$ and $b_{1}<b_{2}<\cdots<b_{n+1}$. Then the following conditions are equivalent.
(i) $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2$.
(ii) If $\operatorname{deg} f_{j}<\operatorname{deg} f_{j+1}$ for some j, then $\operatorname{deg} f_{i} \leq \operatorname{deg} f_{i+1}$ for all $i>j$.

Proof. Set $r_{i}=a_{i}-a_{i+1}$ and $s_{i}=b_{i+1}-b_{1}$. Let ${ }^{\tau} F=\left[f_{1}-f_{2} f_{3} \ldots\right.$ $(-1)^{n} f_{n+1}$]. Then

$$
0 \longrightarrow R^{n} \underset{M}{\longrightarrow} R^{n+1} \underset{F}{\longrightarrow} R
$$

is a minimal free resolution of R / a. (M is the matrix fixed in the beginning.) Consider the complex

$$
\text { (*) } \quad 0 \longrightarrow A^{n} \xrightarrow[M^{*}]{\longrightarrow} A^{n+1} \underset{\phi(F)}{\longrightarrow} A \text {. }
$$

If $\operatorname{hd}_{A} A / \mathfrak{a}=2$, then, by Proposition 8.2, the complex (*) is exact. Hence by Buchsbaum-Eisenbud criterion we have ht $I\left(M^{*}\right) \geq 2$. Conversely, too, ht $I\left(M^{*}\right) \geq 2$ implies $\left(^{*}\right)$ is exact by Buchsbaum-Eisenbud criterion. As we have seen in Lemma 4.1 (iii) $s_{i} \geq r_{i} \Leftrightarrow \operatorname{deg} f_{1} \leq \operatorname{deg} f_{i+1}$. Now the proof is complete by Proposition 8.4.

Remark 8.6. Borrowing a term from elementary calculus, the condition (ii) of the theorem may be described by saying that there are no 'maxima' in the graph of the map $i \rightarrow \operatorname{deg} f_{i}$. The two ends of the graph are not counted as maxima whatever values they take. In this terminology it can be conceived that the theorem is generalized to: For any monomial ideal \mathfrak{a} of R, if $0 \rightarrow A^{\tau} \rightarrow A^{\nu} \rightarrow A^{\mu} \rightarrow A$ is a minimal free resolution of $A / \phi(\mathfrak{a}), \tau$ is the number of maxima in the graph of $i \rightarrow \operatorname{def} f_{i}$. The theorem is to be the special case when $\tau=0$.

Corollary 8.7. In the same notations of Theorem 8.5 and its proof, a sufficient condition for $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2$ is that $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ and $r_{1} \geq$ $r_{2} \geq \cdots \geq r_{n}$.

Proof. This is clear from Lemma 8.4, for, as was said in the proof of Theorem 8.5, hd ${ }_{A} A / \phi(\mathfrak{a})=2$ if and only if ht $I\left(M^{*}\right) \geq 2$.

Proposition 8.8. Assume k is algebraically closed and $\operatorname{ch} k=0$. Let $\phi: R=k[X, Y] \rightarrow A=k[X, Y, Z]$ be the map, as before, defined by $\phi(X)=$ $X Z$ and $\phi(Y)=Y Z$. Let G be a finite abelian group acting linearly on R, and let $\mathfrak{a}=\left(R_{+}^{c}\right) R$. Then we have that $\operatorname{hd}_{A} A / \phi(\mathfrak{a})=2$.

Proof. We may assume G has been diagonalized. Then the assertion follows immediately from Corollary 8.7, Proposition 6.5 (i) and the results in $\S 6$.

Theorem 8.9. Assume $k=\bar{k}$, ch $k=0$. Let $T=G L(1, k)$ be a one dimensional torus acting on $A=k[X, Y, Z]$ by linear transformation of the variables. Suppose $\operatorname{dim} A^{T}=2$. Then we have $\operatorname{hd}_{A} A /\left(A_{+}^{T}\right) A=2$.

Proof. We can assume the action is such that $X \rightarrow t^{a} X, Y \rightarrow t^{b} Y$, $Z \rightarrow t^{-p} Z$, for $t \in T$, with a, b, p all positive. (In fact if 0 appears among the exponents, the assertion is easy. If there are two negatives and one positive, consider t^{-l} instead of t.) Consider the diagram of rings

where i is the map defined by $i(X)=U^{a}, i(Y)=V^{b}, i(Z)=W^{p}$, and ϕ is the natural inclusion. Observe: (1) S is the ring of invariants of B under the action of $T^{*}=G L(1, k)$ that sends $U \rightarrow t U, V \rightarrow t V, W \rightarrow t^{-1} W$ for $t \in T^{*}$. (2) The action of T on A in our present consideration is precisely that which is induced by the action of T^{*} on B. (3) There is a finite abelian group G^{*} that acts diagonally on B such that the ring of invariants $B^{G^{*}}$ is the image of A by i. (4) If G is the group of automorphisms of S that G^{*} induces, then $S^{G}=A^{T}$.

Now let $\mathfrak{m}=A_{+}^{T}$, the maximal ideal of A^{T}. Instead of $\operatorname{hd}_{A} A / \mathfrak{m} A=2$, we may prove $\operatorname{hd}_{B} B / \mathfrak{m} B=2$, since $A \rightarrow B$ is faithfully flat. Consider $\mathfrak{m} B$ as an ideal that comes from A^{T} via S; then $\mathfrak{m} B$ may be written $\phi(\mathfrak{a}) B$, with $\mathfrak{a}=\left(S_{+}^{G}\right) S$, S_{+}^{G} being \mathfrak{m}. Thus it turns out $\operatorname{hd}_{B} B / \mathfrak{m} B=2$ is nothing but was proved in Proposition 8.8.

Remark 8.10. In the proof of the theorem above, only the exponents of monomials are actually encountered; consequently the assumption that $k=\bar{k}, \operatorname{ch} k=0$ is inessential. Indeed S^{G} (in the proof) is expressed as $k[M]$ for a certain semigroup M, but M in turn defines a semigroup ring $k[M]$ over any field. Hence Theorem 8.9 is valid for an arbitrary field k (with a suitable interpretation of a torus action in the case k is a finite field).

Remark 8.11. The first part of Proposition 5.9 (ii) is a special case of Theorem 8.9, where $a=1$. The proof does not work for the general case because Lemma 5.8 fails to hold.

In the situation of the proof of Theorem 8.9, let $\left(\begin{array}{cc}\omega^{a} & \\ & \omega^{b}\end{array}\right)$ act on $R=$ $k[X, Y]$. Then the projection $Z \rightarrow 1$ induces the isomorphism $A^{T} \xrightarrow{\sim} R^{G}$. Write

$$
A^{T}=k\left[X^{\lambda_{i}} Y^{\mu_{i}} Z^{\ell_{i}} \mid i=1,2, \cdots, n+1\right],
$$

where

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}, \quad \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n+1}
$$

Then the re-examination of the proof of Theorem 8.5 shows that there is j such that $\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{j} \leq \ell_{j_{+1}} \leq \cdots \leq \ell_{n} \leq \ell_{n+1}$. Lemma 5.8 says $j=1$ in the case $a=1$, but in the general case it can happen $j \neq 1, n+1$.

Now let ρ be the representation of T to the syzygy space of $I=\left(A_{+}^{T}\right) A$. Then ρ is given by

$$
\rho(t)=t^{b_{s_{1}}} \oplus t^{b_{s_{2}}} \oplus \cdots \oplus t^{b_{s_{j-1}}} \oplus t^{a r_{j}} \oplus t^{a r_{j+1}} \oplus \cdots \oplus t^{a r_{n}}
$$

where $r_{i}=\lambda_{i}-\lambda_{i+1}$, and $s_{i}=\mu_{i+1}-\mu_{i}, i=1,2, \cdots, n$, and j is, as above, an index at which ℓ takes the minimum value. (Note j may not be unique. If not, we may take any such j.) This can be seen by considering the syzygy matrix of I, as in the proof of Proposition 6.7. The details are left to the reader.

Remark 8.12. In [9], H. Tanimoto proved, among other things, the following.

Let $A=k\left[X_{1}, X_{2}, \cdots, X_{n}, Z\right]$ be the polynomial ring in the variables $X_{1}, X_{2}, \cdots, X_{n}, Z$, and let $T=G L(1, k)$ act on A by $X_{i} \rightarrow t^{q_{i}} X_{i}$, and $Z \rightarrow$ $t^{-p} Z$, where $q_{i} \geq 0$ and $p>0$. Suppose the integers q_{i} and p satisfy the condition
(*) there are two integers a and b such that $\left\{\bar{q}_{1}, \bar{q}_{2}, \cdots, \bar{q}_{n}\right\} \subset\{0, \bar{a}, \bar{b}$, $-\bar{a},-\bar{b}\}$, where - denotes residue class modulo p. Then it holds that hd $A /\left(A_{+}^{T}\right) A=n$.

Note the condition $\left(^{*}\right.$) is automatically satisfied if $n \leq 2$ (or $p \leq 5$), hence this can be regarded as a generalization of Theorem 8.9.

Without the condition (*), although it holds that hd $A / I \geq n$ (hence it is either n or $n+1$), Tanimoto [9] also gives a counter-example to the equality hd $A / I=n$. (To see hd $A / I \geq n$, one can use Theorem 7.1 of Hochster [3].)

References

[1] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact?, J. of Alg., 25, No. 2 (1973), 259-268.
[2] J. Fogarty, Invariant theory, Benjamin, New York, 1969.
[3] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory II, Lecture notes in pure and app. math., 26, Dekke (1977), 171-223.
[4] D. Mumford, Geometric invariant theory, Springer, New York, 1965.
[5] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie local, Publ. Math. I.H.E.S. No. 42, Paris, 1973.
[6] -, Liaison des variétés algébriques I, Invent. Math., 26 (1974), 271-302.
[7] O. Riemenschneider, Die Invarianten der endlichen Untergruppen von $G L(2, C)$, Math. Z., 153 (1977), 37-50.
[8] T. A. Springer, Invariant theory, Springer Lect. Notes 585, 1977.
[9] H. Tanimoto, Monomial ideals and invariant subrings, Master thesis, Nagoya Univ. 1980 (in Japanese, unpublished).

Nagoya University

