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COUNTING THE NUMBER OF BASIC INVARIANTS

FOR G c GL(2, k) ACTING ON k[X9 Y]

JUNZO WATANABE

List of notation

The notations used in this paper without explicit mention are listed
below. Here R is a positively graded Noetherian ring, α a homogeneous
ideal of R, and f, g, , h are homogeneous elements of R.

dim R = Krull dimension of R
emb. dimiϋ = embedding dimension of R
ht a = height of α
μ(ά) = minimal number of generators of a
hd α = hd R/a — 1 = homological dimension of a
(f,g, ' - -, h) = ideal generated by /, g, , h
[f g - - h] = row vector
o(G) = order of a finite group G

μ(a) and hdα are also written μR{a) and h.άR(ά) when R needs to be men-
tioned. Polynomial rings are always regarded as graded rings with natural
gradation.

Introduction

In this paper we consider a certain group representation p that is
defined for each finite subgroup G of GL(2, h). p is explained as follows:
Let G act linearly on the polynomial ring R = h[x, y], and let α = (R+)R
be the ideal of R generated by all the non-constant invariant forms. Then
the representation module V of p is the space spanned by a set of basic
relations (syzygies) of α over R. Since hd R/a = 2, we have that μ(a) =
dimV+ 1. When chA = 0 or otherwise ch£ does not divide o(G), a set
of generators of the ideal α chosen from among invariant forms generate
the ring of invariants RG as an algebra over k. Consequently we also
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174 JUNZO WATANABE

have emb. dimi?G = dimV+ 1; for example if dimF= 2, RG is a 'hyper-
surface'. The study of p has its origin in an attempt to answer the question
raised by S. Goto which asks when RG is a hypersurface, R being a
polynomial ring of any dimension acted on linearly by a finite group G.
It had been an empirically established fact that for every finite group G
in SL(2, C), RG is a hypersurface, and any answer to Goto's problem should
explain it. It is in fact proved here by showing dimV = 2 for GcSL(2, C);
although it does not generalize to answer Goto's problem, it leads to the
question what p is for G C GL(2, k) in general.

The main results of this paper are Theorem 3.6 and its proof, where
p is determined for subgroups in SL(2, C), and what is stated in § 7, where
p is determined for abelian groups in GL(2, C). It should be emphasized
that the primary interest of Theorem 3.6 lies not in the statement itself
but in the method to prove it. In fact the invariant theory for finite
groups of GL(2, C) has been studied in its full detail, and for each GaGL
(2, C), a set of basic invariants has been (and can be) computed. (See,
for example, [7] or [8].) Thus upon looking at it we at once have the
statement of Theorem 3.6 and then we can determine p, but this is not
our intention.

When G is abelian, RG is isomorphic to a two dimensional normal
semigroup ring K[M], and the generators of M can best be dealt with by
means of continued fractions. Let M be a normal semigroup in Z\ (ex-
pressed additively), and assume {(afi^li = 1, 2, , m) is the basis of M
with the order that aλ> α2 > > β m Here we can assume α/s (and
6/s) do not have a common divisor. Then any successive three terms aί9

αi+1, aί+2 are related by the formula ajai+ι = Bt — ai+2/ai+u where Bt is
the smallest positive integer such that Btaί+ι > at. In this paper we do
not assume this knowledge but we prove what is equivalent to it in a
form suitable to our purpose (Proposition 6.2 and Proposition 6.4). This
is partly for the sake of self-containedness and partly for that, in order
to write p(G) for an abelian group, we need the numbers rt = at — ai+ί

instead of ai9 and it seems that the numbers rt are occasionally more
properly dealt with than at themselves. For example, from the fact that
the sequence rt is monotone decreasing follows an unexpected result
(Theorem 8.9).

The definition of p is given in § 2. Actually p is defined for any group
acting on a polynomial ring R over a field, but only when dimi? = 2 and
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G is finite, we know fa priori' the properties (i), (ii) of Theorem 2.4 are

the case. These properties are a direct consequence of the so called

structure theorem of homologically one dimensional ideals, and are quite

helpful to determine the degree of p ( = dimV). This might interest one

to know other cases in which hd a = 1 even when dim R Φ 2. We have

an example of such cases when k* = GL(1, k) acts linearly on R = k[X, Y, Z]

with dimi?G — 2. A proof for this based on the fact ri is monotone

decreasing, as mentioned above, is given in § 8.

The structure theorem of homologically one dimensional ideals is

stated in § 1. Theorem 2.1 in § 2 is a very basic fact in invariant theory

(originally due to Hilbert) that makes it possible to replace generators of

algebras by generators of ideals. Besides these two well known theorems

little is presupposed in this paper.

§§4, 5, as well as § 1, are of preliminary nature.

The author wishes to express his deepest thanks to Prof. H. Yamada,

Prof. H. Morikawa, and especially to Prof. H. Matsumura for their patience

and constant encouragement over the long period of his sickness. Special

thanks are also due to K. Watanabe, S. Goto and Y. Namikawa for their

valuable suggestions.

§ 1. The structure theorem of homologically one dimensional ideals

In this section R denotes a polynomial ring over an arbitrary field

unless otherwise specified. R+ denotes the homogeneous maximal ideal.

Assume a homogeneous ideal α c R is minimally generated by fί9 f2,

• * , fn + u a n ( i hdα = 1 (or we may also say hdl?/α — 2). Let

°—* *-Ί? *"-F* R

be a minimal free resolution of R/a. We shall write an element of a free

module as a row vector and represent a homomorphism between free

modules as a matrix in such a way that, in the notation M : Rn —> Rn+1

for example, if υ e Rn, then its image by M is vM, the usual matrix product.

Under this convention, F is a column matrix with entries a minimal set

of generators of α, so that we may assume τF = [/i f2 fn fn + ί]. (τF is

the transpose of F. Throughout, we will write a column matrix in this

way in order to save space.) Since a is homogeneous, the entries of M

may, as well as //s, be taken homogeneous. We recall that an ideal I

(in any ring R) is called perfect if hd R/I = ht I. Now let us state the
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176 JUNZO WATANABE

structure theorem of homologically one dimensional ideals in the homo-

geneous case.

THEOREM 1.1. With the notation above, let Mt be the matrix obtained

from M by deleting the i-th column, and let Ώt = detMέ. Then there is a

homogeneous element he R such that /* = (— lyhDi. h is a greatest common

divisor of ft's, and h is a unit if and only if a is perfect (i.e., ht α = 2).

For proof, see Peskine-Szpiro [5], Chaptre I, Theorem 3.3, where this

is proved over a local ring. Homogeneous translation is immediate.

Let M be an n by n + 1 matrix over R, and let Dt = det Mt be as in

Theorem 1.1 above. We shall refer to Dt as the i-th maximal minor of

M, and denote by I(M) the ideal generated by all the Dt. We have

PROPOSITION 1.2. Suppose

is a complex, and F Φ 0 and F has no units as entries. Then the complex

is exact if and only if ht/(M) > 2.

Proof This is a special case of Buchsbaum-Eisenbud [1], Theorem.

Remark 1.3. Either of Theorem 1.1 and Proposition 1.2 can be re-

garded as a corollary of the other, but we treated them independently, as

they are of different nature. In the sequel, Proposition 1.2 will be referred

to as Buchsbaum-Eisenbud criterion.

DEFINITION 1.4. Suppose that

is exact, MΦR/R+ — 0, and the entries of M and F are homogeneous.

A row vector ve Rμ is called a relation of F if it is in Ker F. Thus, for

example, every row of M is a relation of F. M is called a relation matrix

of F (or of Im F). Note if Mf is another relation matrix of F, then there

is an invertible matrix U = [uίό] such that ut] e R are homogeneous and

Mf = UM. A relation of F is said to be basic if it can be a row of a

relation matrix of F. Thus, ve Rμ is a basic relation if and only if ve

Ker F and v g (i?+) Ker F. Assume [ax a2 aμ] is a relation of F (and all

at are homogeneous). Then we have: dega:f = dega2f2 = = degaμfμ,

whenever at Φ 0. Say this number is equal to p. Then p is called the
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degree of the relation.

In Theorem 1.1, assume M = [ai3] and the i-th row of M i s a relation

of degree p{. Then by definition we have: degα^ = pt — d5 with dj =

άegfj. Put d = degh. Then the theorem, in particular, says:

COROLLARY 1.5. pί + p2 + + pn = dί + d2 + + dn+1 - d. (c/.

Peskine and Szpiro [5] § 3.)

Remark 1.6. The numbers pt may also be explained as follows: If

R(— p) denotes a free module on one generator having degree p, then pt

are such that M i s a degree 0 map in the sequence

0 > 0 R(- Pi) -ττ> ® B ( - dd - ^ 22(0).

The following two lemmas are application of Proposition 1.2 and

Corollary 1.5 to be used in § 3.

LEMMA 1.7. Let R = k[x, y], and a a homogeneous ideal of R minimally

generated by fl9 f2, and f3 such that ht(/i,/2) = 2. With dx — deg/i, assume

d1 + d2 = ds + 2. Then we have (fu f2) : /. = (x, y).

Proof. Note, in R, any ideal of height 2 is perfect. Let M = [a^]

and .P be as in Theorem 1.1 with rc + 1 = 3. Then it is easy to see that

(fufd ' fs = (̂ i3, α23). Since ht (fl9 f2) = 2, α13 ^ 0 and α23 -^ 0. This means

deg an > 0 for / = 1, 2, because they cannot be units. Thus, if px and p2

are the degrees of the first and the second rows (relations) of M, then pt

> dz + 1 for ί = 1, 2. This says that 2(dz + 1) < px + p 2 = ^ + d2 + (i3.

(Note we can use Corollary 1.5 with d — 0, since α is perfect.) Because

of the condition posed on the degree of the generators, the only possibility

is that px ~ dz + 1, which implies deg α13 = deg α23 — 1. These two elements

generate an ideal of height 2, hence (α13, α23) = (x, y) as desired.

Remarks 1.8. ( i ) For any two elements /Ί and f2 in R = k[x, y] with

ch k = 0, if /3 is the Jacobian of fx and /2, then the condition of the lemma

concerning degrees is satisfied.

(ii) Assume M i s a relation matrix of τF = [/Ί f2 /J. Then, as was

said in the proof of the lemma, it generally holds that the ideal generated

by all the elements that appear in the last column of M is the ideal (/i,

/2> * * ' > //i-l/ tμ

LEMMA 1.9. Let R = k[x, y], where k is a field of characteristic 0.
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Assume f, he R are homogeneous elements such that ht(/, h) = 2 and deg

/ > 2, deg h > 2. Lei <5 6e the Jacobian determinant of f and h. Then we

have that μ(f, h, δ) = 3; in particular δ g (/, h).

Proof. We write fx = 3//3a: and /y = dfldy for any /efi. Then by

definition δ = det/Ύ* AV Let us consider the matrix Λf = f"^ ίx y\\hx hv) ^ \ hy -fy x)

If Dt denotes the i-th maximal minor of M, we obtain the complex

0 • R2 - ^ > Rz - y > B, where τF = [Dγ -D2 D3].

(Note MF = 0 holds generally.) Notice that

D2= — xhx — yhv = —(deg Λ)A

A - Λ,Λ -fxhy=-δ.

Thus /(M) contains / and h, and since ht (/, h) = 2 by assumption,

Buchsbaum-Eisenbud criterion proves that the complex is exact, and in

particular it is a minimal free resolution of R/lmF (for otherwise a unit

would appear in the matrix M). Thus the ideal I(M) = (/, h, δ) is minimally

generated by three elements.

Remark 1.10. The lemma above holds more generally: let R = k[x19

#2> * * J χΛ'> n > 2, and assume f = (/i,/2, •-,/„) is a homogeneous system

of parameters of R such that deg/^ > 2 for all L Then μ(fuf2, - —,fn9δ)

— n + 1, where <5 is the Jacobian determinant of f.

This can be proved by showing δ is a generator of the socle of the

Gorenstein ring i?/f, as was pointed out by S. Goto. The method here

seems more appropriate for our purpose to prove Theorem 3.6.

§2. The representation p

We want to fix some notations and terminology as we review basic

definitions and facts of invariant theory.

Let k be an algebraically closed field. When a linear algebraic group

G over k acts on a ^-algebra by ^-automorphisms, we denote by a8 (a e R,

ge G) the image of a by the automorphism g. If a = as for all ge G9

then a is an invariant. If a and ag differ only by unit multiple for all

g e G, a is a semi-invariant. By i?G will be denoted the ring of invariants,

i.e., the subring of R consisting of all the invariants. If M = [atj] is a
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matrix over R, Mg will denote the matrix [αfy]. When RG is finitely

generated over k, a set {/i, /2, , fμ] of invariants is called a system of

basic invariants if they generate the ring RG over k and they are irredundant

Now assume G is a linearly reductive linear algebraic group (i.e.,

every rational G-module, not necessarily finite dimensional, is completely

reducible), and R is a finitely generated ^-algebra. Then it is well known

that RG is finitely generated over k (when G acts /^-rationally on R, of

course).

The following fact on which the proof of finite generation of RG is

based is very important in this paper.

THEOREM 2.1. Let G be linearly reductive, and R finitely generated over

k. Assume R is positively graded and the action preserves grading. Let I

= (RG)R be the ideal of R generated by all the invariants without constant

terms. Then an ideal basis of I chosen from among invariant forms is an

algebra basis of RG, i.e., if I = (fl9 f2, , fμ), ft e RG, then RG = k[fu f2, ,

a
Proof can be found wherever finite generation of RG is proved, e.g.

Mumford [ ] or Fogarty [ ].

When a ring is positively graded, the minimal number of generators

of a homogeneous ideal and the embedding dimension of the ring have

definite meaning. The theorem implies:

COROLLARY 2.2. μ(I) = emb. dim RG.

Remark 2.3. Later we concern ourselves only with (i) torus groups

and (ii) finite groups when ch k = 0, both of which are well known to be

linearly reductive.

Now suppose R is a polynomial ring (and G linearly reductive). Let

RG = k[f,f2, ,/J with μ = emb. άimRG. Then ft are a minimal basis of

the ideal I = (RG)R. Put τF = [f f2 /„], and let M be a relation matrix

of F, so that

Rv > Rμ > R is exact with minimal v . (See § 1.)

Since /, are invariant, we see that Rv ——> Rμ ——> R is also exact, hence

there is an invertible matrix U = [ui3] over R such that M8 = UM. If

ΰij e k denotes the residue class of ui3 module R+ (= the homogeneous

maximal ideal of R)9 we see [utj"\ is uniquely determined by g, hence we
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may write \Uij\ = ρ(g). Clearly p is a homomorphism, and thus we have

obtained a representation. Since (β+)Ker F and Ker F are both G-modules,

G acts on Ker F/(R+)Ker F = V, which is nothing but the representation

module of p. Since G is linearly reductive, we may assume K e r F = VΘ

(R+)KeτF as G-modules. If the rows of M have been chosen to be a

basis of such V, it holds that M* = p(g)M.

We will call ^ : G->GLfc(V) the representation of G to the syzygy

space of F.

If hd 7 = 1, p has the following property.

THEOREM 2.4. Zra the situation above assume hd / = 1. // / is perfect,

then,

( i ) p(G)aSLk(V).

(ii) If V — Vt®V2 is a proper decomposition of V as G-modules and

Pi: G -> GLfc( V*) are ZAe corresponding representations, then pι{G) ςzί SLk{V^),

i = 1, 2.

Proo/. ( i ) We may assume a relation matrix M of F is such that

jkf* = p(g)M for any ge G. It follows that if D is any maximal minor of

M, then Dg = detp(g)D. But according to Theorem 1.1, D is an invariant,

which implies det(g) = 1.

(ii) M being as above, we may further assume that the first nx rows

of M span Vx. Let Mx be the submatrix consisting of these rows. If

detpSg) = 1 for all ge G, then all the maximal minors of Mx are invari-

ants. Now compare the following two numbers:

Nx = Min{deg D\D is a maximal minor of M)

N2 = Min {deg Δ \ Δ is a maximal minor of Mt} .

We immediately see that N2 < iVi since Mt is a proper submatrix of Λf.

On the other hand since the maximal minors of M, being precisely //s

(modulo unit multiple), generate the ring of invariants, we have N2> N^

This contradiction proves (ii).

Remark 2.5. In Theorem 2.4 replace "J perfect'' by " I not perfect".

Then a greatest common divisor of //s, say A, is a semi-invariant with

character detp"1. In fact if D is any maximal minor of M, D is a semi-

invariant with character det p. Since AD, being one of//s, is an invariant,

the assertion follows. It is easy to see that in this case, too, (ii) holds

without any modification.
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Remark 2.6. When a finite group G acts linearly on R = k[x, y], we

are in the situation of Theorem 2.4, provided ch k = 0 or (ch £, o(G)) = 1.

Let H be the subgroup of G c GL(2, k) generated by all the reflexions.

Then G\H acts on RH

9 which is a polynomial ring (in two variables).

Thus we may talk about p for G/H. It is easy to see that ρ(G) and p(G/H)

are equivalent and, in particular, Ker p z> H. Accordingly we may assume,

to obtain ρ(G), G does not contain any reflexions, (cf. § 7)

The next proposition applies to any finite G a GL(2, C) not containing

reflexions.

PROPOSITION 2.7. Assume ch£ = 0. Let p : G—> GLk(V) be a repre-

sentation of (any) group G, having the property (i) and (ii) in Theorem 2.4.

Assume p is completely reducible. If G/[G, G] is cyclic of order p (say),

then p decomposes into at most p irreducible factors.

Proof. Let p — ρx Θ p2 Θ Θ pn be a decomposition of p, and let

ge G be a generator of G/[G, G]. Notice that detpt{G) is a cyclic group

generated by άetp^g), since det^ fG, G]) = {1}. Hence we can write det

P%(g) — ωa\ where ω is a primitive p-th. root of 1. If n > p, we get a

contradiction to Lemma 2.8 below.

LEMMA 2.8. Assume there are given n integers at. If p is a positive

integer such that p < n, then there is a proper subset I Q {1, 2, , n} such

that Σieiaί = 0 moάp.

Proof is left to the reader.

§ 3. The number of basic invariants for G c $L(2, C)

In this section we assume k is an algebraically closed field of char-

acteristic 0. G always denotes a finite subgroup of SL(2, k). R is k[x, y]

on which G acts by linear transformation of x and y. We will always be

assuming G is non-trivial, in which case G cannot leave a linear form

invariant.

Notation 3.1. For fu f2 e R, J(fu f2) denotes the Jacobian of /i and f2,

i.e., J(fuf2) = άet[dfJdXj], where xγ — x and x2 = y.

LEMMA 3.2. If f, he RG, then J(f, h)e RG. More generally, if f and

h are semi-invariants such that fh e RG, then J(f9 h) e RG.

Proof is easy by direct computation.
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PROPOSITION 3.3. Let RG = k[fuf2, ,/n+i] with deg/Ί < deg/2 < deg/j,

i > 3. Assume άegf > 2. Then ht(/;,/2) = 2.

Proof Everything will be considered in R. Assume ht (fl9 f2) = 1.

Then f and f2 have a greatest common divisor. Let it be / and write ft

— fhi, i = 1,2. Then one easily sees hx is not a constant, and hence

ht (hu h2) = 2. Since f is an invariant, G permutes the divisors of fu

and the same is true for f2. From the fact that hx and h2 have no common

divisor, it follows that / and hλ are semi-invariants. By the preceding

lemma, J(f, hλ) is an invariant whose degree is equal to d e g / + deg/ij — 2

= deg/j — 2. This contradicts the assumption of deg/i to be minimal

and > 2.

PROPOSITION 3.4. Let RG = k[f,f2, ,/ 7 Z + 1 ], ft being a system of basic

invariants. Assume 2 < deg/i < deg/2 < deg/^ for i > 3. Set δ = J(f,f2).

Then f, /2, δ can be a part of a system of basic invariants.

Proof. First of all δ is an invariant by Lemma 3.2. Let m = (f, f2y

-' -,fn+i)RG be the homogeneous maximal ideal of RG. Then by comparing

the degrees of the generators of m2 and the degree of δ, we see that if

δ e m2, then the only possibility is δ = fl (mod unit multiple), which can-

not be the case by Lemma 1.9. Thus δ & m2. Now it suffices only to show

that /Ί, f2 and δ are linearly independent over k, which is true again by

Lemma 1.9.

PROPOSITION 3.5. Let RG = k[fuf2, ,/n+1] with basic invariants /,.

Assume 2 < άegf < deg/2 < άegf for ί > 3, and fn+ί = J(fί9f2). Then (fly

fiy -->fn) : A+i = (x>y)

Proof. (/l5/2, •,/„); /n+i 3 (f»f2): fn+i = (^y) by Lemma 1.7. (cf.

Remark 1.8.)

THEOREM 3.6. Write JSG = k[f,f2, - - -,fn+1] with minimal n. Then n

= 2. Moreover we can choose ft so that /3 = Jί/j, /2).

Proof. Case I. Assume deg/j > 2, for all ί. Then, by Proposition

3.4, we may further assume deg/i < deg/2 < deg/i for / > 3, and /n + 1 =

Jifufz)- Put T F = [/j /2 fn+ί] and let M be a relation matrix of F

over i?, so that we have the exact sequence
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Let p : G—> GLk(V) be the representation of G to the syzygy space of F.

We may assume M has been chosen so that M8 = p{g)M for g e G. (See

§ 2.) By Proposition 3.5 and Remark 1.8 (ii), there are at least two basic

relations of degree equal to degfn+1 + 1, which, say, is equal to p. Let

Mx be the matrix consisting of all the rows of M which are relations of

degree p (see Definition 1.4), and M2 the matrix consisting of the other

rows of M. Further let VΊ and V2 be the vector spaces spanned by the

rows of Mγ and of M2 respectively. It is clear that V decomposes: V =

Vi Θ V2 as G-modules, and correspondingly p = pt® p2.

Let us restrict our attension to Ml9 Vx and ρt. Because all the rows

of Mi are relations of degree p, all the elements in the last column of Mt

are either linear forms or 0. Thus, in view of Proposition 3.5, we can

assume that the last column of Mx is τ[x y 0 0 0], Now consider the

effect of g e G to the last column of M l t g transforms τ[x y 0 0] to
τ[xg yg 0 0], hence p^g) takes the form

Pl(g) =
0 Pα(

where pn(g) is a 2 X 2 matrix satisfying

so that άetpn(g) = 1. Now by the complete reducibility of p and by

Theorem 2.4 we are forced to conclude that there have been only two

basic relations and therefore n = 2.

Case II. Assume deg/i = 2. Then /Ί is either a product of two inde-

pendent linear forms or a square of a linear form. Hence we may assume

that, by change of variables, /Ί is either xy or x2. Keeping in mind the

fact G C SL(2, k), one easily sees that in the first case (/Ί = xy), G is

generated by

ίω 0 \
VO a r 1 / '

with ωs = 1,

and in the second case, G is generated by — E2. In either case RG =

k[xy, x\ ys] for some s, hence n = 2. Rewrite RG = k[xy, xs + y\ xs — y8].

Then the last generator is the Jacobian of the first two. Q.E.D.
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§ 4. Monomial ideals in k[x, y] and their syzygy

The first lemma and the example following it are easy and proof is

omitted.

LEMMA 4.1. Let R be a graded UFD, and let a be a homogeneous

ideal (minimally) generated by two elements: (f,g). Then we have:

( i ) hd Rja — 2. To be precise, if f = fd and g = — g:d with d a

greatest common divisor of f and g, then

0 >R >R2 >R

[ft/J τifg]

is a minimal free resolution of JB/α.

(ii) Assume [b a] is a relation of T[f g] (i.e., [b a]τ[f g] = 0). Then a

basic relation of τ[f g] is obtained from [b a] by dividing out a greatest

common divisor of b and a, i.e., if d = GCD(b, α), l/d[b a] is it.

(iii) Assume [b a] is a relation of τ[fg], and b and a are homogeneous.

Then deg b > deg a & deg/ < deg g.

EXAMPLE 4.2. Let R = k[x, y] and let / = xhy\ g = xa'yy with a > a'

and b < b;. Set a — a' = r and bf — b — s. Then a minimal free resolution

of Rja is

0 • R > R2 > R .

1-fxΎ [fg]

Next we consider a relation matrix of a general monomial ideal in

R = k[x,y]. Let α be the ideal generated by the monomials

ft = xaiyH, i = 1, 2, , n + 1, n > 1.

If the generators have been chosen minimal, we may assume, with suitable

numbering of the generators, that at> a2> > an+ί and bx < b2 <

< bn+ί. With the positive integers rt = at — ai+1 and st = bi+ί — bί9 i =

1, 2, , n, we define the matrix M to be

- y'1 x'
0 -f*

0 0 .
xr* 0 O

0 — y S n x r

Now we have
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PROPOSITION 4.3. The matrix M above is a relation matrix of τF =

[/iΛ /»+J. That is,

is a minimal free resolution of Rja.

Proof. That MF = 0 is obvious. Among the maximal minors of M

are a power of x and a power of y. Hence ht I(M) — 2. This shows the

complex is exact by Buchsbaum-Eisenbud criterion.

In the next remark, we want to show the maximal minors of M ex-

plicitly, but we treat M a little more generally for a later purpose.

Remark 4.8. Let

A A,
B2 A2

Bn

Then the i-th minor of M is, disregarding the signs,

J=l

In particular, Dx = \\n

j=1Aj, and Dn+ί = Π ? = i ^

Remark 4.6. Let α and M be as in Proposition 4.3. Then the maximal

minors of M coincide with the generators of α if and only if α is perfect,

which is equivalent to an+1 = bx = 0.

The following lemma is used in § 6.

Lemma 4.7. Let M and F be the matrices given in Proposition 4.3.

Let Mr be matrix of the following type:

xr

xrn

where the elements in the *-ed positions are known only in the quotient

field of R {and might not be in R). Even then M'F = 0 implies Mf = M.
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Proof. This is clear because the condition M'F = 0 determines the

elements in the *-ed positions uniquely.

§ 5. Certain monomial ideals in k[x, y] and k[X9 Y, Z]

We denote by Z\ and Z\ the additive semigroups of non-negative

intergers of rank 2 and rank 3.

In this and the next sections, we are primarily concerned with the

subsemigroups Mp,r c Z\ and Sp,r C Z\ defined as follows:

DEFINITION 5.1. For any pair of positive integers p, r, we define

MP t r = {[a b] e Z\ \ a + rb e (p)} and

SPiT = {[ab £]eZl\a + rb - p£ = 0}.

Here (p) — pZy the set of multiples of p.

Remark 5.2. ( i ) Note that the projection [a b t\ -> [a b] gives an

isomorphism from Sp,r onto Λfp,r as semigroups.

(ii) When r= rf(p), Mp,r and MPyr, are the same subset of ZJ, but

SPir and SPίr' may be different as sets, although they are isomorphic as

semigroups, since they are isomorphic to MP ) r = MPi1.,.

Now assume, temporarily, k is an algebraically closed field of char-

acteristic 0, and let ω e k be a primitive p-th root of 1. Let us consider

the automorphism g of the polynomial ring R = k[x, y] that takes x to

ωx and y to ωry. Then xayb is left unchanged by g if and only if [a b] e

Mp>r. Hence if G is the cyclic group of automorphisms of R generated

by g, then the ring of invariants Rσ is the semigroup ring k[MPyT]. If α

= (R^)R, then by Theorem 2.1 and Remark 2.3 the minimal ideal basis

for α consisting of monomials is a minimal set of generators of RG as a

^-algebra, which is precisely the minimal basis of the semigroup MPiT.

(Note that a basis for Mp,r is unique.) The situation for Sp,r is the same

as for Mp,r if G is replaced by a certain action of a 1-dimensional torus.

In fact consider the action of T = GL(1, k) on the polynomial ring A =

k[X, Y, Z] defined by

X >tX, Y >trY, Z >t-*Z9 f o r * e T .

Then the ring of invariants Aτ is the semigroup ring k[Sp>r], and the

minimal generating set of the semigroup is a minimal set of generators

of the ideal (AT

+)A.
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Let us fix our notations for the rings and the ideals corresponding

to MPiV and Sp,r as follows:

Notation 5.3.

R = k[x, y] = k[Z\] A = k[X, Y, Z] = k[Zl]

Rp,r = k[MPtr] APir = k[SPtr]

α,,r = (Mp,r)R IPtr = (Sp,r)A

To be precise, Rvr (resp. Av,r) is the subring of k[x, y] (resp. k[X, Y, Z])

generated by those monomials whose exponents are in MPjr (resp. SPtr),

and aPir (resp. IPtT) is the ideal of R (resp. A) generated by the monomials

Φl in Rp,r (resp. Ap,r).

Remark 5.4. In the notations above, k is an arbitrary field. Since

the semigroups are defined certainly independent of the field, the other

things are as well defined, although, for example, i?p>r may not appear

as the ring of invariants for some k. Even then it is true that, as long

as the generators are concerned, the ideal, the algebra and the semigroup

in the correspondence are regarded as the same. This is easy to see

once it is known for k such that k = k and ch k = 0.

Remark 5.5. We have the following commutative diagram of rings:

where i are the inclusions and ψ is the projection X->x, Y->y, Z~>1.

ψ induces the isomorphism Ap>r ~> Rpr which corresponds to the iso-

morphism of the semigroups Sp,r - ^ > Mv,r. Note also that Kerψ = (Z — ΐ)A

and A/7p,r ® AA\(Z - 1) - ^ > R\av,r.

Remark 5.6. ( i ) In the sequel whenever we say that

[a* &,], £ = 1, 2, , n + 1

is the minimal basis of the semigroup MPiT, it will be tacitly assumed

that they are arranged in the order that ax > a2 > > an+1, so that the

fact is ax > a2 > > an+1 and bx < b2 < < 6n+1. (cf. the paragraph

preceding Proposition 4.3.) The same will be applied to SPιΓ, so if we say
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[at bt £t], i = 1, 2, , n + 1

is the minimal basis of Sp,r, then α! > a2 > , > an+ί> and 6X < b2 <

< 6n+1. As to the sequence ^ see Lemma 5.8 below.

(ii) Note, with the convention made above, that the first term of

the minimal basis of Mv,r is [p 0] and that of Sp,r is [p 0 1],

Remark 5.7. When p = r, the minimal basis of MPiP is [p 0] and [0 1]

with n = 1. This corresponds to the ring of invariants of P = &[x, j ]

under the action of the automorphism

C\)
where ω is a primitive p-th root of 1. In fact RG = k[xp, y]. Although

one might expect the notation 'MVJ in this case, we do not let r = 0.

LEMMA 5.8. Suppose [at bt £t], i = 1, 2, , n + 1 is the minimal basis

of Sp,r. Then we have that tx < £2 < -̂  <Ξ < -βn+i

Proof. By the definition of Sp,r

a>i = PA — r6 t and α,+1 = p£i+ί - rbi+1.

Hence at — ai+1 =p(β>i — £i+1) + r(bi+1 — 6J. Note we have t h a t at — aί+1

> 0 and bί+1 — &έ > 0. Then, if (^ — £i+1) were positive, we would have

&i — ΰn-i > P> a contradiction to ax = p > at.

PROPOSITION 5.9. Pwί α = αp>r α îd 7 = Jp,r.

( i ) hd^ JR/α = 2, ami a is perfect

(ii) hd^A//= 2, I is imperfect and Z is the greatest common divisor

of (the generators of) /.

(iii) If L is a minimal free resolution of A/I over A, L ® AA/(Z — 1) is

a minimal free resolution of R/a over R, with the identification Aj(Z — 1)

- ^ > R.

Proof. ( i ) Since a contains a power of x and a power of y, hia —

2 = hdi?/α.

(ii) Set rt = at- ai+l9 s* = bi+ί - bt and A, = £i+1 - £u i = 1, 2, ,

7Z. (Note A€ > 0 by the preceding lemma.) Define the matrices Mx and Fx

as follows:
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is a minimal free resolution of AjL In fact it is obvious that M^ — 0.

To prove the complex is exact, it suffices to show h t / ( M 1 ) > 2 by

Buchsbaum-Eisenbud criterion. This indeed is true for I{M^) contains a

power of X and a monomial in Y and Z. (Consider the first and the last

minors of Mx.) For the second assertion, note that the first of the minimal

generators of / is XVZ. On the other hand, the first maximal minor of

Λίi is Xa, where a = J] si9 and a is equal to p. This shows I(M^)Z = I.

(iii) We can assume L is the complex given in the proof of (ii).

In L substitute Z by 1, and one obtains the minimal free resolution of

R/a given in § 4. (One may also use the argument of Lemma 8.3.)

§6. The finite sequence Φ(ρ,r)

DEFINITION 6.1. Let p, r be positive integers, and let [α* bt ^ ] , / = 1,

2, , n + 1 be the minimal generators of Sp>r. With the assumption of

Remark 5.6, let at — ai+ί — ri9 i = 1,2, , n. Then we denote the sequence

r3 symbolically by Φ(p, r) = rx Θ r2 Θ Θ rn. If it happens that r2 0 r3

0 . . 0 rn = Φ(p\ rf) for some pr and r', we shall write Φ(p, r) = Γj 0

^(P7? ^0 Note Φ(p, r) depends only on the residue class of r modulo p.

The following proposition, of which the proof is carried out ele-

mentarily, enables us to compute Φ(p, r) actually.

PROPOSITION 6.2. Assume p > r > 0. Let p' = p — r and let rf be the

integer such that r = r' (pf) and pf > rr > 0. Suppose [α* bt £τ], ί = 1, 2,

• , ft + 1 are ίΛe minimal generators of SPjT indexed as in Remark 5.6.

Then:

( i ) [at 6J, i = 1, 2, , n + 1 are Z/ie minimal generators of Mp,r.

(ii) [ai 6έ — ^ ] , ί = 2, 3, , n + 1 are ί/ie minimal generators of
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Proof. ( i ) See Remark 5.2 (i).
(ii) Set S = Sp,r9 M = MPyT and Mf = M p V,. Let S' be the semigroup

in Z\ generated by [at bt £t], i = 2, 3, , τι + 1. Consider the linear map
/: Z3 -> Z2 that sends [α 6 ̂ ] to [α 6 — ̂ ]. We are going to show that /
induces an isomorphism of Sf onto M', which proves the assertion, for
certainly generators are mapped to generators by an isomorphism of
semigroups.

Step I. First let us note that bt - £t > 0 for iφ 1. In fact if £t -
bt > 0, then it follows that at = p£t — rbt — p(£t — bt) + (p — r)bt > p

because of bt > 0. This contradicts the fact p = ax > at for i Φ 1.

Step Π. We show that [at 6, - £t] e M provided that ί Φ 1, i.e., f(S')
C Mf. By definition at + rbt = p£t = (r + pWi- This, together with the
fact that r = rf(p\ implies at + r\bi - £t) = 0 (p'\ i.e., [at bt - £t] e Mr.

Step III. We prove that, for any [a V] e M', there is [a b £] e S = Sp,r

such that b — £ = b\ (Note, presently, we do not claim [a b £] is in S\)
For this consider the system of linear equations

/*\ a + rb = p£ (1)

b-£ = b', (2)

where b and £ are regarded as unknowns. We want to find a solution
[b £] in Z\ (then [α 6 ί\ is the required element in S).

Since p = r + pr, (1) is equivalent to

α + r(ί> - )̂ = p'£ . (1)'

Since r=r'(pf), we have the number BeZ that satisfies r = r' + Bp'. It
can easily be proved that r > r\ i.e., B > 0. (See the proof of Proposition
6.5 below.) With the integer B and with (2), (l)r is equivalently transformed
to

a + r'V =pf£-Bp'V . (1)"

That [a bf] e Mf implies the existence of £r such that

a + r'V = p'£'.

Therefore (1)" is equivalent to

£' = £-Bb', i.e., i = V + BV . (3)

For 6, we have b = V + £ = (B + 1)6; + ^ . (4)
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(3) and (4) is the required solution of (*); in the matrix notation

B+l l\/b'

B l
where, we repeat, B is the integer satisfying r = r' + Bpr.

Step IV. We prove f\s, : S' -> Mr is surjective. Let \af bf] be a

member of the minimal basis of Mr. Then pf > α'. In Step III we showed

there was [a b £] e S such that a = a' and b — £ = b'. Since S is generated

by S; and [αj &! £t] = [p 0 1], and since p > p ' , [α b £] above has to be

contained in S\ Because f\s, is a homomorphism of semigroups, this

proves it is surjective.

That f\s, is injective is in fact trivial; an argument, for example, is to

consider the ring homomorphism k[S'] —> k[Mf\ which / induces. The rings

are both 2-dimensional domains, and it can have no kernel. Q.E.D.

Remark 6.3. In the course of proof we actually proved that the

linear map

/I 0 0\
0 B + l 1 : Z3 -> Z3

\0 B 1/

induces an isomorphism between S ; and Sp^rt,

PROPOSITION 6.4. Let p > r> 0 be positive integers. Then we have

φ(Pj f) = r φ Φ(p\ rf), where

p' = p — r, and rr =

Proo/. Immediate by Proposition 6.2 and the definition of Φ(p, r).

Since Φ(p, r) depends only on the residue class of r modp, we may

always be assuming p > r > 0. By Remark 5.7, Φ(p, p) = p. Thus the

sequence Φ(p, r) ends when it has reduced to Φ(rn, rn) = rn. Here are

some properties of Φ(p, r) that follow immediately from Proposition 6.4.

PROPOSITION 6.5. Let Φ(p, r) = r t θ r2 θ θ rn. T/iezx: (i) rt > r2

> > rn. (ii) // c is a positive integer, Φ(cp, cr) = crt θ er2 θ θ crn.

(iii) rw = (p, r), /̂ιe greatest common divisor of p and r.

Proof, (i) Let p / and r/ be as in Proposition (6.4). By induction it

suffices to show r > r'. Assume \p > r. Then pr — p — r > r, hence

r = rr. Assume \p < r. Then p' = p — r < r, so rr <p' <r. (ii) Easy
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by induction, (iii) It is easy to see (p, r) = (pf, r'), hence the assertion

is immediate by induction.

The next theorem shows not only the generators but the syzygies of

7p>r are related to those of αp/,r/.

THEOREM 6.6. As in Proposition 6.2, assume p > r > 0, and pf — p — r

and r' ΞΞ r(pf). Let Mx be the matrix defined in the proof of Proposition

5.9:

Xr

so that

0

is a minimal free resolution of AjIPir. Define the matrix M' by

_y 2-fc 2 Xr* 0

M =
o o

0 - y'*-** xrn

Then Mf is a relation matrix of aPtT over R = k[x, y].

Proof. Let M{ be the matrix obtained from M1 by omitting the first

row and the first column:

Let e% = XaiYb*Z'*9 i = 1, 2, , n + 1 be the minimal generators of IPtT9

and define the matrix F[ by F[ = [e2ez en+1]. Then we have the exact

sequence

(To prove this is exact, use Buchsbaum-Eisenbud criterion.) In the com-

plex L[ substitute X by x, Y by y, and Z by y 1 , and one obtains a

complex of free modules over R — klx^y^y1]:
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L ' : 0 - Rnί

M'
Rn

•R,

where Mr is the matrix in the statement of our present proposition. The

complex U is exact, for it is nothing else than L[ ®AAj(YZ — 1), and ΎZ — 1,

being inhomogeneous, cannot be a zerodivisor on the cokernel of F[.

Proposition 6.2 says precisely that the entries of Ff are the minimal gene-

rators of αp/,r/, and we are in the situation where Lemma 4.7 applies, so

that the fact is that the complex U is defined over R = k[x, y] and the

maps restrict to the submodules Rv c Rv to give a minimal free resolution

of Rjap,,r, over R : 0 > Rn~ι -^> Rn -j+ R. Q.E.D.

Assume k is an infinite field, and let te T = GL(1, k) act on 4 =

k[X,Y,Z] by X-*tX, Y->trY, Z-+t-*Z, where p and r are positive
integers. Then, as we saw in the last section, the ring of invariants Aτ

is APfr = k[SPtr]9 and the ideal (AT

+)A = Ip>r is homologically 1-dimensional

(Proposition 5.8). Let us denote by PPtT the representation of R to the

syzygy space of IPtT, which was defined in § 2. Then we have:

PROPOSITION 6.7. According to Proposition 6.4 write Φ(p, r) = rx 0

Φ(p\ r 0 (ri ^ such that rx = r(p), 0 < rx < p.) Then as a representation of

T= GL(l,k), we have:

PPιΓ(ί) = ί r i Θ P p V , ( ί ) , teT.

Proof. As we have shown in the proof of Proposition 5.9, a relation

matrix of Ip>r has the form

where Φ(p, r) = rt Θ r2 ® ® rn. It follows at once that P p > r is given by

tri

tr%

(Consider how teT multiplies Xri's and disregard about it for the mono-

mials in the *-ed positions, as they should be the same.)
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§ 7. The syzygy of (RG)R for finite abelian groups in GZ(2, k)

Throughout this section, k = k, ch k = 0.

Let G c GL(2, k) be a finite abelian group put in the diagonal form.

Assume G does not contain any reflexions. (Generally, an invertible

matrix of finite order is called a pseudo-reflexion if all but one of the

eigenvalues are equal to 1. In this paper we say reflexion for pseudo-

reflexion.) Then it is easy to see that G is cyclic. (In fact, consider the

projections \ ι ) e G —> α̂  e £*. Any element in the kernel of either of

them would be a reflexion, hence G is mapped injectively to k*. And a

finite subgroup of k* is cyclic.) Let g = ( ω i be a generator of G.

Then, because G contains no reflexions, if o(G) = p, both ω^ and ω2 are

primitive p-th roots of 1. Thus there is r such that ωi = ω\* Note that

the residue class of r modp is uniquely determined by G, and also that

r is relatively prime to p. Rewrite ω = ωu g = lω A. Now let G act

on R = k[x, y] by xg = ωx, y8 = ωry. Then the ring of invariants RG is,

using the notation of § 5, k[MPtr]. Let α = (R%)R and let M be the rela-

tion matrix of a given in §4:

y*l χrl

— ySn χr

Then by definition of Φ(ρ, r) and by Proposition (4.9) (iii), we have that

φ(py r) = Γj 0 r2 Θ Θ rn. Let s be positive integer such that rs = l(p).

Then G may as well be generated by gs = (ω ), and by interchanging

the roles of x and y it immediately follows that Φ(p, s) = sn Θ sn^ Θ Θ s^

(Note the reversed order of indices. Also note it is implied that Φ(p, r)

and Φ(p, s) have the same length.) Since α is perfect, the generators of

α coincide with the maximal minors of M;

A = Π *ri π V s v = l, 2, . , Λ + l .

These are also an algebra basis of RG.

Let p : G-> GLU(V) be the representation of G to the syzygy space of

α. We can think V is the space spanned by the rows of M and p is such

that p(g)M — Mg. Then we at once have:
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P(g) =

ω'

ω'

ω'

In view of Proposition 6.4 it might be in some number theoretic sense

interesting to note:

pig9) =

Note Ker^ is trivial since rn = 1.

Next we consider generally a finite abelian group G C GL(2, k). We

may assume G has been diagonalized. Let H be the group generated by

all the reflexions in G. Then it is easy to see that RH — k[xa, yβ], for

some a and β. The induced action of G on RH, regarding xa and yβ as

new variables, contains no longer reflexions, and we can apply the preceding

consideration to G/H and RH = k[xa, yβ]. Certainly RG is the ring of in-

variants of RH under the action of G/H. Thus, with certain Φ(p, r) = ®rt

and Φ(p, s) = ® sn_i such that Γ S Ξ I (p),

yβSl χarx

is a relation matrix of (R%)RH over RH. Since the inclusion RH - > i ? i s

faithfully flat, the matrix M above serves as a relation matrix of (R+)R

over R. Let p be the representation of G to the syzygy space of (R^R.

Then one sees easily that Ker p = if, and /)(G) can be thought of as the

representation of GjH to the syzygy space of (R%)RH over RH. (cf. Remark

(2.6).)

§ 8. Homological dimension of certain monomial ideals in k[X, Y9 Z]

Let R = k[X, Y] and A = k[X, Y, Z]. Define the morphism φ: R->A

by X-+ XZ and Y-> YZ. Denote by ( ) z = 1 : A = R[Z] -> R the morphism

of i?-algebras that sends Z to 1. Clearly ( ) z = 1 is a ring retract of φ.
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If M = [dij] is a matrix over A, we will write MZssl for the matrix [(fl^X^i],

which is a matrix defined over R. Conversely, if M= [aυ] is a matrix

with dij e i?, we write φ(M) for [(α^)]. Note that for a homogeneous

polynomial / e i ί , we have that φ(f) = /Z d e g ( / ) . If α c i? is an ideal, the

ideal φ(ά)A will be denoted simply by φ{a).

LEMMA 8.1. (i) For a homogeneous ideal a c R, μR{a) = μA(φ(a)). (ii)

If feA is homogeneous, then (f)Zs=ί — 0 implies / = 0.

Proof, (i) Since 0 has a ring retract, it holds that 0(α) Π i? = α for

any ideal α c J?, from which the assertion follows easily, (ii) Clear.

As in the preceding sections we are concerned with monomial ideals

in R, but this time we start with a matrix of the following form:

Xr

where rt and s t are positive integers. The purpose of this section is to

consider for what monomial ideal α C R it holds that hdAA/φ(ά) = 2. For

this we need consider the matrix M* derived from M as follows:

M* = U

where U is the n X n diagonal matrix

with mt = Min{ri? s*}. Note that the ΐ-th row of M is

[... γ>i xπ ...]9 and hence that of φ(M) is

Therefore the i-th row of M is, letting βi — \ri — st\,

•] if Si < ri9 and

•] if St > rt.
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Throughout this section the above notations φ, R, A, M, M* etc. are

kept fixed.

PROPOSITION 8.2. Let a c R be a homogeneous ideal and suppose, with

an F, 0 > Rn > Rn+ί > R is a minimal free resolution of Rja. Then

if hάAAlφ(a) — 2, 0 > An ——> AM+1 —-> A is a minimal free resolution of
M* φ(F)

Alφ(ά) over A.
For proof we need the following

LEMMA 8.3. Let a a R be a homogeneous ideal, and let L be a minimal

free resolution of A/φ(a) over A. If hάAAlφ(a) = 2, then L ® AAI(Z — 1) is,

identifying A\{Z — 1) with R, a minimal free resolution of R/a over R.

Proof. Note Φ(ά) is homogeneous and Z — 1 is not a zero divisor on

Alφ(ά), from which it follows that L ® AAj{Z — 1) is exact. To say it is

minimal is that the ranks of the free modules in the complex are the

betti numbers of Rja. But this is clear for the first betti number is μB(ά)

μA(φ(a)) and the second betti number is one less than that.

Proof of Proposition 8.2. Let M! be the kernel of φ(F) so that the

complex 0 > An > An+ί —-> A is a minimal free resolution of Ajφ(a).
Mf Φ(F)Φ()

Certainly the entries of M' can be assumed homogeneous. By the lemma
above we may assume M^= 1 = M. Then, in view of Lemma 8.1 (ii), we

see that Mf and M have O's in the same positions. This is to say that,

if τF = [fx f2 - fn+i], then the i-th row of Mf is essentially a basic relation

of φ(f) and ̂ (/i_i). On the other hand, the i-th row of φ(M) is a (may-

not-be-basic) relation of φ{fτ) and φ(fί+1). (In fact φ(M)φ(F) = φ(MF) = 0.)

Thus it turns out that M/ is the matrix obtained from φ{M) by dividing

out greatest common divisors from all the rows, which is precisely M*.

(cf. Lemma 4.1 (ii).)

LEMMA 8.4. The following conditions are equivalent

(i) ht/(M)>2.

(ii) // Sj > Γj for some j , then st > rt for all i > j .

Proof. Recall that Λf* is the matrix

B2 A 2
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where JB, = YHZH and A, = Xr\ if st > rt,

and Bt = YH and At = XriZH, if st < r<.

We recall also Dw = f]i=ί -Bt Π?=v Ai9 v = 1, 2, , n + 1 are the maximal

minors of M*, and I(M*) is the ideal they generate.

Let us prove (ii) implies (i) first. Assume st < rt for all i. Then Dn+ι

is a power of Y and A is a monomial in X and Y. This proves ht 7(M*)

< 2. In the case sέ > r* for all i, the symmetry in X and Y shows

ht J(M*) > 2 as well. Assume we have ^ < r* for j = 1, 2, , j , and

Si > ri for i = j + 1, j + 2, , 7i for some j ψ 1, n. In this case Dj is

a monimial in X and Y, and does not contain Z as a divisor. (In any case)

Z)j is a monomial in X and Z, and D in Y and Z. Thus we have ht I(M*)

> 2. We have proved (ii) =̂> (i) completely.

The negation of the condition (ii) is: There are indices j < k such

that Sj > r3 and sfc < rk. When this is the case, it is true that both Bf

and Ak have Z as a divisor. Because j < ft, Dv has either B3 or Afc as a

factor for ι> whatever. This shows I(M*) c (Z) and ht /(M*) = 1. We

have proved (i) => (ii).

THEOREM 8.5. Let a be an ideal in R = k[X, Y] generated by the

monomials ft = Xaί Yδί, i = 1, 2, , n + 1, where we assume without loss

of generality a1 > α2 > > αn+i and 6j < 62 < < &n+i Γ/ien the

following conditions are equivalent

( i ) hd^A/0(a) = 2.

(ii) If degfj < degfj+1 for some j9 then degft < deg/ ί+1 for all i > j .

Proof. Set rt = at — ai+1 and st = bi+ί — b^ Let τF = [f — f2 f3 - »

( - l)n/»+J. Then

is a minimal free resolution of R/a. (M is the matrix fixed in the begin-

ning.) Consider the complex

If hd^A/α = 2, then, by Proposition 8.2, the complex (*) is exact. Hence

by Buchsbaum-Eisenbud criterion we have ht I{M*) > 2. Conversely, too,

ht I(M*) > 2 implies (*) is exact by Buchsbaum-Eisenbud criterion. As

we have seen in Lemma 4.1 (iii) st > rt ^ degf < άegfί+1. Now the proof

is complete by Proposition 8.4.
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Remark 8.6. Borrowing a term from elementary calculus, the condition

(ii) of the theorem may be described by saying that there are no 'maxima'

in the graph of the map ί—>degft. The two ends of the graph are not

counted as maxima whatever values they take. In this terminology it

can be conceived that the theorem is generalized to: For any monomial

ideal α of R, if 0 —> Aτ —> Av —> Aμ —• A is a minimal free resolution of

A/φ(a), τ is the number of maxima in the graph of i -> def ft. The theorem

is to be the special case when r = 0.

COROLLARY 8.7. In the same notations of Theorem 8.5 and its proof\

a sufficient condition for hdAA/φ(a) — 2 is that sx < s2 < < sn and rx >

r2 > - > rn.

Proof. This is clear from Lemma 8.4, for, as was said in the proof of

Theorem 8.5, hάAAlφ(ά) = 2 if and only if ht I(M*) > 2.

PROPOSITION 8.8. Assume k is algebraically closed and ch k = 0. Let

φ:R = k[X,Y]->A = k[X, Y, Z] be the map, as before, defined by φ(X) =

XZ and φ(Y) = YZ. Let G be a finite abelίan group acting linearly on Ry

and let a = (R^R. Then we have that hd^A/^(α) = 2.

Proof. We may assume G has been diagonalized. Then the assertion

follows immediately from Corollary 8.7, Proposition 6.5 (i) and the results

in §6.

THEOREM 8.9. Assume k = k,chk = 0. Let T = GL(1, k) be a one

dimensional torus acting on A = k[X, Y, Z] by linear transformation of the

variables. Suppose dim AT = 2. Then we have hάAAI(Aτ

+)A = 2.

Proof. We can assume the action is such that X—>taX, Y—>tbY,

Z-+ t~pZ, for te T, with a, b, p all positive. (In fact if 0 appears among

the exponents, the assertion is easy. If there are two negatives and one

positive, consider t~ι instead of t.) Consider the diagram of rings

B = k[U, V, W]

A = k[x, y, z\ .s = k[uw, vw]
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where i is the map defined by ί(X) = Ua, i{Y) = V\ i{Z) = Wp, and φ is
the natural inclusion. Observe: (1) S is the ring of invariants of B under
the action of T7* = GL(1, k) that sends t/-> tU, V-> tV, W-+ t~ι Wΐoτ t e Γ*.
(2) The action of T on A in our present consideration is precisely that
which is induced by the action of T* on B. (3) There is a finite abelian
group G* that acts diagonally on B such that the ring of invariants BG*
is the image of A by L (4) If G is the group of automorphisms of S that
G* induces, then SG = Aτ.

Now let m = A+, the maximal ideal of AΓ. Instead of h.dAA/mA = 2,
we may prove h.dBB/mB = 2, since A -»JB is faithfully flat. Consider mB
as an ideal that comes from Aτ via S; then mΰ may be written φ(ά)B,
with α = (S+)S, S+ being m. Thus it turns out hάBB/mB = 2 is nothing
but was proved in Proposition 8.8.

Remark 8.10. In the proof of the theorem above, only the exponents
of monomials are actually encountered; consequently the assumption that
k = k, ch k = 0 is inessential. Indeed SG (in the proof) is expressed as
k[M] for a certain semigroup M9 but M in turn defines a semigroup ring
k[M] over any field. Hence Theorem 8.9 is valid for an arbitrary field k
(with a suitable interpretation of a torus action in the case k is a finite
field).

Remark 8.11. The first part of Proposition 5.9 (ii) is a special case

of Theorem 8.9, where a = 1. The proof does not work for the general

case because Lemma 5.8 fails to hold.

In the situation of the proof of Theorem 8.9, let (ω λ act on R =

k[X, Y]. Then the projection Z-> 1 induces the isomorphism Aτ ~ > RG.

Write

Aτ = k[XλiY"Zei\ί = 1, 2, , n + 1],

where Λ > Λ2 > >λn+1, ^ < μ2 < < μn+1 .

Then the re-examination of the proof of Theorem 8.5 shows that there is
j such that A > 4 > > ̂  < 4j+ι < < £n < 4+i Lemma 5.8 says
j = 1 in the case a — 1, but in the general case it can happen j Φ 1, n + 1.

Now let p be the representation of T to the syzygy space of I = (A+)A.
Then p is given by

p(t) = tbSl Θ tbS2 Θ .. Θ t^-1 Θ tarj Θ * α r ' + 1 Θ Θ tarn,
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where ri — λi — λί+ί9 and ŝ  = μi+ί — μi9 i = 1, 2, , n, and j is, as above,

an index at which ^ takes the minimum value. (Note j may not be unique.

If not, we may take any such j.) This can be seen by considering the

syzygy matrix of 7, as in the proof of Proposition 6.7. The details are

left to the reader.

Remark 8.12. In [9], H. Tanimoto proved, among other things, the

following.

Let A = k[X19 X2, - - , Xn, Z] be the polynomial ring in the variables

Xl9 X2, , Xn, Z, and let T = GL(1, k) act on A by X, ~> tqiXi9 and Z->

ΓPZ, where qt > 0 and p > 0. Suppose the integers qt and p satisfy the

condition

(*) there are two integers a and b such that {qu q2, , qn) C {0, α, fe,

— α, — fc}, where denotes residue class modulo p. Then it holds that

hd A/(AT

+)A = n.

Note the condition (*) is automatically satisfied if n < 2 (or p < 5),

hence this can be regarded as a generalization of Theorem 8.9.

Without the condition (*), although it holds that hd Ajl > n (hence

it is either n or n + 1), Tanimoto [9] also gives a counter-example to the

equality hd A/1 = n. (To see hd Ajl > n, one can use Theorem 7.1 of

Hochster [3].)
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