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The main purpose of the present paper is to establish a theorem concerning

the relation between the group of all projective transformations on an affinely

connected manifold and the group of all affine transformations.

We shall say that an affine connection satisfies condition (E), if it is without

torsion and affinely complete and if the Ricci tensor field S(X, Y) is parallel.

Our theorem states that if an affine connection satisfies condition (E) and if the

quadratic form S(Xy X) is zero or not negative semi-definite, then the two

groups coincide. This is just a generalization of the case of ordinary affine

space which is well known in analytic geometry.

The proof is based on the theory of normal projective connection introduced

by Elie Cartan in particular, we make use of the "developing" process of this

connection. After some preliminaries, in which we follow the book of K. Nomizu

[δ] for affine connections, we first formulate the normal projective connection

from a global point of view, as we shall see in Proposition 1. In § 6, we prove

an important lemma (Lemma 8) by using the results in the previous sections

(Proposition 1, 2 and 3), from which the main theorem follows immediately. In

Appendix, we shall prove a known fact on the geometric charactrization of the

projective equivalence of two affine connections.

Finally we add that we have obtained some results about the relation

between the group of all conformal transformations on a Riemannian manifold

and the group of all isometries by using the method analogous to the projective

case. We hope to deal with this problem in another paper.

The author expresses his sincere thanks to Professor K. Nomizu for his

constant encouragement and interest in this work.

1. Definition of a projective transformation
on an affinely connected manifold

Let M be a connected manifold of class C*. We asume that the dimension
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n of M is ^ 2 . Under differentiability we shall always understand that of class

Cro. We shall denote by Mp the tangent vector space to M at p e M. The set

lί(M) of all vector fields on M is a module over the ring %(M) of all differ-

entiable functions on M.

An affine connection P on M is given by a mapping of #(Λf) x #(M) into

36(M) which satisfies the following conditions [5]:

a) For each Ze36(M), the mapping Y-+VYX is an endomorphism of

^(Λf)-module 3E(AΓ);

b) For any X, Yt Z ε 36(Af) and / e g(M),

P;r(y+z)=P;ry+FχZ, r x / γ=f vxγ+xf Y.

Let a be the set of all affine connections on M whose torsion are zero. We

introduce a relation ~~ in 9ί as follows: F^-Γ, if and only if there exists a 1-form

p on M such that

(1.1) rxY=PxY+p(Y)X+ p(X)Y for all X, y<=*(M).

^ is clearly an equivalent relation, by which 51 is divided into equivalent classes.

The class Sβ(F) containing Γ G 91 consists of all affine connections V on M which

can be written as (1.1) with an arbitrary 1-form p on M. When Γ ~ F, we

shall say that F is projective to V and call p the associated 1-form of F with

respect to F. It is known that F is projective to F if and only if the systems

of geodesies for the two connections coincide (see Appendix).

Fix an affine connection F belonging to 9ί. Let / be a differentiate trans-

formation of M onto itself. We now define a mapping F of 36(Af) x Ϊ(M) into

36(Af) by

(1.2) VxY^Γ'VfxfY for all X, Fe36(M),

where /X denotes the vector field obtained by applying the differential of / to

X. We see that F belongs to 2ί. If F ̂  F, / is called a projective transfor-

mation of F. In this case, we shall call p the associated 1-form of /. The group

JP(P) of all projective transformations of F is a Lie group with respect to com-

pact open topology [4] and contains the group A(F) of all affine transformations

of F.

In the following, we shall justify the word "projective" by considering the

normal projective connection corresponding to an arbitrary class of mutually
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projective affine connections. F<or this purpose, we begin with an ordinary

projective space.

2. Projective space

Let Pn be an w-dimensional real projective space constructed from an (w-h D-

dimensional vector space Fn+i in the well known manner.

(2c 1) We consider a fixed decomposition of Fn+i

Fn,

where F! and Fn are 1- and ̂ -dimensional subspaces of Fn+i respectively, and

we choose once for all a base iξ0) in Fi. We denote by Fn the dual space of

Fn and by <?, E> the product between ξ & Fn and F e F ί .

(2.2) PM is a quotient space of F»+i, where F'«+i=F«+i-(o). More

precisely, it may be regarded as the base space of a principal fiber bundle F',n

with the multiplicative group of non-zero real numbers as structure group. We

denote by ω the projection of F»+ι onto Pw and set o = ω(ςo).

(2.3) Pw may be regarded as a homogeneous space P(n)/P'in), where

P(w) is the so-called projective transformation group on Pn and P'in) the

isotropy group of Pin) at o. We know that P(w) is expressible as a factor

group GL(Fn+i)/Hu where H[ denotes the 1-parameter subgroup (expίlw +i)

of GLiFn+i), ln+i being the unit element of GL(Fn+ι). The action of Pin) on

Pn is as follows: Let ω be the projection of GL(Fn+\) onto Pin). Then,

ωiσ) ωiu) = ωiau) for all aξΞGLiFnϊi) and wεFi+i .

(2.4) We define a homomorphism ψ of GLiFn) into GLiFn^) by

^(tf)fo = ?o <fia)y = a7} for ^ e f t .

For each £ e Fί , let exp£ be the element of GL(Fn+i) defined by

exp£ςo = ?o ϊ expE-η = <γ, F ) ^ 4 - ^ for 7?e F«.

Then it is easily seen that P'in) can be identified with the subgroup of GL(F»+i)

composed of all the elements ψia) exp is with β £ GL(Fn) and £ G Fn (the

isomorphism is clear). Thus P'in) can be expressed as

Pl(n)=φ(GLiFn))-eκpFt

The expression ψia) expF is unique, and, in particular, φ is an isomorphism
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of GL(Fn) into P'in).

(2.5) We define a homomorphism / of Pf(n) onto GL(Fn) by

ϊ(ψ(a)

(2.6) We see from (2.3) that the Lie algebra of Pin) is given by

$(Fn+i)/Hu where Hi denotes the 1-dimensional subalgebra of gί(Fn+i) spanned

by l«+i. Consider the formal direct sum pin) of three vector spaces F«, βί(F«)

and F ί :

For each f ε F « , A&tfiFn) and F e F ί , let | , A and £ be the elements of

flίίFn+ι) defined respectively as follows:

Ίjξo = ξ9 h = 0; Άξo = O, Άy = Ay; Fίo = O, Ev=-<τ], F>ς 0 ,

where τ?eF n . For Aep(w), define .Aegί(Fn+i) by ^ = ? + S + £l if A = ί

-f S + F , where f G f t , Segί(F«) and E^Fn. We now define a linear iso-

morphism / of pin) with $l(Fn+i)/Hi by /(A)=α>(A), where ω denotes the

projection of Qί(Fn+i) onto QΪ(Fn+i)/Hi. f being an isomorphism, we can transfer

the structure of Lie algebra of QΪiFn+i)/Hι to pin) in such a way that / becomes

an isomorphism of Lie algebras of pin) with Ql(Fn+i)/Ά. It is easy to see that

the bracket operation of pin) is defined as follows:

[?, S'] = 0; LA,B1 = AB-BA; IE,EΊ = O; ZA,ξl = Aξ; IA9E}= -ΆE;

[ί, £ ] = the element of gί(Fj defined by [f, F]τ? = <e, F>τ? + <^ F>?,

where ??, ς, f ' e FΛ, A, B<E. φFn) and F, F 'G F ί . In the following, we shall

always identify ^(w) with the Lie algebra of Pin). We here remark that the

notation expF, introduced in (2.4), is legitimate, because we have generally

exp Aωiu) = ωiexp Άu) for all AGp(n) and M G F « + I .

The Lie algebra of Pfin) is given by

(2.7) The decomposition of pin)

is fundamental for our argument. We shall denote by AFn and Aγ{n) the Fn-

and p'in)-component of A e p ( » ) respectively,

(2.8) The adjoint representation of P'in) in' pin) is given by
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adφ(a)ς =-.<**; ad<f(a)A

adiexp E) ξ = ς + [£", ?] + * [£, [£, ell adiexp E)A~-A H- IE, A~\

where a&P'in), ς€ΞF«, AGc\ϊ(Fn) and £, £ ' e F , ΐ . We have lia)ς = iadia)ς)F,t

for all a^P'(n) and ? ε ^ , which shows that / may be considered as the

homomorphism of the isotropy group of Pin) at o onto the linear isotropy

group.

3. Connections in principal fiber bundles

We first recall definitions about principal fiber bundles and connections in

them [5].

Let P(M, G, π) be a differentiate principal fiber bundle over a base space

M with structure group G and with projection π of P onto M. Denote by Gz

the subspace of Pz (the tangent space to P at 2 E P ) which is tangent to the

fiber through z. Let Ra be the right translation on P induced by a Er G. For

an element A in the Lie algebra g of Gy we denote by A* the vector field on

P which is induced by the 1-parameter group Rau) where ait) ^exptA. For

each 2GP, the set of all elements Aί with A e g is equal to the subspace Gz.

A connection Q in P is a choice of a tangent subspace Qz at each z e P

which satisfies the following conditions:

(Q. 1) ζ)2 + Gz = Pz (direct sum)

(Q.2) RaQz = Qz.a'>

(Q. 3) ζ)2 depends differentiably on z.

Given a connection Q in P, a curve #U) in P is said to be horizontal, if,

for each f, the tangent vector x'it) is contained in Qx{t). Let u(t) be a curve

through pE: M. Then, for each x G P such that TΓ(Λ') - A there exists one and

only one horizontal curve through x which covers nit). The curve xit) is

called the lift of nit) through x.

Given two principal fiber bundles P'( M, G') and PiM, G) with the same

base space M> a mapping / of P ' into P is called a homomorphism if there is

a homomorphism / of G1 into G such that fix1 <*') =/(ΛΓ') •/(«'), where ΛΓ'G P '

and α' e G', and if it induces the identity transformation of M onto itself.

Let M be an ^-dimensional manifold and let Pi be the bundle *of frames
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of M. By taking a base in Fn, we may regard PL as a principal fiber bundle

over the base space M with structure group GL(Fn). Each element x of PL

gives an isomorphism of Fn with Mp, where p = πz.(x), KL being the projection

of PL onto M.

It is well known that an affine connection V on M gives rise to an affine

connection in PL (in the sense of Cartan connection). Namely, to each V we

can associate a linear mapping of Fn into 36(PL) (%(PL) may be regarded as a

vector space over the field R of all real numbers) which satisfies the following

conditions:

(A.I) BLχ-\-GL{Fn)χ-PLX (direct sum), where BLχ denotes the subspace of

PLv composed of all the elements BL(ξ)x where f e Λ ;

(A. 2) RaBLiξ)=BL(a-ιξ);

(A. 3)

Conversely, starting with (A.I), (A.2) and (A.3), we can define an affine con-

nection V on M. For the relation between V and BL, see K. Nomizu's book [5].

In virtue of (A.I) and (A. 2), the assignment x -» BLχ defines a connection in

PL, which is often called the linear connection in PL induced by the affine con-

nection in PL (or on M). By (A. 1), we can set, for all x E: PL and ξ, f ' e Fn,

-ZJ3L(ξ), BL(ξ')lx = BL(Tx(ξ, £')')*+ Λ*(£, £')?,

where Tx(ξ, ξ') e Fn and Rx(ξ, ξ') e QKF»). For each # e PLt Tx and Rx are

linear mappings of Fn x Fn into Fn and Qί(Fn) respectively and are what corre-

spond to the torsion and curvature tensor fields respectively. For example, if

we denote by R(X, Y) the curvature tensor field of Γ, then we have Rx(ξ, ξ')

= x'1 R(x ξ, x ξ') x for all XEL PL and ξ, ξf G Fn> Now consider, for each

XEL PLy a bilinear function Sx on Fn x FM defined by

If we denote by S(X, Y) the Ricci tensor field of |7, then it can be shown that

Sχ(ξ, ξf) = S(Λ: ς, # £') for all Λ G P L and ξ, ξ'e F n . For later uses, we define

a linear mapping Jx of FΛ into F% at each XELPL by the following formula:

(3.1) <ξ, jx(ξ')>=-l—(Sχ{ξ9 P) + nSx(ξ'9 ξ)).
71 —" X e

Let V and V be two affine connections on M which are mutually projective
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and let p be the associated 1-forτh of F with respect to F. Let BL and BL be

the corresponding affine connections in PL respectively. If we define a mapping

F of PL into Fn by <ξy Fix)> = p(x ξ) for all # e P^ and ? e Fn, then it can

be proved that (1.1) is equivalent to

(3.2) B*<f), = B*(f)*-E, F(x)H.

4. Normal projective connection corresponding to a

class of mutually projective affine connections

The main purpose of this section is to prove

PROPOSITION 1. To each class $ of mutually projective affine connections

on M there is associated a collection (P\ I, B) as follows P1 is a principal

fiber bundle over the base space M with structure group P'(n) / is a homo-

morphism of P1 onto PL corresponding to the homomorphism I of P'in) onto

GL(Fn) defined in (2.5); B is a linear mapping of Fn into 36 (P ' )/ moreover,

the collection satisfies the folloiving conditions:

(P. 1) Bz+ Pf(n)z = Pz (direct sum), where Bz denotes the subspace of P'z com-

posed of all the elements B{ξ)z ivhere ? ε f t ;

(P.2) RaB(ξ)=B((ad(a-1)ξ)Fn) + (ad(a-1)ς)$>{u)

(P.3) 7rB(ς)2 = /(z) ς, where π is the projection of Pf onto M;

(P.4) To each F 6 $ there is associated a homomorphism h of PL into P'

corresponding to the homomorphism ψ of GL(Fn) into P'in) defined in (2.4)

such that

i) /α h(x)=x;

ii) hBL(ς)x = B(ξ)h(X)+Jx(ξ)hw, where BL is the affine connection in PL

corresponding to V and Jx is given by (3.1).

In the above proposition, let h and h be the corresponding homomorphisms

of V and V (F, Γ £ $ ) respectively. From (P. 4) ii), we have / ° h(x)

= 1 o h{χ) =x for all x& PL. It follows from (2.4) and (2.5) that there is a

mapping F of PL into Fn such that

(4.1) h(x) =h(x) expF(χ).

Let p be the associated 1-form of V with respect to F. Then, it can be shown

that

(4.2) p(* •£).= <?, F(x)>.
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(4.2) will be proved later. The conditions (P.I) and (P.2) correspond to the

ones for Cartan connections formulated by Ehresmann [3]. It can be proved

that, for each class, the collection satisfying the conditions indicated in Propo-

sition 1, is uniquely determined by the class up to an isomorphism (the meaning

of the isomorphism is clear). We shall call the collection iP'y /, B) the normal

projective connection corresponding to the class $ [1],

Now we shall prove Proposition 1. The proof is divided into four steps.

I. We here assume that (P'9 /, B) satisfies only (P.I) , (P.2) and (P.3).

In this case, the collection will be called a projective connection. From now

on, we shall derive several fundamental formulae, which will be needed for our

purpose.

For each A e pin), we define At e S(P') by At = B(AFn) + A$>(n). Then

the following lemma follows immediately from (P.I) and (P.2).

LEMMA 1.

i) For each zEzP'y every element of Pz can be written in one and only

one way in the form Az with A e pin)

ii) For aEiP'in), A ' e P'in) and Aep(n), we have

RaAΪ - iadia'1) A)t, [A'*, A*l = [A', Alt

Let / be a mapping of P1 into pin). We define / t e ϊ(P') by f\=fiz)\ for

zE: Pr. By a formula on bracket operation [5], P. 8, we can easily verify

LEMMA 2. Let f and g be two mappings of Pf into pin). Then we get

[/t, gilz = lf(z)ϊ9 giz)^z+ifiz)lg-giz)lf)t

lυhere fiz)tg means the result of applying fiz)t to g.

By Lemma 1 i), we can set, for all z G Pf and ξ, ξ1 e F«,

Az(ξ, ς') = Tz{ξ9 ξ')+Wz(ξ, ξ')+Jziς, ξ'),

where Tz(ξ, ς') e ft, Wz{ξ, ξ') G βί(F«) and Jz(ς, ς') e Ft Using Lemma 1 ii)

and the fact that [c, ς'l = 0 and Ha)ξ = {adaς)Fn> we see that

A*.β(f, f ' )=α£/U" 1 )A β (/(β)e, l(a)ξ').

It follows from (2.8) that

(4.3) i) TVαiς, ί') =/(β)" 1 Tz(Ha)ξ, l(a)ξ');
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ii) If Γ=0, then

(4.3) means that T and W are "affine tensors" on M. T corresponds to what

is usually called the torsion tensor field of the projective connection.

It can be proved that there is at least one homomorphism, say h, of PL

into P' such that / ° h(x) -x for all x <Ξ PL. We fix such a homomorphism h.

We shall show that h induces an aίϊine connection in PL which is closely related

to the given projective connection. Since, for each z&P', z and h ° l(z) lie in

the same fiber in P', we can set

(4.4) z a{z) =h o l(z)

with a mapping a of P1 into P ' (n) . Since 1° a(z)-l (the unit element of

GL(Fn)) for all z G P', we see from (2.5) that a(z) can be expressed as follows :

(4.5) a(z)=expE(z),

where E is a mapping of P1 into Fn. It is easily seen that aiz a) = a"1a(z)ψ ° Hσ)

holds for all ZELP1 and σEiP'in). By differentiating the both sides of (4.4>

in the direction Biς)h{X) and using (4.5), we have

We now define a linear mapping of Fn into H(PL) by BL(ς)x = lB{ξ)/ί(Λ}. In

virtue of (P.I) , (P.2) and (P.3), it is easily shown that BL satisfies (A.I),

(A.2) and (A. 3) and hence it is an affine connection in PL. The affine con-

nection, thus obtained, is said to be induced by a homomorphism h. For each

X&LPL, we define a linear mapping Jx of Fn into F ί by Jx(ξ) = B(ς)h{X)E.

Then we have

(4.6) B(*)hix)+]χ(ς)hM = hBL(ξ)x.

If we define //(£)* G X(P') by //(?)? =//(2,(?)? for 2 G P' and J e R , then

(4.6) means that B(ς)+//(?)* is /^-related to 5 L (ί) [2].

Applying Lemma 2 to the case where /U) = S4-//<3>(£) and

+ //(2)(ί') and using Lemma 1 ii), we have

(?)*, B(f') *

(BL(ς)xJ(ξf) -
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where BL(ξ)xJ(ξ') means the result of applying BL(^x to the mapping P L 3 *

-*/*(£) e F ί . On the other hand, we have

where T' and R are what correspond to the torsion and curvature tensor fields

respectively. Since LB(ξ )+//(£)*, B(S') +//(?')*] is /z-related to ίBL(ξ), BL(ξ')l

[2], it follows that

(4.7) i) TA(,>(£, f') = T'*(£, ?');

π) WWf, ς')=Λ(f, ?') + [£, Λ(f')] + C/*(f). f ' l

Let % together with ^ be a homomorphism of P* into P f such that /° ^(Λ:)

= λ- for all x e P£. We know that there is a mapping F of PL into F * such

that (4.1) holds true. Let ΈL be the affine connection in PL induced by h.

We shall find the relation between BL and BL. By differentiating the both sides

of (4.1) in the direction BL(ξ)Xi we obtain

hBL(ξ)x = Rbix) ° hBάξ)x+(BL{ξ)xF)lx);

using (4.6), Lemma 1 ii) and (2.8),

hBL(ξ)x = B(ξ)-h{x) - LF(x), ξltx)

), ZF(x), ξll+Jx(ξ

where we have set b(x) = exp Fix). Applying / to the both sides of this formula,

we see that BL(ξ)x = lB(ξ)%{x)-ZF(x), £]?. But, by definition of ΈL, we have

lB(ξ)h(X)=Έτλξ)χ. Consequently we have

II. We here assume that (P ' f /, B) satisfies (P.I) , (P.2), (P.3) and

(P. 4') i) T = 0;

ii) Tr(y-* Wz(ξ, y)ξ')=Q.

In this case, the collection is called a normal projective connection.

Let h be a homomorphism of PL into P1 such that / ° h(x) = ̂  for all x G P L .

We shall show that, in the case of normal projective connection, Jx is given by

(3.1). In fact, from (4.7) ii), we get
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Passing to the contraction and using (P. 4') ii), we obtain

o = sx(ξ, ?') -i- <?, /*(£')> - *<£', /*(£)>.

Interchanging ξ and f, we obtain

0 = sx(ζ\ ς) - n<ξ, Jx(ξ')> + <?', /*(£)>.

From these two formulae, it follows immediately that

< ς , Λ ( ί ' ) > = - ί ? 3 T ( S Λ ( e , ?') + *&*(£', ?)),

which proves our assertion.

III. Let $ be a class of mutually projective affine connections. Now con-

sider the following condition for (P\ /, B):

(P. 4") There exist a F G $ and a homomorphism /z of PL into P ' such that

i) / ° h(x) - x\

ii) hBL(ς)x^B{ξ)h(x)+Jχ(ξ)h(x), where J3L is the affine connection in PL

corresponding to V and Jx is defined by (3.1).

In the following, we shall show that if (P1, /, B) satisfies (P.I) , (P.2),

(P.3) and (P.4"), then it also satisfies (P.4) and hence, in this case, it is the

normal projective connection corresponding to the class $. We first show that

(Pf, I, B) satisfies (P. 4'). Let us make use of the results in I. First of all,

we see that BL coincides with the affine connection induced by h. From (4. 7)

i), we get Th(X)(ς, £') = Tx(ζ, ξ') =0, because V has no torsion. It follows im-

mediately from (4.3) i) that T = 0. Using (4.7) ii) and (3.1), it is easily shown

that Tr{-η -> Wh(x)(ξ, ??)!') = 0 (the reciprocal argument of II). It follows im-

mediately from (4.3) ii) that 7>(τ? -» Wz(ξ, r/)ξf) =0 . Thus we have seen that

(P ' , /, B) satisfies (P. 4'). Now we shall show that it satisfies (P. 4). Let V be

an arbitrary but fixed element of $ and p the associated 1-form of F with

respect to V. First, we define a homomorphism h of PL into Pf by (4.1) with

the mapping F defined by (4.2). We have / ° h(x) ~x for all x e PL. Next,

we shall show that hBL(ξ)x = B(ξ)h(x)+Jx(ζ)lx), where BL is the affine con-

nection in PL corresponding to V and Jx is defined by (3.1) starting with ΊBL.

Let Br be the affine connection induced by h and let Jx be the mapping of Fn
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into Fn defined as in I starting with Ti. Since (P', /, B) is a normal connection,

we see from II that Jx is identical with the one defined by (3.1) starting with

B'L. Hence we have only to prove that BL and BL coincide. But, by the argu-

ment in I, we see that Έ'L(ς)χ = BL(ς)χ-lς9 F(*)l*. On the other hand, from

(3.2) we have ΈL(ξ)χ~BL(ξ)x-lξ9 F(x)lt Therefore we have BL = B'L.

IV. We shall finally show that for each class $ there exists a collection

(P', /, B) which satisfies (P.I), (P.2), (P.3) and (P.4"). If this is proved,

Proposition 1 is an immediate consequence of III.

First, making use of the bundle of frames PL and the homomorphism <f

of GL(Fn) into Pf(n), we define a principal fiber bundle P' over the base space

M with structure group P'{n) together with a homomorphism h of PL into P'.

Next, we define a homomorphism / of P ' into PL by Hz) = x Ha) if z - h(#) a

where x G PL and a G Pr(n). Hz) is independent of the expression z - h(x) a.

I becomes clearly a homomorphism, and satisfies l°h(x)=x for all x E PL.

Finally, we shall define a linear mapping B of Fn into £(P') We fix a F E $ .

Let BL be the affine connection in PL corresponding to Γ and let Jx be the

mapping defined by (3.1). Since / ° h(x) = x for all x G PL> we can set as (4.4)

and (4.5). Now define B by

B(ξ)z = RaiZ)-i o hBL(ξ)hz) - (Jhz)(ξ) + (ad(a(z))ςVoo)?.

(jPr, /, J5), defined above, satisfies (P.I), (P.2), (P.3) and (P.4") with Γ and /*.

Indeed, using (A.I), (A.2), (A.3) and the fact that Jx.a^aJxa for all x& PL

and a^GL(Fn) and σ"1alz)<f 3 /(<x) = a(z <;) for all z e P ; and <; G P'(«), we

can easily verify (P.l), (P.2) and (P. 3). We have B(ξ)h{x) = ΛSϋ(ί)»-Λ(ί)A(Λ,,

which shows that (P', /, B) satisfies (P. 4"). Therefore, we have completed the

proof of Proposition 1.

Under the conditions of Proposition 1, we shall prove (4.2) as we promised.

Let BL and BL be the affine connections in PL corresponding to V and V re-

spectively. From (P.4) ii), we have lB(ξ)h(X)-BL(ξ)x, which shows that BL

coincides with the aflfine connection in PL induced by h. In the same way, BL

coincides with the affine connection in PL induced by h. Therefore, by the argu:

ment in I in the proof of Proposition 1, we have BL(ξ)x = BL{ξ)x- Zξ, FixΠί.

On the other hand, if we define a mapping'F' of PL into Fn by <£, Ff(x)}

= p(x ξ), then we know from (3.2) that BL(ξ).γ = BL(ς)*- lξ, F'(x)TΪ. Hence
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[£, F(x)l = Cί, F'(x)2 holds for all * G P L and f ε ft. It follows that F= F f,

which is nothing but (4.2).

Remark. As is seen from the proof of Proposition 1, to each normal pro-

jective connection over a base space M there corresponds a class of mutually

projective affine connections on M such that the given normal projective con-

nection becomes the normal projective connection corresponding to the class.

The correspondence $ -» (P', /, B) of the set of all classes of mutually projective

affine connections into the set of all normal projective connections is one-to-one

and onto.

Remark. Let V be an affine connection without torsion and let (P', /, B) be

the normal Projective connection corresponding to the class $(F). It can be

proved that every projective transformation / induces a bundle isomorphism /

of P' which leaves Biς) invariant for each ξ e f t , Conversely, such an /

induces a projective transformation / in the sense of § 1.

Let (P(, I, B) be a projective connection over a base space M.

We shall denote by Pn(p) the fiber at p 6Ξ M of the associated fiber bundle

of Pf with standard fiber Pn. Pn(p) is often celled the tangent projective space

to M at p. Each element z of P1 gives a one-to-one mapping of Pn onto Pn(p),

where πiz)—p. The origin p* of the tangent projective space is a point in

Pn(p) defined by p* = z o if πiz) = p with z e= P'. The definition is independent

of the choice of 2G Pf such that πiz) -p.

Making use of P' and the injection of P'(n) into Pin), we define a princi-

pal fiber bundle P over the base space M with structure group Pin). In this

case, we may identify Pf with a submanifold of P.

As is well known, the projective connection IP', /, B) gives rise to a con-

nection Q in P [3]. Indeed, for 2 6 ? ' , let ζ>z be the subspace of Pz composed

of all the elements B(ς)2 - ς? where ξ e F«. For tv e P, we define Qw by QM,

= RaQz if w = 2 α with 2 G P ' and a&Pin). By (P.2), we see that the

definition is consistent. Using (P.I) and (P. 2), it is shown that the assignment

z -> Qz satisfies (Q.I) and (Q. 2) and hence defines a connection in P, which

we shall call the projection connection in P induced by the projective connection

(P', /, B).
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14 NOBORU TANΛKA

5. Projective development

We first recall definition of affine development [5]. Let BL be an affine

connection in the bundle of frames PL of a manifold M. Let p be a point of

M and let u(t) be a curve in M beginning at p. Fix a point x of PL such that

πix)=p and let xit) be the lift of u(t) through x with respect to the linear

connection. We see from the definition of linear connection that there is a

curve ξ(t) in Fn such that x'it) = JBL(£U))*(*). Then the affine development of

u(t) at p is defined as the curve v{t) = x wit) in the tangent space Mp where

wU) = 1 ξ(t)dt. v(t) is independent of the choice of x such that πL(x)=p.
Jo

Let (P', /, B) be a projective connection over a base space M and define

P and 0 as in the preceding section. We now define projective development

as follows [33 •* Let p be a point of Λf and let u(t) be a curve in M beginning

at p. Take an arbitrary curve y(t) in P1 which covers u(t) (such a curve

necessarily exists) and let z(t) be the lift of u(t) through yiO) with respect to

the projective connection in P. There is a curve ait) in Pin) such that

2(f) ait) = y(t). Then the projective development of uit) at ^ is defined as

the curve u*it) =jy(O) ait)o in the tangent projective space Pnip). Clearly

u*(t) does not depend on the choice of a curve yit) which coves **(*).

Let φ be a class of mutually projective affine connections and let iPf, /, B)

be the corresponding normal projective connection. Fix an affine connection V

belonging to φ. Let h be the corresponding homomorphism of PL into Pf and

define Jx by (3.1). In the following proposition, we identify Fn and Pn with

the tangent affine and projective spaces at p e M by x and hix) respectively,

where πL{x) = ί

PROPOSITION 2. Fz*# an arbitrary point x of PL. Let uit) be a curve in M

beginning at p = πLix). Let vit) and u*it) be the developments of uit) at p

into Fn and Pn with respect to the affine and projective connections respectively.

Then we have u*it) =ait)o, where ait) is a curve in Pin) determined by the

following differential equation

(5.1) aitΓ'a'it) = v'it) +Jx{t)iv'it))

with the initial condition aiO) = e, where x(t), denotes the lift of uit) through x

with respect to the linear connection.
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Proof. Let z(t) be the lift of u(t) through h(x) with respect to the pro-

jective connection Q. Then we can set

(5.2) zit) - ait) = hixit))

with a curve ait) in Pin). We have aiO) = e. By definition of projective

development, we have u*it) - ait)o. Therefore, it is sufficient to show that

ait) is the solution of (5.1). By definition of affine development, we have

BLiv'it))xit) = x'it). From (P.4) ii), we get

w'it) = Biv'it))mt)+ Jx^i

where we have set wit) = hixit)). On the other hand, by differentiating the

both sides of (5.2), we obtain

Raιt)Z'(t) + (fl(ί)"V(ί))i(/, - W'it).

It follows immediately from these two formulae that

*

= iBiv'it)) - v'

But, by definition of Q, the first term of the right side is contained in QwU)-

The first term of the left side is also contained in QW(t), because zit) is a hori-

zontal curve with respect to Q. Moreover, the second term in each side is

contained in Pin)W[t). Therefore, by virtue of (Q.I), we see that ait) is the

solution of (5.1). q.e.d.

We shall use the following proposition in the next section.

PROPOSITION 3. Let V and V be two affine connections on M which are

mutually projective and which are both affinely complete, and let p be the as-

sociated 1-form of V with respect to V. Let uit) and ΰiϊ) be geodesies with

respect to V and V respectively such that u'iO) = #'(0). Then the mapping g of

the real line R into itself defined by

=\ exp(J 2piu'it))dt)dt

is onto, and we have uit) =uigit)) for all ί E R

Proof. Let BL and ΈL be the affine connections in PL corresponding to V

and V respectively. Let F be the mapping of PL into Fn defined by (4.2).

Fix a point x of PL such that πLix) = uiO) = w(0) and identify Fn with MM«»
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16 NOBORU TANAKA

by x. Set u'(0) = 5 e F « . Let x(t) be the lift of u(t) through x with respect

to V. u(t) being a geodesic such that u'(0) = ζ, we see that x(t) is an integral

curve of BL(ξ) Cδ]. Now define a curve a(t) in GL(Fn) by the following differ-

ential equation

(5.3) e(*rV(f) = K, F(*U))]

with the initial condition a(0) =e. If we set lim^U) = a and lim git) = £, then

we see that g is a homeomorphism of i? onto (a, b). It follows that there is

a curve #(F) in PL defined in (a, b) as follows:

(5.4) *(#(*)) ait)=x(t).

We show that #U ) is an integral curve of BL(ς). Differentiating the both sides

of (5.4), we get

From (5.3) and (3.2) and the fact BL(ξ)x{t) = x'(t), we obtain

g'(t)x'(g(t)) =BL(a(t)ξh(g{t)).

Since we have a(t)ξ =g'(t)ξ, it follows that x'it) =Έz.(ξ)χ{t) for all ? e (a, b),

which proves our assertion. ΰ(J) being a geodesic such that ΰ'(0) = ξy we have

w(?) =πL(x(t)) C5]. On the other hand, from (5.4), we have πL(x(g(t))) = u(t).

Therefore we have ΰ(g(t)) ^u(t) for all ίGi?. We show that g is a homeo-

morphism of R onto itself. Consider the mapping g* of i? into itself defined by

Then, in the same manner as above, it can be proved that ΰ(T) = u(g*(ϊ)) for

all ΪE:R. An easy calculation shows that •-£- — £--- = 1 for all ί e i ? , from

which we see that g*°g(t) = t for all fEi?. In the same way, we have

go g*(t) = t for all ί G £ It follows that g is a homeomorphism of i? onto

itself, q.e.d.

6. Relation between P(V) and A(y)

Given an affine connection V on M, we shall say that it satisfies condition

, if the following conditions are satisfied:

https://doi.org/10.1017/S0027763000021905 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021905


PROJECTIVE CONNECTIONS AND PROJECTIVE TRANSFORMATIONS 17

i) without torsion

ii) affinely complete;

iii) the Ricci tensor field is parallel.

For example, a complete affine symmetric space or a complete Einstein

space clearly satisfies condition (E).

The purpose of this section is to establish

THEOREM. Let V be an affine connection on M which satisfies condition (E)

and let S be the Ricci tensor field of F.

i) If S(X, X) is negative semi-definite, then, for each / e P{V) and p e M,

SP(X,X) = 0 is equivalent to Sf(P)ifX, fX) - 0, and, for XeMp such that

SpiX, X) = 0, we have pp(X) = 0, where p is the associated 1-form of f In par-

ticular, if S(X, X) is zero, then PiV) coincides with AiF).

ii) In all other cases, P(V) coincides with

Proof. The proof is divided into three steps.

I. Consider a linear mapping / of Fn into Fn. We shall denote by Φj the

quadric in Pn defined by the following quadratic equation on FH+ι

(6.1) - (?0)2+ <?,/(*)> = 0 (τ7°ίo + v e F Λ + i ) .

LEMMA 3. Let ς be a non-zero element of Fn and set u*it) = exp tiξ -\-J(ξ))o.

Putting <?, /(£)> = a(ς), u*(t) is computed as follows:

a) Ifaiζ) > 0, then u*(t) = ω(cosh

b) // a(ξ) - 0 , then u'it) = ωiξ() + tξ)

c) 7/α:(f)<0, then uTit) = o> (cos (V- άlf) ί) ςo+ S m ^f-Z^p t] ξ

JV00/. We have z^(/) =ω(expί(?+/(ςT)ς 0 ). If we set A = ?+/(ίT, then

we have A2mξQ = αr(ς)mς0 and A 2 m M ς 0 - aiς)mί for each integer m ^ 0. It follows

that

(
ec / * \ ^ \ / c c { * \Ttl

£0 (2«)! f
Ί)Γ *

Lemma 3 follows immediately from this formula, q.e.d.

LEMMA 4. The notation is the same as above.

i) If lim u*(t) exists, then the limit is contained in Φ,>
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18 NOBORU TANAKA

ii) For any q;; G Φ.i, there is a ς such that lim ti*(t) = <y*.

Proof, i) Using Lemma ?>, we have easily

a) If α( ?) > 0, then lim w*( f) = w (f0 -f — ~ c) ( 6 Λ ) ;

b) If a{ξ) =0, then lim w*(f) = o><ί> ( G f ) ;

c) If aiς) <0, then lim u (£) does not exist.

ii) </ can be expressed as follows : q ' - ω(τ?°ίoH-i?) where - l7?°)2-{-α:(^) = 0 .

According as π:(γ) > 0 or a\η) = 0, we take ί = -ό-^ or ς-Tj. Using this ς, we

have lim tt/^t) - ί/". q.exL

II. Let ^ be a class of mutually projective affine connections on a manifold

M and let (/*', /, B) be the corresponding normal projective connection. Fix

an affine connection F belonging to s$ and assume that it satisfies condition (E).

From now on, we use the notation in Proposition 2. For each point p of M,

we define a subset Φ(β) of P«(^) as follows:

(6. 2) 0( p) = Λ(JV) Φ./.r if τr/.(*) = ί ,

where ^ is defined by (6.1) taking J=JX. The definition is independent of

the choice of x such that πL(x) -p.

LEMMA 5. Let p be a point of M and let u(t) be a geodesic with respect

to V such that «(0) =p. Let u*(t) be the development of u(t) at p with respect

to the projective connection.

i) If lim u*(t) exists, then the limit is contained in Φ(p).
t-*y:

ii) For any q* G Φ(p), there is a geodesic u(t) such that lim u*iί) = qf\

Proof. Fix a point x of PL such that r.iSx) =p. Let us make use of the

result of Proposition 2. If we set u'(0) = ξ ( G F»), then we have v'(t) = ζ,

because ιι(t) is a geodesic. Since the Ricci tensor field is parallel, we see that,

for any horizontal curve xit) in PΓj, Sx{t) is constant and from 13.1) that /*(/>

is constant. Hence the differential equation (δ. 1) can be written as aKi)~ιa!(t)

= £ + / * ( £ ) ; n a m e l y , ait) = e x p / l ί +Jxiξ)). W e h a v e u'Λt) - exptiς^-Jx( ξ))o.

Therefore, we have only to apply Lemma 4 to J^JX. q.e.d.

III. We now assume that V ( E; p̂) together with V satisfies condition (E).

Starting with P\ we define a subset Φ(p) of P?ιKp) in the same manner as Φ(p),
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LEMMA 6. Φip) -Φip) at'each point p of M.

Proof. We first show that Φip) C Φip). Let q be an arbitrary point of

Φ(p). By Lemma 5 i\\ we see that there is a geodesic nit) with respect to Γ

such that lim u*it) ~q . We know from Proposition 3 that there is a geodesic

ΰ(T) with respect to V such that u(t) =• ιi{git)), where git) is a homeomorphism

of R onto itself. Denoting by ϊΓi't) the development of ΰi.'t) with respect to

the projective connection, we have u it) ~ u "(git)) lim u'Ί t) - lim u '(git) >

= lim u it) - (f. By Lemma 5 i), now applied to Γ, we see that </* is contained

in Φ(p). T h u s we have shown that Φ{p) C Φ(p). In the same way, we have

Φip) CΦ(p). Therefore, we have φ(p) -=.φ(p). q.e.d.

Let S and S be the Ricci tensor fields of V and F respectively and let p be

the associated 1-form of ψ with respect to Γ.

LEMMA 7. Λ/ each point p of M, consider the following two quadratic

equations on R x Mp '

(1) - (Λr0)2-f T

 Λ Sp(X, X) - 0 ;
72 — 1

(2) - (X* - μ x ) Ϋ + -—-, S,l X, X ) ^ 0.
?2 — 1

«ί each point p of M, in order that ίXύ, X ) be a sohUΐon of (Ή, # /.<?

necessary and sufficient that it is also a solution of (2\

Proof. Let x be a point of PL such that r:^(λ') = jf>. Let /; be the homo-

morphism of Ph into P1 corresponding to V and let Jx be the linear mapping

of Fn into Fn defined by (3.1) starting with V. We have

(6.3) Φip) - h(x) Φj,.

We know that there is a mapping F of P Λ into F i such that

(6.4) i) h(x) = h(x)

i ί ) p(AΓ ς) = < g ,

I t fol lows f r o m ( 6 . 2 ) , ι 6 . 3 ) a n d ( 6 . 4 ) i) t h a t φ( p) -Φip) is e q u i v a l e n t t o

(6. δ) Φ,/,, = e x p Fix) Φjx.

L e m m a 7 fol lows i m m e d i a t e l y f r o m ( 6 . 1 ) , ( 6 . 4 ) i i ) , ( 6 . 5 ) a n d t h e fol lowing

f o r m u l a e :
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ξ, x ξ);

q.e.d.

LEMMA 8. Let V and V be ttvo afflne connections which are mutually pro-

jectiυe and which both satisfy condition (E). Let p be the associated I-form of

V with respect to V and let S and S be the Ricci tensor fields of V and V

respectively.

i) If both S(X, X) and S(X, X) are negative semi-definite, then, for each

point p of M, Sp(X, X) = 0 is equivalent to SP(X, X)=0, and, for XEiMp such

that SP(X, X) =0, we have pp(X)=0.

ii) In all other cases, V and Ψ coincide.

Proof. Let $ be the class of mutually projective affine connections con-

taining V and V. We apply Lemma 7 to V and F.

i) The case where both S(X, X) and S(X, X) are negative semi-definite.

If SP(X, X)=0, then (0, X) is clearly a solution of (1). Using Lemma 7, we

see that (0, X) is a solution of (2). It follows that pp(X)=Q and SP(X, X)=0.

In the same way, if SP(X, X) = 0, then we have pP(X) =0 and SpiX, X) = 0.

ii) The case where either S(X, X) or SiX, X) is not negative semi-definite.

Without loss of generality, we can assume that S(X, X) is not negative semi-

definite. If SP(X, X)>0, then there is a I ° G i ? such that (X°, X) becomes

a solution of (1). In general, if (X°, X) is a solution of (1), so is (X°, -X).

Therefore, by Lemma 7, both (X°, X) and (X°, - X) are solutions of (2). It

follows that X°pp(X) = 0, from which we obtain pp(X)=0. Thus we have

shown that if SP(X, X) > 0, then pp(X) =0. Since the subset of Mp composed

of all the elements X such that Sp(X, X) > 0 is open in Mp, we see that

Pp(X)=Q holds for all XE:Mp and pE:M. Consequently we have p = 0 and

hence V and Γ coincide, q.e.d.

We are now in a position to prove the theorem. Let / be an arbitrary

element of PiF). Let V be the affine connection defined by (1.2). Then V and

V are mutually projective, and the associated 1-form of V with respect to V is

nothing but the associated 1-form of/. We see that V satisfies condition (E)'

and S is given by Sp(X, X) -Sf{P){fX, fX). Therefore we have only to apply

Lemma 8 to V and V. Thus we have completed the proof of the theorem.
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Remark. An affine connection on a manifold M is called projectively com-

plete if the normal projective connection corresponding to the class which con-

tains the given affine connection is complete [3], that is, if, for each point p of

My every curve through β* in the tangent projective space at p admits the

development into the base space. We can prove the following statements:

i) Let V be an affine connection satisfying condition (E) and let S be the

Ricci tensor field of V. If S(Xt X) is not negative definite, then V is not pro-

jectively complete

ii) A complete Einstein space ivith negative definite Ricci tensor field is

projectively complete.

i) and ii) indicate geometrical properties of an affine connection which satisfies

condition (E).

Appendix

In § 1, we remarked that the projective equivalence of two affine connections

is characterized by the coincidence of the systems of geodesies for the two

connections. In the following, we shall give an exact formulation of this fact

and prove it.

PROPOSITION. Let V and V be two affine connections on a manifold M whose

torsion are zero. A necessary and sufficient condition that V and V be mutually

profective, is given as follows: Let p be an arbitrary point of M and let V be

an arbitrary \-dimensional sub space of Mp. Let u(t) be a curve in M beginning

at p. Then, for all t, the tangent vector u'(t) is contained in the result of

parallel displacement of V along the curve with respect to P, if and only if for

all tf it is contained in the result of parallel displacement of V along the curve

with respect to V.

Proof. Let BL and BL be the affine connections in PL corresponding to V

and V respectively. To each x G PL there is associated a linear mapping Ax of

Fn into βί(F«) such that

(1) BL(ξ)x = BL(ξ)x-Ax(ς)ΐ.

It can be proved that Ax.a(ς) = ad(a~ι)Ax(aς). Let u(t) be a curve in M

beginning at a point p of M. Fix a point ΛΓG PL such that πL(x) ̂ p and identify

Fn with Mp by x. Let v(t) and ~v(t) be the developments of u(t) into Fn with
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respect to V and V respectively. Let x(t) and x(t) be the lifts of u(t) through

x v/ith respect to V and ψ respectively. We can set χ(t) = xit) a{t) with a

mapping ait) in GL(Fn). By the argument analogous to the proof of Propo-

sition 2, we can derive

(2) i) ait)v'it) ^v1 it);

ii) ait)~laf(t)=AX(t)iv
fit)).

It follows from these two formulae that

(3) Ax{t)(vf(t)) v'{t) = aitΓ'ϋΠt) - v»(t).

u'(t) is contained in the result of parallel displacement of V along the curve

with respect to F, if and only if v'(t) is contained in V.

Now assume that Ϋ and V are mutually projective. We know that there

is a mapping F of PL into F ί such that Ax(ξ) = [ς, F(#)]. If #'(/) is contained

in F, then it follows from (2) ii) that a{t) leaves V invariant, because V is

stable under Ax{t)(v'(t)). Therefore we see from (2) i) that v'it) is contained

in F.

Now we shall prove the converse. It is sufficient to prove that there is a

differentiable mapping F of PL into Fn such that A*(f) = [ς, F U ) ] . Indeed,

using the fact that Ax.a(ξ) = ad(a~ι)Ax(aς), it can be proved that F(x a)

= ιaF(x). It follows that there is a 1-form p on M such that p(x ζ) = <ξ, Fix))

for all χζΞPL and ? £ f t . Using this p, we have f^y = VXY+ pi Y)X+ p{X)Y.

Let £ be an arbitrary non-zero element of FM and denote by V(ξ) the 1-

dimensional subspace of Fn spanned by ξ. If uit) is a curve such that υ'it) - ς,

then v'it) is contained in Viξ). Since z7;/(ί) e F(f), we see from (3) that

AΛ(ς)ςG F(£). Thus we have seen that, for each x^PLi there is a function

αx such that | ^ ( f ) f =sαΛ(f)f for all ξ & Fn and such that αx(0)=0. Since

Γ and V are both without torsion, it can be proved that Ax(ξ)ξ' = Axiζ')ξ for

all x(ΞPL and ς, f ' e F « .

LEMMA. Le£ F w 6^ β^ n-dimensional vector space. Let A be a linear

mapping of Fn x F« into Fn ivhich satisfies the following conditions:

) /or all ξ,-q^Fn \

ii) There is a function a on Fn such that
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a) * Aiξ, ξ) = a{ζ)ξ for all ?GF«;

b) α(0)=0.

Then a is a linear function on Fn. Therefore we have A{ς, η) = a(ξ)y + a(y)ξ.

Proof. We have clearly a(λξ) = λcc(ξ) for all λ e R and ξ e F». We shall

show thst α(ς + τ?) =α(?) + dτ?) for all f, T? e FΛ. For this purpose, it is

sufficient to deal with the case where ξ and -η are linearly independent. We

have

(1) o A{χξ-\-yη, Xς

We can set -A(̂ , 77) = Aiξ + Ao-η. Since ^ and η are linearly independent, it

follows from (1) and ii) a) that

(2) i) aiξ)x2 + Aixy = a(xϊ + yη)x;

ii) a(-η)y2 + A2xy = a(xς-\-yq)y.

It follows immediately that

<χ{ξ)x2y-\ Aixy2 = a(η)xy2 +Azx
2y for all x, y e /?.

Since # and v̂ are arbitrary, we get oc(ξ) = A2 and Ai = ocKy). Setting x -y = 1

in (2) i), we have «r(ς + ̂ ) = α(ί) + αr(τ?). q.e.d.

Applying the lemma to the case where A(£, -η) = AAξ)^ and α- = «rΛ, we

see that ax is a linear function and that Aχ{ξ)-η - axiξ)y]-\- ax{-η) ξ. If we define

a mapping F of Pz, into F ί by αΛ(f) =<£, F(Λ:)>, then we have i4*(ί) = [ς, F(ΛΓ)].

The differentiability of Ffollows from the formula : <ξ,F(x)>= -^Tr(Ax(ς)).

Thus we have completed the proof of the proposition.
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