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ORDINARY DIFFERENTIAL EQUATIONS
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(Received 25 May 1976)

This is the text of an invited lecture given at the 20th Annual Meeting of
the Australian Mathematical Society in Perth, May 1976.

In this talk I want to give a survey of some of the areas of research in
ordinary differential equations. In view of the vastness of the field, the limited
time available and my own inadequacies I will restrict attention to problems
in which I have been involved in some way, although I won't be speaking
about my own work. Even with this restriction it will be necessary to be
somewhat superficial. However, in spite of all these drawbacks, I thought it
would assist communication among mathematicians simply to have an idea of
what other people are doing. Since this is my purpose I will not mention the
quite mild smoothness hypotheses in the statements of some results.

The small oscillations of a mechanical system about a position of
equilibrium are described by the solutions of a linear Hamiltonian system of
differential equations

(1) Jx'=Hx,

where x 6 R!", H is a real 2«x2n symmetric matrix and

/ = U oj-
The Hamiltonian form is preserved under a linear change of variables x = Ty
when the matrix T is symplectic, i.e. T*JT = J, where T* denotes the
transpose of T.

The system (1) is said to be stable if each solution x(t) is bounded on the
whole line — °° < t < <». This corresponds to the position of equilibrium being
stable. One can characterise stability in a purely algebraic way: the system (1)
is stable if and only if there exists a symplectic matrix T such that

(2) T'J
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2 W. A. Coppel [2]

where D = [AH • • •, An] is a real n x n diagonal matrix. It is desirable to have a
somewhat stronger concept of stability which is not destroyed by small
perturbations of the coefficient matrix. The system (1) is said to be strongly
stable if there exists a 5 > 0 such that the linear Hamiltonian system

Jx'= Hx

is stable for all real 2 « x 2 n symmetric matrices H satisfying \H - H\< S.
Strong stability also can be characterised in a purely algebraic way: the system
(1) is strongly stable if and only if in the canonical form (2) we have A, + At ̂  0
for all /, k. This was shown by Krein (1955, 'if') and Gelfand and LidskiT (1955,
'only if).

Now let H(e) be a real symmetric matrix function of e which is
holomorphic at e = 0, i.e. it can be expanded as a power series with a positive
radius of convergence. Suppose also that the unperturbed system Jx' = H(0)x
is strongly stable. Then it may be shown that there exists a symplectic matrix
function T(e), which is holomorphic at e = 0, such that

0 D{e)}'

where D(e) = [Ai(e), • • •, An(e)] is a real nxn diagonal matrix function,
which is then also holomorphic at e = 0. The significance of this result, which
is due to Diliberto (1961), is that it provides a justification for formal
perturbation procedures. A. Howe (1973) gave a quite different and more
general method of proof. It rests on an interesting and powerful method of
reducing a matrix function due, independently, to Daleckii and Kato.

Let P(z) be a projection matrix function, i.e. P2(z)= P(z), which is
holomorphic in a simply connected domain G of the complex plane. Then the
solution W(z) of the matrix differential equation

W'=[P'(z)P(z)-P(z)P1'(z)]W

such that W(zo)= I, for some z o £ G, is not only holomorphic and invertible
throughout G but also has the property

W~\z)P{z)W(z)= P(z0) for all z £ G.

For the application to Diliberto's theorem we need only the local version of
this theorem, where G is just some neighbourhood of z0. However, the global
version is no more difficult to prove and is one of the most useful features of
the result.

Now let me turn to something quite different, the method of averaging.
The general idea is to deduce properties of the differential equation
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[3] Ordinary differential equations 3

(3) x'=ef(t,x),

where x £ R" and e is a small positive parameter, from those of the simpler
equation

(4) x'=ef(x),

where

f{x) = lim T"1 [ f(t,x)dt

is the time mean-value of /(/, x). This idea has long been used in a formal way
in celestial mechanics. More recently it has also been applied to non-
conservative systems and rigorous results have been obtained. The principal
contributor has been Bogoljubov (1934-1958).

Suppose that, for each x, f(t, x) is an almost periodic function of t, i.e. it is
a uniform limit of trigonometric polynomials 1.",, (ak cos \kt + bk sin \kt). This
ensures that the mean value f(x) certainly exists. Bogoljubov's three main
results are as follows:

(A) If x(t), x(t) are solutions of (3), (4) respectively such that x(0) =
x(0) then, for any T > 0 ,

sup \x(t)-x(t)\-+0 as e-> + 0.
IISlST/r

(B) If the averaged equation (4) has a constant solution x0 such that all
eigenvalues of the Jacobian matrix fx(x0) have non-zero real parts then, for all
small £ > 0, the equation (3) has in the neighbourhood of xa a unique bounded
solution x(t). Moreover this solution x(t) is almost periodic and has the same
stability properties as the constant solution x0 of (4).

(C) If the averaged equation (4) has a periodic solution xo(er) such that
n - 1 of the characteristic exponents of the corresponding variational equa-
tion

have non-zero real parts (the remaining characteristic exponent is necessarily
zero) then, for all small e >0 , the equation (3) has in the neighborhood of
xo(et) a unique integral manifold with the same stability properties.

By an integral manifold of (3) I mean a manifold M CR' x R" with the
property that if (f0, x(to))S M for some solution x(t) of (3) and some t0E. R
then (r, x(f))G M for all t G R. Thus it is a manifold made up of complete
solutions.

Gihman (1952) showed that the result (A) is a corollary of a much more
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4 W. A. Coppel [4]

general result in which there is no assumption of almost periodicity and no
mention of averaging:

Let x(t), x(t) be solutions of the differential equations

x' = f(t,x), x' = f(t,x)+g(t,x),

such that x(0) = x(0), and suppose the right sides satisfy the Lipschitz
conditions

If

\f(t,x)+g(t,x)\^N

and if

I f'2

g(t,x)dt
g y for all x and all t,, t2 with | f2 - f, | §

then

\x(t)-x(t)\S8eLl + S(eLl - 1)/L for all (gO,

where 5 = y + (y2 + 2LNy)m.
When y is small, S is also small and x(t) is close to x(f) over any

prescribed finite interval. This differs from the usual theorems about continu-
ous dependence of solutions on the right side of the differential equation in
that we do not require g to be small but only 'integrally small'. I showed
(1968) that the result (B) could also be deduced from a more general integrally
small perturbation theorem which did not involve averaging. K. J. Palmer
(1970) did the same for the result (C), which is a good deal more difficult.

As an example of a rather different type of perturbation problem
consider the second order scalar differential equation

ex" + x' = 0

with the boundary conditions

x(0)=a, x(l)=/3.

The exact solution is

x(t, e)= [a(e-'" - e~v')+ 0(1 - e~"')\(l - e'1")'1.

This shows that x(t, e)-» /3 for 0 < / g 1 as e —> + 0. The constant xo(f) = /3 is
a solution of the degenerate equation x' = 0 satisfying the boundary condition
x(l)= j8. Since the degenerate equation is of lower order than the original
equation it is not surprising that one of the boundary conditions should be
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[5] Ordinary differential equations 5

lost. That it is the boundary condition at the left endpoint which is lost is due
to the fact that the coefficient of x' in the original equation is positive. The
limit relation x(t, e)—* xo{t) as e—> + 0 holds uniformly in any subinterval
[5,1], where 0 < 8 < 1, and is even uniform outside any neighbourhood of the
endpoint t = 0 of width 0(e1/2). Such a neighbourhood is often called a
boundary layer. The name comes from fluid mechanics, where Prandtl first
had the ingenious idea of treating the flow of a slightly viscous fluid, such as
air or water, as a singular perturbation problem. The boundary layer in that
case is the region adjacent to the bounding walls in which the velocity of the
fluid changes rapidly. One of the reasons for studying singular perturbation
problems for ordinary differential equations, although not the only one, is
that they serve as models for the more difficult problems associated with
partial differential equations.

Of course we require methods which do not depend on the knowledge of
exact solutions. Recently K. W. Chang (1976) has treated the boundary value
problem

ex" + A(t, x, e)x' = f(t, x, e)
(5)

x(0)=a(e), x(l)=/3(e),

where x (= R", A is an n x n matrix function, / is an n-vector function and e
is again a small positive parameter. He shows that if the degenerate problem

A(t,x,0)x' = f(t,x,0)
(6)

x(l)=/3(0),

has a solution x,,(t) on the interval [0,1] and if, for O ^ l S l , every eigenvalue

of A [t, xn(t), 0] has real part =£ /J. > 0 then there exist constants 8U > 0, v > 0

such that if e > 0 is sufficiently small and if \a(e)- x,,(0)| < 50 then (5) has a

solution x(t) on the interval [0,1] satisfying

x'(t)= x,'1(r) + 0(e) + 0(eMe- '"") ,

where the boundedness implied by the order symbols is uniform in t.
These results are very close in form to those obtained by Coddington and

Levinson (1952) and Wasow (1956) for the case of a scalar equation (n = 1),
but the method of proof is necessarily quite different. It depends on
transforming an associated second order linear differentia] equation

ex"+C(t, e)x'+D(t, e)x =0
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6 W. A. Coppel [6]

into a block diagonal system

y' = P(t,e)y

ez'= -[C(t,e)+eP(t,e)]z.

This transformation is effected by showing that the solution P(t,e) of the
matrix Riccati equation

EP'= -eP2-C(t,e)P-D(t,e)

which satisfies the initial condition P(0, e) = 0 is defined and uniformly
bounded for 0 S / g 1, 0 < e S e0.

The general symmetric matrix Riccati equation

(7) W' = A(t)+WB(t)+B*(t)W+WC(t)W,

where A*{t)= A(t) and C*(t)- C(t), plays an important role in control
theory and is also closely connected with the theory of linear Hamiltonian
systems. If a solution W(t) of (7) is symmetric at one point then it is
symmetric throughout its interval of definition. For any two symmetric
matrices Wu W2 we write W, S W2 if the difference W, - W2 is non-negative
definite. This is a partial ordering of the space of symmetric matrices. It is not
difficult to show that if W^t), W2(t) are any two symmetric solutions of (7)
with W,(a)g W2(a) then W,(r)g W2(t) for all t in some two-sided neigh-
bourhood (a — 5, a + 8). A. N. Stokes (1974) has proved a remarkable
converse to this result.

Consider the matrix differential equation

(8) W = F(t, W),

where F(t, W) is an n x n symmetric matrix for every real t and every n x n
symmetric matrix W. Suppose the equation (8) has the property that if W,((),
W2(t) are any two symmetric solutions with W,(a)g W2(a) then W,(f)g
W2(t) for all t in some two-sided neighbourhood (a - 5, a + S). Then, if
n > 1, we must have

F(t, W) = A(t)+ WB(t)+B*(t)W+ WC(t)W,

where A *(t) = A (t) and C*(t) = C(t).
The restriction n > 1 is essential, since any scalar differential equation

w' = f(t, w) has the order-preserving property.
Let me return now to almost periodic functions. If f(t) is an almost

periodic function, is its indefinite integral F(t) = J'of(s)ds also almost
periodic? Since an almost periodic function is bounded, the mean value
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[7] Ordinary differential equations

lim T ' \ f{t)dt
T^°° Jo

must be zero. However this necessary condition is not also sufficient. The root
of the difficulty may be seen by considering the Fourier series for f(t):

(9)

If the indefinite integral is almost periodic it has the Fourier series

(10) *Z

obtained by term by term integration. To be specific, suppose that f(t) is a
quasi-periodic function with two basic frequencies. That is, / ( / ) = p(coit, o)2t),
where p{<p\, <pi) is a continuous function with period 2TT in each of its variables
and a),, w2 are real numbers whose ratio is irrational, in other words w, and &>2

are linearly independent over the rationals. This is the simplest type of almost
periodic function, which is not periodic. The frequencies Ak of f(t) all have
the form m,w, + m2w2, where mx and m2 are integers. For suitably chosen mi,
m2 the frequencies Ak can be arbitrarily close to zero and the series 21 ck/\k \2

can diverge. Then, by Bessel's inequality, the right side of (10) is not the
Fourier series of an almost periodic function. We have in fact a small divisor
problem. However Siegel's basic observation about small divisor problems
applies here and it may be shown that for almost all pairs («,,a>2) the
denominator m,a>i + m2a>2 does not get too close to zero too often. I won't
make this statement precise for the present problem, but I will for a related
problem.

Consider the quasi-periodic linear differential equation

(11) x'=[A +P(wt)]x,

where A = [Ai, • • •, An] is a real diagonal matrix with distinct diagonal
elements, and P{<p) is an n x n matrix function of <p = (<pu • • -, <ph) which is
real for real tp, has period 2TT in each coordinate, and is holomorphic and
satisfies the inequality

| S 8 for | lm<p|<r .

Suppose the real vector w = (a>,, • • •, wh) has the property that for all non-zero
vectors m = (m1? • • •, mh) with integer coordinates

(12) | w,«Ji + • • • + mh(x)h | g y

where T > h and y > 0 are constants.

m
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8 W. A. Coppel [8]

Then for any e >0 there is a corresponding So(e)>0 such that if
5 § 80(e) the equation (11) has a fundamental matrix of the form

X(t)=[I+Q(a>t)]elB,

where B = [/u.,, • • •, jun] is a real diagonal matrix with \fik - Ak | g e for all it,
and Q(<p) is an n x n matrix function of <p = (<pu • • •, <ph) which is real for real
(p, has period 2T7 in each coordinate, and is holomorphic and satisfies the
inequality

\0(<p)\Se for \lm(p\<r'Sr.

This is a partial generalisation to quasi-periodic linear equations of
Floquet's theorem for periodic linear equations. The result was first estab-
lished by Mitropolskii and Samoilenko (1965) and an improved proof was
given by G. C. O'Brien (1976). The proofs use the method of accelerated
convergence associated with the names of Kolmogorov, Arnold and Moser.
A. Gray (1975) has given an abstract accelerated convergence theorem which
applies to many small divisor problems, including this one. But I still hope for
a somewhat simpler version.

An approach which is perhaps less general but which I find appealing has
been suggested by Hald (1974). Newton's method for solving an operator
equation

F(x) = 0

consists in constructing a sequence of successive approximations

xn + 1 = xn-[F'(xn)]'F(xn),

the starting value x0 being some approximation to the desired root. Under
quite general conditions the method is quadratically convergent. In small
divisor problems one also needs a rapidly convergent iteration process, to
stop the effect of the small divisors from building up. The difficulty is that the
derivative may not have a bounded inverse, and in any case the inverse is in
general unknown.

Hald suggested solving the pair of equations

F(x) = 0

F\x)y = I

by means of the sequence of successive approximations

JC+I = xn - ynF(xn)
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[9] Ordinary differential equations 9

where xu is an approximation to the desired root and y0 is a solution, or
approximate solution, of F'(x,,)y = I- This process is a modification of one due
to Moser and, as a result of the modification, is also quadratically convergent.

The small divisor problems I have been discussing are clearly connected
with those which Professor Szekeres discussed in his lecture yesterday. I hope
that some of you may find a connection between your own work and the other
problems which I have mentioned.
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